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Abstract: The purpose of aspect-based sentiment analysis (ABSA) is to determine the sentiment
polarity of aspects in a given sentence. Most historical works on sentiment analysis used complex
and inefficient methods to integrate external knowledge. Furthermore, they fell short of completely
utilizing BERT’s potential because when trying to generate word embeddings, they merely averaged
the BERT subword vectors. To overcome these limitations, we propose a knowledge-guided heteroge-
neous graph convolutional network for aspect-based sentiment analysis (KHGCN). Specifically, we
consider merging subword vectors utilizing a dynamic weight mechanism in the BERT embedding
layer. Additionally, heterogeneous graphs are constructed to fuse different feature associations
between words, and graph convolutional networks are utilized to identify context-specific syntactic
features. Furthermore, by embedding a knowledge graph, the model can learn additional features
from sources other than the corpus. Based on this knowledge, it is consequently possible to obtain
more knowledge representation for a particular aspect by utilizing the attention mechanism. Last
but not least, semantic features, syntactic features, and knowledge are dynamically combined using
feature fusion. Experiments on three public datasets demonstrate that our model achieves accuracy
rates of 80.87%, 85.42%, and 91.07%, which is an improvement of more than 2% compared to other
benchmark models based on HGCNs and BERT.

Keywords: ABSA; HGCN; knowledge graph; feature fusion

1. Introduction

Aspect-based sentiment analysis (ABSA) is a crucial factor in sentiment analysis and
has become an increasingly popular subject in natural language processing
research [1,2]. ABSA explores the aspect vocabulary’s sentiment polarity (positive, neutral,
or negative), given the sentence and the aspect vocabulary. As an example, when some-
one states “Great food, but the environment is so bad!”, the sentiment polarities for the
aspects of food and environment are opposite, as seen in Figure 1. In this regard, ABSA
outperforms sentence-level sentiment analysis in determining a certain aspect’s polarity [3].

Figure 1. ABSA of the statement “Great food, but the environment is so bad!”.

Neural networks have been utilized in a majority of the initial ABSA investigations to
extract sentiment information associated with specific aspects within a textual context [4–7].
Subsequently, ABSA model architectures using an attention-based mechanism [8] and a
pre-trained model [9] have become popular approaches [10,11]. BERT is instrumental in
transforming input text into a more nuanced semantic representation. Simultaneously,
the attention mechanism is crucial for highlighting a sentence’s pertinent viewpoint that
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pertains to a particular aspect, focusing on contextual relationships. Despite the fact that
models founded on pre-training and attention mechanisms have demonstrated commend-
able classification accuracies in ABSA tasks, a notable limitation arises in the simplistic
methodology of averaging subword vectors to create word-level embeddings in the ap-
plication of BERT [12,13]. This approach potentially restricts the semantic representation
capability of BERT.

Numerous studies have underscored that in the context of ABSA, it is important to
consider both the syntactic dependencies and semantic interactions between aspect and
context words [14,15]. These studies highlight the significance of the syntactic dependency
tree, which encapsulates syntactic information and is encoded using a graph convolutional
network (GCN). This encoding effectively bridges aspect words with corresponding opinion
words in a syntactically coherent manner. However, the use of a solitary dependency tree
graph presents a limitation. It does not fully harness the latent information embedded
within a sentence, nor does it capitalize on the robust feature fusion capacity inherent in
GCNs. Modeling the enhanced syntactic dependency tree by adding additional nodes (such
as sentences or knowledge) through a heterogeneous graph convolutional network (HGCN)
can effectively improve the problem of a single structured dependency tree [16]. Despite
these advancements, most models employing HGCNs encounter a critical limitation: the
vectors for aspect words and context words generated by the intermediate hidden layers
are typically averaged to form explicit representations of the additional nodes [17,18]. This
procedure unintentionally results in an absence of potentially significant sentiment features,
thereby impinging upon the efficacy and performance of the ABSA model.

Knowledge graphs have emerged as a powerful tool for infusing external knowl-
edge into neural network models, significantly augmenting the ability of these models
to comprehend semantic textual information. This integration of external knowledge is
particularly beneficial in enhancing semantic features within ABSA tasks. Researchers have
employed external knowledge to enrich the semantic dimensions of these tasks, primarily
by utilizing words (identified as aspect nodes within sentences) in the knowledge graph as
foundational seed nodes. These seed nodes establish connections with context nodes within
the graph. Despite the substantial performance improvements achieved through these
methods [19–21], it is posited that they do not entirely leverage the full spectrum of features
offered by external knowledge. A critical concern is that potential features may be lost dur-
ing the process of transposing them into the graph as nodes. Additionally, the construction
of a knowledge subgraph for each sentence tends to be a complex and intricate task.

To address the issues stated above, we propose a new model: the KHGCN. The en-
coding layer involves feeding a concatenation of the context and aspect vocabulary into
the coding layer. The model obtains semantic and syntactic knowledge through BiLSTM
and HGCN layers, respectively. To further enrich the constructed graph features, sentiment
external knowledge is introduced during the graph construction phase. The knowledge
embedding matrices for context and aspect are obtained through low-dimensional continu-
ous embedding. These embeddings are then integrated with the semantic representations
derived from the BiLSTM layer. Subsequently, aspect-oriented knowledge representation
is obtained through an attention mechanism. The semantic, syntactic, and knowledge
feature representations thus captured are subsequently fused through a feature fusion
layer. This fusion facilitates the prediction of sentiment classification, leveraging the com-
bined strengths of semantic understanding, syntactic structure, and external knowledge
integration. The primary contributions of our work can be summarized as follows:

(1) We propose a new knowledge-guided heterogeneous graph convolutional network
for aspect-based sentiment analysis. Through the utilization of BiLSTM, HGCN, and
external knowledge, the model incorporates multifaceted features of semantics, syntax,
and additional knowledge.

(2) A dynamic weighting mechanism is proposed to address the underutilization of BERT
and the inconsistency between BERT and GCN disambiguation in previous ABSA
tasks. Sentence and aspect nodes, as well as their connection weights, are explicitly
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defined and enhanced with external sentiment knowledge when constructing the
heterogeneous graph.

(3) We also introduce external affective knowledge in a different manner, obtaining knowl-
edge embeddings for both the aspect and context to individually capture affective
information corresponding to specific aspects.

The remaining portions of this paper are structured as follows. Section 2 summarizes
some previous research that is relevant to our work. Section 3 outlines the structure of our
model: the KHGCN. Section 4 presents and explains the experimental results. Section 5
summarizes our findings.

2. Related Works
2.1. Aspect-Based Sentiment Analysis

In the realm of ABSA, current methodologies primarily employing neural networks
begin by analyzing the contextual information within a text. These methods concentrate
on identifying crucial emotional cues to ascertain the polarity corresponding to particular
aspect concepts [4–7,22,23]. With the goal of providing an accurate aspect representation,
Majumder et al. [4] utilized the memory network to add specific information close to the
aspect words. Gandhi et al. [6] used conditional random fields and bi-directional LSTM to
extract aspectual terms from text and model their sentiment. Utilizing an attention-based
approach, a multi-granular attention mechanism was implemented by Zhu et al. [24] with
the aim of enhancing the dependence among aspects and words of opinion. Additionally,
Xue and Li [22] utilized a gating mechanism in a gated CNN model to output sentiment
information exclusively, in accordance with a specified aspect. To further restrict the
adverse effects of words unrelated to aspect and constrain the propagation of information,
Zhao et al. [25] constructed an aspect-oriented weighting mechanism and proposed a GCN
model incorporating multiple weighting techniques.

2.2. Graph Convolutional Network

There is a growing recognition of the limitations inherent in sequential models, par-
ticularly their neglect of syntactic relationships between sentences. The significance of
syntactic relationships in comprehending and assessing sentiments in ABSA makes this
error noteworthy. Graph network-based ABSA models have been developed at an impres-
sive rate in the past few years, showing heightened potential for extracting and interpreting
syntactic relationships [26–29]. A heterogeneous graph neural network was proposed by
Zhang et al. [30], which enriches the created graph characteristics with information from
various node types and connectivity interactions. The model has shown good application
in link prediction [31], node classification [32], and personalized recommendation [33]. A
heterogeneous graph convolutional network sentiment classification model was presented
by Zhang et al. [18]. It prunes the dependency tree and lessens the effects of plume knowl-
edge regarding the outcomes. Therefore, we believe that it is very meaningful to utilize an
HGCN for ABSA.

2.3. Considering External Knowledge

Deep learning models are progressively incorporating outside knowledge, especially
in the realm of natural language processing [34–37]. This trend underscores the significant
role that both linguistic and general knowledge play in enhancing the comprehension
of natural language. In the context of ABSA, where the primary objective is to analyze
and interpret sentiment, the incorporation of external sentiment knowledge into models is
especially advantageous. SenticNet7 [37] is an excellent public resource for categorizing sen-
timent and mining opinions and has performed very well in sentiment analysis tasks [38].
Liang et al. [39] employed a SenticNet-enhanced dependency graph and utilized contextual
sentiment knowledge to enhance sentiment categorization efficiency. In constructing the
graph, Xu et al. [40] incorporated sentiment knowledge and amalgamated information from
the latent semantic graph and the enhanced dependency graph dynamically by employing
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a gating mechanism. By incorporating additional sentiment nodes into the heterogeneous
graph, Zhang et al. [18] calculated the similarity among nodes of aspect and nodes of
knowledge to determine the connection weights. When introducing sentiment knowledge,
the above model simply calculates the sentiment score values of related words to enhance
the dependency graph and does not fully utilize the sentiment vector representations in
SenticNet. Thus, based on the rich sentiment knowledge in SenticNet, for aspect words
and context, we extract an embedded matrix of the sentiment information by utilizing the
300,000-concept affective knowledge space.

2.4. Limitations

The related works mentioned above simply average the subword vectors to form
word-level embeddings when implementing BERT, which limits the powerful semantic
representation capability of BERT and also affects the performance of the ABSA model.
Furthermore, the previous works do not comprehensively consider semantic, syntactic,
and external knowledge features. There are very few studies that consider all three features
at the same time. When conducting syntactic feature extraction, isomorphic graphs alone
do not fully utilize the powerful feature fusion capabilities of the GCN. It is also necessary
to account for the impact of additional nodes on the syntactic structure. Additionally,
the incorporation of external knowledge is too simple to fully exploit the rich sentiment
information in the affective space.

3. Methodology

We present a detailed illustration of the construction of heterogeneous graphs and the
KHGCN in this section. In Figure 2, an overview of the proposed model is shown.

Figure 2. The detailed architecture of the KHGCN.

3.1. Problem Description

The purpose of ABSA is to determine the sentiment polarity of aspects in a given
sentence. Assuming a sentence containing n words, S = {w1, w2, . . . , wn−1, wn}, and its
subsequence of A = {wτ , wτ+1, . . . , wτ+m−1} represents an aspect in S. In this task, the
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aspect terms are labeled as Y = {0, 1, 2}, representing negative, neutral, and positive aspects,
respectively.

3.2. Embedding Based on BERT

Word embeddings are acquired by applying BERT, which encodes each component
word into a high-dimensional vector. BERT [9] has demonstrated notable efficacy in the
domain of contextual representation learning. The sequence of inputs is constructed in
the form of [CLS] + S + [SEP] + A + [SEP]. BERT’s internal tokenizer is used to segment
input sequences into subword sequences, S̃ = {[CLS], w1

1, w2
1, w2, . . . , wj

n, [SEP]}, where
{w1

t , . . . , wj
t} represents the subword sequence of the word wt. Therefore, the representation

of the input sequence is Ẽ = {e[CLS], ẽ1
1, ẽ2

1, ẽ2, . . . , ẽj
n, e[SEP]}, where e ∈ dbert , dbert represents

the size of the hidden dimensions.

Dynamic Weighting Mechanism

Inconsistent tokens arise from the differences in word segmentation methods between
BERT and the GCN [41,42]. Take, for example, the following sentence: “He hates playing
games”. BERT generates tokens such as “[CLS]”, “He”, “hates”, “play”, “##ing”, and
“games”, “.”, “[SEP]”. However, the GCN generates tokens such as “He”, “hates”, “play-
ing”, “games”, and “.”. This is due to the WordPiece word segmentation strategy in BERT
that splits “playing” into two subwords: “play” and “##ing”. The importance of different
subwords within a text surely fluctuates. For the purpose of addressing the problem of
inconsistent word segmentation and improving the effectiveness of the BERT pre-trained
model, we introduce a dynamic weighting mechanism to amalgamate subwords, as de-
lineated in Algorithm 1. For an input sequence, we first obtain the index sequence of
subwords divided into [[idx(e1

1), idx(e2
1)], . . . , [idx(e1

n), . . . , idx(ej
n)]]. The corresponding

embedding vector should not change if the word is divided consistently in both BERT and
the GCN. When the subwords are divided inconsistently between the two, the subword
weight within the original word is determined utilizing the exponential function. Next,
the subword weights are normalized and weighted to obtain the embedding vectors of
the words.

Algorithm 1 Dynamic weighting mechanism

1: Input:
2: Subword index list of each word in a sentence:
3: L = [[idx(e1

1), idx(e2
1)], . . . , [idx(e1

n), . . . , idx(ej
n)]]

4: embedding vector sequence: Ẽ = {e[CLS], ẽ1
1, ẽ2

1, ẽ2, . . . , ẽj
n, e[SEP]}

5: Output:
6: Weighted embedding vector sequence: E =

[
e[CLS], e1, e2, . . . , en, e[SEP]

]
7: for i = 0 to n − 1 do
8: if len(L(i)) = 1 then
9: ei = ẽi

10: else
11: weight = []
12: for j = 0 to len(L(i))− 1 do
13: weight[j] = e−αj where e is a natural constant and α is a decay factor
14: end for
15: ei = ẽi × softmax(weight)
16: end if
17: i = i + 1
18: end for

3.3. BiLSTM Layer

BiLSTM is commonly applied to text and time-series data. It can be used to capture
token context-dependent information, including forward and backward LSTM [6].
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After the embedding layer, we obtain the context’s embedding vector matrix
Es = {es

1, es
2, . . . , es

n}, as well as the aspect word’s embedding vector matrix
Ea = {ea

τ, ea
τ+1, . . . , ea

τ+m−1}. These matrices are then input into independent BiLSTM lay-
ers. The context feature representation corresponds to the hidden state Hs = {hs

1, hs
2, . . . , hs

n},
where Hs ∈ n×2dh , and the representation of the corresponding aspect is Ha = {ha

τ, . . . , ha
τ+m−1},

where Ha ∈ m×2dh , and dn is the hidden layer dimension of BiLSTM.

3.4. Detailed Description of the Heterogeneous Graph

G(V, E, Tv, Te, ϕ, ψ) is the representation of a heterogeneous graph, where V represents
a node set and E represents an edge set. The mapping of each node to its appropriate node
type is represented by ϕ: ϕv : V → Tv. ψ represents mapping each node to its corresponding
edge type: ψe : E → Te. In our work, each word in a sentence {w1, w2, . . . , wτ+m−1, . . . , wn}
is a node in the graph, and |Tv| = 3, |Te| = 4. Apart from word nodes, our framework
incorporates two supplementary node categories: aspect nodes, denoted as t, and sentence
nodes, denoted as s. Below, we sequentially delineate the pertinent node types alongside
the inter-nodal relational structures:

(1) DTij: Employing the spaCy toolkit, we ascertain the syntactic dependencies inher-
ent within each proffered sentence. The syntactic dependency tree’s interrelations serve as
the edges, whereas the associated lexical tokens constitute the nodes, thereby forging the
connective topology.

Tij =


1 if wi, wj have a syntactic dependency
1 if i = j
0 otherwise

(1)

We incorporate knowledge from SenticNet and integrate emotional knowledge into
syntactic dependencies using the sentiment scores from SenticNet by making use of the
affective common sense information between aspect words and context. Initially, we
determine each lexical group’s sentiment score based on syntactic dependencies:

Scorei,j = Sentic(wi) + Sentic(wj) (2)

where Sentic(wi) ∈ [−1, 1] represents the sentiment score in SenticNet. Conforming to the
processing methodology delineated in [39], we derive the final syntactic matrix as follows:

DTij =

{
Tij × (Scoreij + 2) if wi or wj in A
Tij × (Scoreij + 1) else

(3)

(2) TF-IDF: The TF-IDF metric is utilized to determine the relative importance of ev-
ery word within a document or corpus. The model has the capacity to decrease the impact
of words that contribute only slightly to the meaning of the sentence by employing the
TF-IDF metric to calculate the connective weight connecting a word with a sentence. Con-
sequently, this facilitates a model-centric emphasis on terms that furnish more substantive
contributions.

(3) The mutual indication relationship between aspects and sentences, which has been
shown to perform well in the ABSA task, is represented by an edge across the aspect node t
and the sentence node s.

(4) DWINijaspect : This illustrates how word nodes affect aspect nodes’ sentiment po-
larity and how aspect nodes affect word nodes. Typically, a word node’s influence on an
aspect increases with its closeness to the aspect. Thus, by adjusting the window size, you
can determine whether and to what degree the word node affects the aspect node. The
window is dynamically set in this article according to the length of the input text. The
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precise implementation approach, along with its magnitude and degree of influence, is
as follows:

DWINijaspect =

{
e−β|jaspect−i| if i ∈ (jaspect − kn, jaspect + kn)
0 else

(4)

where n is the text length, k controls the window size, β is the attenuation factor that
controls the degree of contribution, and k and β are hyperparameters, which can be set
separately according to different datasets.

We represent the relationships in this heterogeneous graph utilizing the adjacency
matrix A ∈ (n+2)(n+2). In mathematical terms, the weight of the edge is determined
as follows:

Aij =



DTij i, j are words
TF − IDF i is s, j is word
DWINij i is word, j is t
1 i is s, j is t
0 others

(5)

3.5. Graph Convolutional Networks

Through the multiple relationships mentioned above, given a sentence, we can con-
struct a heterogeneous graph G(V, E, Tv, Te, ϕ, ψ, A), where A represents the adjacency
matrix. To create a new node representation vector, H′ = {hs

1, hs
2, . . . , hs

n, s, t}, the represen-
tation vectors for the additional nodes, s and t, are combined with the context node vector.
Subsequently, the heterogeneous graph adjacency matrix A alongside the nodal vectors H′

are assimilated as inputs to the GCN, wherein the graph convolution operation is harnessed
to encode the locoregional nodal information. Through the graph convolution process,
each node incrementally accrues efficacious information from its immediate neighbors
with each convolutional iteration. By augmenting the number of graph convolution layers,
a node’s capacity to garner a broader informational ambit from its neighboring nodes is
enhanced, thereby enabling the efficacious learning of node-specific feature representations.
Drawing upon the insights of extant scholarship [43,44], we posit that a monolithic layer
in a GCN is insufficient for the acquisition of a comprehensive informational spectrum
from neighboring nodes. Conversely, a multi-layered GCN approach inflates the model’s
complexity. Consequently, our work advocates for a two-layer GCN.

Graph convolution is utilized to update each node’s representation in a GCN layer.
The detailed equations are as follows:

hl
i = ReLU(

n

∑
j=1

cij Aij(W lhl−1
j + bl)) (6)

ci =
1

Dii
(7)

Dii =
n

∑
j=1

Aij (8)

where D represents the degree matrix, ci represents the normalization constant, and W l

and bl represent learnable parameters.
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3.6. Aspect-Specific Mask

The enhanced aspect feature vector can be acquired by applying the zero-mask layer
following the GCN layer. Only the aspect nodes’ feature representation remains after the
mask adjusts the representation of non-aspect nodes to 0.

Hmask = {0, . . . , hs
τ , . . . , hs

τ+m−1, . . . , 0, t} (9)

3.7. Affective Knowledge Graph

The smallest significant units of language are referred to as words. However, many
words or phrases themselves have profound personal significance. For example, the
word “disastrously” typically conveys a negative sentiment in a sentence. We present
a new approach that utilizes the embedding of knowledge and introduces the affective
knowledge space from SenticNet7 [37] to better leverage the rich sentimentality of the
words themselves.

SenticNet7 constructs a three-level concept primitive knowledge representation, as
shown in Figure 3, by first extracting concept primitives from the text and then connecting
the concept primitives, the public knowledge concept layer, and the command entity
layer. The 300,000 concepts inside SenticNet7. In addition to providing conceptual-level
representation, assigning semantics and sentiment provides semantic information and
sentiment for individual words.

Figure 3. A sketch of the SenticNet 7 semantic network of three-level knowledge representation.

The affective knowledge space maintains the relationship between semantics and
sentiment by mapping the SenticNet7 concepts to the continuous low-dimensional embed-
dings. Consequently, we are able to apply the matrix EA f f to obtain the affective knowledge
embeddings of the input text S and aspect words A.

Hs
A f f = {h

sa f f
1 , h

sa f f
2 , . . . , h

sa f f
n } (10)

Ha
A f f = {h

aa f f
τ , h

aa f f
τ+1, . . . , h

aa f f
τ+m−1} (11)

Since HA f f is a 100-dimensional embedding vector, we first transform it into the
dimensions of the BiLSTM layer’s hidden state utilizing a linear transformation. Then,
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we integrate affective knowledge into a feature representation vector matrix as the final
knowledge graph’s embedding through matrix addition:

Hs
A f f = Linear(Hs

A f f ) + Hs (12)

Ha
A f f = Linear(Ha

A f f ) + Ha (13)

We obtain the external knowledge representation of the text utilizing this approach.
With this foundation, we can employ external affective knowledge to efficiently determine
the sentiment polarity of aspect words in a phrase.

3.8. Attention Layer

In this layer, to extract long-term dependencies from context and capture the inter-
activity of aspect words and context, we utilize a multi-head attention. Aspect-specific
contextual information is updated through the aspect-aware attention mechanism.

3.8.1. Multi-Headed Attention

The self-attention mechanism is responsible for learning long-term dependencies from
the input sequence. We first project the input sequence to the representations, Q , K , V,
and then calculate the attention. The formula is as follows:

Q, K, V = LinearQ(Hs), LinearK(Hs), LinearV(Hs) (14)

headi = Attention(Qi, Ki, Vi) = so f t max(
QiKi

T
√

dk
)Vi (15)

MultiHead(Hs) = Concat(headi, . . . , headh)WO (16)

where Qi, Ki, Vi represent the i-th attention head, WO is the learnable parameter of the
multi-head attention output, and the remaining linear transformations are parameters that
can be learned.

3.8.2. Aspect-Aware Attention Mechanism

To extract meaningful sentiment features from the representations of particular aspects,
we implement an aspect-aware attention mechanism, which is consistent with the work
in [45]. In this research, we apply this mechanism sequentially to semantic, syntactic, and
knowledge representations. The calculation procedure is detailed below. The calculations
for semantic representation are as follows:

θt =
n

∑
i=1

(multihead(hs
t))

Tha
i (17)

Zc =
n

∑
t=1

so f tmax(θt)hs
t (18)

where hs
t and ha

i are obtained through the BiLSTM layer. The calculations for syntactic
representation are as follows:

θt =
n

∑
i=1

hs
t hmask

i (19)

Zs =
n

∑
t=1

so f tmax(θt)hs
t (20)

where hmask
i is the aspect-specific output obtained through the zero-mask layer. The calcu-

lations for knowledge representation are as follows:
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θt =
n

∑
i=1

hs
a f f ,th

a
a f f ,i (21)

Zk =
n

∑
t=1

so f t max(θt)hs
a f f ,t (22)

where hs
a f f ,t and ha

a f f ,i are the knowledge embedding representations of S and A, respec-
tively.

3.9. Feature Fusion

It would be difficult to take advantage of the complementarity between the represen-
tations if they were immediately fused by gathering the corresponding representation from
the embedding of semantics, syntactic, and affective knowledge. As a result, we use the
fusion strategy described in [45]. During the local fusion process, three types of features are
first connected in pairs: [Zc; Zs], [Zc; Zk], and [Zs; Zk]. Then, the connected representations
are submitted to independent fully connected layers to yield the expected sentiment fea-
tures: Zcs, Zck, and Zsk. In order to achieve the sentiment prediction probability, we merge
them globally after the first splicing by feeding them into a 3 × 3 convolutional layer.

3.10. Sentiment Classification

Ultimately, as the last sentiment prediction, we take the output of the feature fusion
layer, ŷ , and utilize a cross-entropy loss as guidance for training:

Loss = −∑
i

yi log(ŷ) + λ∥Θ∥ (23)

where yi is the real label, and ŷ is the label of the prediction.

4. Experiments
4.1. Datasets and Experimental Details

Three public benchmark datasets—Lap14 [46], Rest15 [47], and Rest16 [48]—were
utilized for our research. The statistics for each polarity of the dataset are shown in Table 1.
To show the datasets in more detail, the statistics on the sentence lengths are shown in
Table 2. Most of the sentence lengths are distributed in the range of 10–30, and there are
fewer sentences greater than a length of 50. A more intuitive distribution of the sentence
lengths can be seen in Figure 4. In our experiments, the depth of the GCN layer was set to
2, the coefficient of the L2 regularization term was set to 0.00001, and α in Algorithm 1 was
chosen to be 0.3. The hidden state vectors had a dimensionality of 768. The dimension of the
word embeddings was adjusted to 768 based on the pre-trained BERT-base-uncased model,
and the model parameters were optimized and updated using the Adam optimizer. We
fixed the learning rate to 0.00002 and the batch size to 32, utilizing Xavier [49] to initialize
the parameters. Dropout was then applied to the word embeddings, and the dropout rate
was chosen to be 0.5 in order to prevent overfitting. The KHGCN model was trained on an
RTX 3080Ti, 12 vCPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40 GHz, and the model was
built using PyTorch 2.0.0.
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Table 1. Statistics of the datasets.

Dataset Positive Neutral Negative Total

Lap14 Train 994 464 870 2328
Test 341 169 128 638

Rest15 Train 912 36 256 1204
Test 326 34 182 542

Rest16 Train 1240 69 439 1748
Test 469 30 117 616

Table 2. The length distributions of the datasets.

Length 0–10 10–20 20–30 30–40 40–50 ≥50

Lap14 Train 233 901 676 322 116 80
Test 109 316 135 38 27 13

Rest15 Train 248 583 260 75 26 12
Test 121 228 111 45 29 8

Rest16 Train 372 811 370 120 55 20
Test 134 274 107 54 16 31
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Figure 4. Histogram of sentence length statistics on the three datasets.

4.2. Evaluation Metrics

In the present study, we employed the same accuracy (Acc.) and F1 score metrics
from the previous ABSA model. Accuracy can be utilized to evaluate how effectively the
model performs overall in terms of classification by quantifying the percentage of correctly
categorized samples to all samples. In statistics, the accuracy of a two-classification model
is shown by the F1 value. It considers the classification model’s recall rate as well as
accuracy. When processing data that are unbalanced by category, the Macro-F1 score is a
highly beneficial metric because it automatically averages the F1 score for each category.
TP represents the number of true positives, FP represents the number of false positives, FN
represents the number of false negatives, and TN represents the number of true negatives.
The formulas for these metrics are as follows:

Acc. =
TP + TN

TP + TN + FN + FP
(24)
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Precision =
TP

TP + FP
(25)

Recall =
TP

TP + FN
(26)

Macro-F1 =
1
|Y| ∑

2 × Precision × Recall
Precision + Recall

(27)

4.3. Baseline

We contrasted our model with other baseline models used for the ABSA task, which
are detailed below:

• MemNet [50] employs a multi-hop architecture, context processing, and external memory.
• AOA [51]: Adapts the attention-over-attention technique from machine translation to

the realm of ABSA.
• IAN [52]: Constructs representations for aspects and contexts independently after

interactively learning attentions in aspects and contexts.
• ASGCN [14]: Applies a GCN to sentence dependency trees to take advantage of

syntactic information.
• AEGCN [53]: Utilizes an improved GCN that combines phrase dependency trees with

multi-head attention.
• SK-GCN [19]: Utilizes a mixed syntax and external knowledge model that successfully

integrates external knowledge with syntax information.
• AHGCN [16]: Employs a new GCN-based model using heterogeneous graphs.
• ADHGCN [18]: Utilizes a new heterogeneous graph construction method, which adds

post-pruning on top of the traditional construction method.
• Sentic LSTM [54]: Employs a common-sense knowledge solution for directed senti-

ment analysis of aspect words.
• Sentic-GCN [39]: Incorporates SenticNet into a model that makes full use of syntactic

relationships and sentiment common sense to enhance dependency trees.
• DM + GCN + BERT [55]: Performs dynamic and multi-channel GCN modeling of

syntactic and semantic information in sentences.
• SGGCN + BERT [56]: Alters the graph-based model’s hidden vectors to make the most

of information from the aspects.
• AIEN + BERT [57]: Constructs an interaction encoder using a GCN and attention

mechanisms for extracting interaction features.
• KHGCN: Utilizes a dynamic weighting mechanism to acquire word-level embeddings

during the encoding phase. It employs BiLSTM, an HGCN, and affective space to ob-
tain semantic, syntactic, and external sentiment features, respectively. Additionally, it
utilizes an attentional mechanism to extract features for
sentiment prediction.

4.4. Performance Comparison

The experimental results, as indicated in Table 3, demonstrate that our proposed KHGCN
performed better overall compared to all other models examined on the three benchmark
datasets.

In particular, the proposed KHGCN performed noticeably better than earlier homo-
morphic and heteromorphic graph models based on GCNs (ASGCN, AEGCN, SK-GCN,
AHGCN, andADHGCN), verifying the effectiveness and feasibility of utilizing emotional
knowledge encoding as well as heteromorphic graphs for sentence dependency enhance-
ment. Poorer results were achieved for the macro-F1 scores on the Rest16 dataset compared
to the excellent GCN-based model (Sentic-GCN). In addition, for the BERT-based model,
our proposed KHGCN outperformed the vanilla BERT model on the three public datasets.
Although it was not as competitive as the SGGCN + BERT model on the Lap14 dataset,
both the Acc. and macro-F1 values exhibited significant improvements over this model on
the Rest15 and Rest16 datasets, demonstrating the effectiveness of the dynamic weighting
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mechanism we proposed in the BERT encoding stage. The results show that our proposed
knowledge-guided heterogeneous graph convolutional network approach is effective.

Table 3. Performance comparison. (The best result for each model is shown in bold, whereas the
second-best result is underlined).

Model
Lap14 (%) Rest15 (%) Rest16 (%)

Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

MemNet [50] 70.64 65.17 77.31 58.28 85.44 65.99
AOA [51] 72.62 67.52 78.17 57.02 87.5 66.21
IAN [52] 72.05 67.38 78.54 52.65 84.74 55.21
ASGCN [14] 74.14 69.24 79.34 60.78 88.69 66.64
AEGCN [53] 75.91 71.63 79.95 60.879 87.39 68.22
SK-GCN [19] 73.20 69.18 80.12 60.70 85.17 68.08
AHGCN [16] 76.80 73.00 79.94 62.79 88.53 72.18
ADHGCN [18] 78.52 76.21 85.16 63.77 88.53 71.94
Sentic-LSTM [54] 70.88 67.19 79.55 60.56 83.01 68.22
Sentic-GCN [39] 77.90 74.71 82.84 67.32 90.88 75.91
BERT [9] 77.59 73.28 83.48 66.18 90.10 74.16
DM + GCN + BERT [55] 80.22 77.28 N/A N/A N/A N/A
SK-GCN + BERT [19] 79.00 75.57 83.20 66.78 87.19 72.02
SGGCN + BERT [56] 82.80 80.20 82.72 65.86 90.52 74.53
AIEN + BERT [57] 78.21 73.39 83.58 64.67 90.58 74.49

KHGCN 80.87 77.90 85.42 68.90 91.07 74.65

4.5. Ablation Study

The detailed results of the ablation experiments are shown in Table 4. The performance
of the model without sentiment knowledge encoding (w/o Zk) was unsatisfactory on all
datasets, which indicates that our way of encoding sentiment knowledge provided the
corresponding sentiment information for the contexts and aspects. Meanwhile, after
removing the semantic and syntactic branches (w/o Zc, w/o Zs), the model’s performance
decreased by varying degrees. We can conclude that the BiLSTM and HGCN layers
were effective components for extracting semantic and syntactic features. In addition, the
experiment without DWM yielded worse experimental results overall compared to the
benchmark tests, again confirming that the integration of encoded information using the
dynamic weighting mechanism in the BERT encoding phase was effective.

Table 4. Ablation study results (%). “DWM” represents the dynamic weighting mechanism, “Zc” repre-
sents semantic features, “Zs” represents syntactic features, and “Zk” represents affective knowledge).

Model
Lap14 (%) Rest15 (%) Rest16 (%)

Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

KHGCN w/o DWM 80.09 76.93 85.23 67.72 90.75 73.93
KHGCN w/o Zc 79.31 75.78 84.69 65.20 90.42 72.14
KHGCN w/o Zs 80.25 76.84 84.31 65.80 90.09 71.75
KHGCN w/o Zk 80.25 76.90 85.24 66.96 90.42 73.45
KHGCN 80.87 77.90 85.42 68.90 91.07 74.65

4.6. Parameter Experiment

Since the KHGCN model uses a dynamic window mechanism to construct the het-
erogeneous graphs, we investigated how this mechanism’s hyperparameters, k and β,
impacted the model’s performance, as illustrated in Table 5. The optimal Acc. and macro-
F1 values on the Lap14 and Rest16 datasets were achieved with k = 0.3 and β = 0.3, the
optimal Acc. value on Rest15 was achieved with k = 0.3 and β = 0.4, and the optimal
macro-F1 value on Rest15 was achieved with k = 0.2 and β = 0.6. The reason for this result
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may be that in the Rest15 dataset, there are large differences in the data distribution models
of different categories.

4.7. Complexity Analysis

In this subsection, we have chosen AHGCN, Sentic-GCN, and AIEN+BERT to compare
the number of parameters and the runtimes of the models, and the results are shown in
Table 6. Since the data pre-processing, heterogeneous graph generation, and external
knowledge embedding only need to be performed once, the generated embedding matrix
can be recycled. Therefore, this part was ignored when counting the number of parameters
and the runtimes of the models. As we can observe from Table 6, the number of parameters
in our model was significantly higher than those in AHGCN and Sentic-GCN, and slightly
lower than those in AIEN+BERT. In terms of time complexity, we were able to reach
convergence faster on the Rest16 dataset, and the runtimes of the different models for the
remaining two datasets were not significantly different. Thus, the model in this paper
sacrifices space complexity while performing better in terms of the Acc. and macro-
F1 metrics.

Table 5. Performance using different values k and β.

k β
Lap14 (%) Rest15 (%) Rest16 (%)

Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

0.2

0.3 80.56 77.62 85.24 68.98 90.91 74.51
0.4 80.41 77.57 85.06 68.43 90.75 74.24
0.5 80.41 77.03 84.87 67.03 90.26 74.05
0.6 80.72 77.77 84.87 69.19 90.56 73.58

0.3

0.3 80.87 77.90 85.05 67.72 91.07 74.65
0.4 80.40 77.74 85.42 68.90 90.26 74.09
0.5 80.56 77.15 85.23 65.14 91.07 73.66
0.6 80.25 77.04 85.06 69.08 90.58 72.30

Table 6. Runtime and number of parameters of the model (time represents the time for each epoch to
achieve convergence).

Model Params Dataset Time/s

AHGCN 44.09 M
Lap14 197.37
Rest15 169.61
Rest16 321.98

Sentic-GCN 44.09 M
Lap14 274.78
Rest15 204.82
Rest16 264.57

AIEN + BERT 132.36 M
Lap14 212.21
Rest15 133.93
Rest16 215.92

KHGCN 103.16 M
Lap14 227.04
Rest15 273.08
Rest16 205.90

4.8. Discussion

The proposed model performs well, as can be seen from the comparison of the experi-
mental results above. Table 4 shows that feature extraction modules, whether semantic,
syntactic, or external information, play an invaluable role in text feature extraction. This
demonstrates that the ABSA model can incorporate multiple simultaneous feature extrac-
tion modules for text, which is beneficial for enhancing classification accuracy. This paper
proposes a dynamic weighting mechanism for using BERT to embed words to address
the problem of inconsistency between the GCN model and the BERT model for word
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segmentation. The experimental results also verify the effectiveness of this method, which
provides a solvable idea for subsequent research. Although external knowledge embedding
introduces additional complexity, it is a one-time process, and the resulting embeddings
can be reused. Furthermore, the aforementioned modules can be utilized independently
as branches of the ABSA model for feature extraction, which is highly scalable, providing
greater convenience for subsequent researchers. The model proposed in this paper can
be beneficial in domains that require sentiment analysis, such as online shopping, where
sellers can analyze the likes and dislikes of various types of products through customer
reviews and better adjust the shelving strategy of the products. Another area is social
media monitoring, which can help companies track user sentiment on social platforms and
understand the public’s views on specific issues, products, or events.

4.9. Case Study

In this section, to better analyze how decisions are made within the KHGCN, the
specific decision-making process is presented using the test example “The staff should be a
bit more friendly”. The results are shown in Figure 5. In the text semantic extraction stage,
the model notices the key negative expression “should be”. In the semantic structure stage,
the model focuses more on the connection between the sentence nodes and the aspect word
“staff”. Simultaneously, the model learns the words with obvious emotional information,
such as “bit” and “friendly”, through external knowledge embedding. By combining the
above three stages of sentiment extraction, the KHGCN accurately predicts the sentiment
polarity of the aspect “staff”.
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Figure 5. Attention visualization for sentiment analysis example.(Darker color represents higher
attention scores).

5. Conclusions

In response to the complexity and inefficiency of the traditional literature on integrat-
ing external knowledge and generating word embeddings, which often merely average
BERT subword vectors, we propose a knowledge-guided heterogeneous graph convolu-
tional network for aspect-based sentiment analysis to address these limitations. In concrete
terms, we propose a dynamic weight mechanism for merging subword vectors in the BERT
embedding layer. In addition, the model can acquire additional information by embedding
the knowledge graph, signifying its ability to utilize the attention mechanism to gener-
ate aspect-oriented knowledge representations. And finally, feature fusion is utilized to
dynamically combine the feature representations of semantic, syntactic, and knowledge
aspects. The experimental results demonstrate that our proposed KHGCN performs better
overall on three benchmark datasets compared to all other models examined.
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