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Abstract: On the basis of a full-appendage DARPA SUBOFF model (DTRC model 5470), a scale (λ= 0.535)
semi-autonomous submarine free-running model (SFRM) was designed for testing its manoeuvrability
and stability in the constrained water. Prior to the experimental tests of the SFRM, a six-degree-of-
freedom (6-DOF) manoeuvre model with an autopilot system was developed by using logic operations in
MATLAB. The SFRM’s attitude and its trim polygon were presented by coping with the changes in mass
and trimming moment. By adopting a series of manoeuvring tests in empty tanks, the performances of
the SFRM were introduced in cases of three sailing speeds. In addition, the PD controller was established
by considering the simulation results of these manoeuvring tests. The optimal control gains with respect
to each manoeuvring test can be calculated by using the PID tuner in MATLAB. Two sets of control
gains derived from the optimal characteristics parameters were compared in order to decide on the most
appropriate PD controller with the line-of-sight (LOS) guidance algorithm for the SFRM in the autopilot
simulation. Eventually, the simulated trajectories and course angles of the SFRM would be illustrated in
the post-processor based on the Cinema 4D modelling.

Keywords: submarine free-running model; trim polygon; manoeuvrability; SUBOFF; PD controller;
autopilot system

1. Introduction

The manoeuvring performance of the submarine is an important parameter in the
initial design, especially for the geometry of the appendages, which in turn is important for
the submarine resistance and hence total performance of the submarine. Conventionally,
captive experiments, i.e., rotating arm (RA) and planar motion mechanism (PMM), and
numerical simulations, i.e., computerised planar motion mechanism (CPMM), are adopted
for in the early design stage until a reasonable maturity of the design is reached. For an
alternative option of matured designs, free-running manoeuvring models have further
become available for validation of the manoeuvring performance.

The so-called submarine free-running model (SFRM) is a remotely controlled scale
model replicating submarine manoeuvres. These models should be equipped with in-
strumentation to measure all the state variables required to describe its 6-DOF motion
responses, including trajectories, attitudes, linear and angular velocities, and accelera-
tions [1]. Over the last few decades, there have been numerous studies [2–5] investigating
SFRMs in controlled environments. Although the SFRM can evaluate the manoeuvring
performances of the full-scale model accurately, there are still some differences between
the scale model and the full-scale model due to scale effect.

In order to keep the desired trajectories dynamically during the test, a robust control
system is required for adjusting the control planes of the SFRM. Definitely, the input and
output signals demand for the control planes are greatly affected by the manoeuvring char-
acteristics. The CFD-based and coefficient-based methods are the two major mathematical
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models in exploring the hydrodynamic forces and moments exerted on the SFRM. As the
name implies, the coefficient-based method uses the equation of motion (EOM) combined
with the hydrodynamic coefficient as a mathematical model [6,7]. Taking advantage of
the predefined coefficients in the mathematical model, it usually has less computation
time than the CFD-based method. Furthermore, the coefficient-based method can approx-
imate the hydrodynamic interaction effect through semi-empirical correction when the
positions of the appendages are rearranged at a preliminary design stage [8]. However,
the limitation of the coefficient-based method is that the unsteady viscous effect cannot
be captured in the linear model, such as cross flow and vorticity [1]. In order to overcome
the limitations of the coefficient-based method and improve the accuracy of manoeuvring
characteristics, the CFD-based method provides another option, including the resistance
test [9], self-propulsion test, and free-running test simulations [10].

Since the estimation of hydrodynamic coefficients has uncertainty and variation
in different environmental conditions [11], hydrodynamic forces and moments exerted
on the SFRM are changed accordingly. Therefore, an applicable controller needs to be
a self-tuning and robust counter to the variation of SFRM parameters and also unpre-
dictable environmental disturbances. In recent years, numerous control models have been
proposed, e.g., linear controllers [12,13], sliding-mode controller (SMC) [14], adaptive
control [15,16], FLC (Fuzzy Logic Control) [17], predictive control [18], static feedback
control [19], neural-network-based control [20], and PID (proportional–integral–derivative)
control [21]. The advantage of using a PID controller is that it is simple to implement and
maintain, but it is primarily applicable for linear time-invariant systems.

The well-known classic equations of motion (EOMs) are those of Gertler and Hagen [6],
Feldman [7], and Fossen and Fjellstad [22]. They were derived by adopting Newton–Euler
equations or Lagrangian methods, which can be calculated in matrix forms. For example,
Perrault, et al. [23] applied a fully nonlinear mathematical model based on Newton–Euler
EOMs to investigate the sensitivity of an AUV response to changes in hydrodynamic
coefficients, including those during simulated turning and zigzag tests. Coe [24] established
a preliminary model for manoeuvrability computation of a submarine by using a database
of hydrodynamic coefficients and empirical equations, thus enabling the prediction of
submarine’s general manoeuvrability in deep water. Although it is difficult to realise
unsteady motions for extreme submarine manoeuvres [25], the coefficient-based model is
considered to provide realistic estimations for moderate manoeuvres [1].

The main purpose of this study is to develop a 6-DOF manoeuvre model of the SFRM
based on the generic model SUBOFF by means of a conventional PD controller. First of
all, a six-degree-of-freedom (6-DOF) manoeuvre model was constructed for a series of
fundamental manoeuvring tests. Secondly, the integrated control system, including rudder
planes and stern planes, were modelled as 2nd order mass-spring systems that can be
simulated as control inputs. Finally, the PD controller combined with the line-of-sight
(LOS) [26] guidance algorithm was applied to track waypoints at different sailing speeds.

2. The Configuration of SFRM
2.1. Geometry

Our SFRM was developed based on the scale (λ = 0.535) DARPA SUBOFF (DTRC
model 5470) [27]. The principal model architecture comprises of the bow, midsection,
stern, sail, rudder, and stern planes. The model geometry and principal particulars were
presented in Figure 1 and Table 1, respectively. In Table 1, the effective power is equal to
the power output of the engine minus losses due to the gearbox, shafting, propeller, as well
as interaction between the propeller and the hull.



Appl. Sci. 2021, 11, 410 3 of 33

Figure 1. (a) Side, and (b) rear view of the submarine free-running model (SFRM).

Table 1. Principal particulars of the SFRM and the propeller.

SFRM

Full length [m] 2.335

Diameter [m] 0.273

Bow length [m] 0.47

Midsection length [m] 1.26

Stern length [m] 0.532

Total height [m] 0.383

Sail length [m] 0.197

Sail width [m] 0.0358

Propeller

Diameter [m] 0.15

Number of blades 4

Hub to diameter ratio 0.292

Pitch to diameter ratio 1.32

Revolution speed [RPM]
370 at U = 0.5 [m/s]
785 at U = 1.0 [m/s]

1210 at U = 1.5 [m/s]

Effective Power [W]
0.17 at U = 0.5 [m/s]
1.51 at U = 1.0 [m/s]
4.44 at U = 1.5 [m/s]

2.2. Ballast Tank and Attitude Adjusting System

Our SFRM contains forward, aft ballast tanks, and an attitude adjusting system that
allows the variation of mass, and movement of mass inside the model as shown in Figure 2.
The designs of ballast tanks were maximised within the constraints of the hull geometry.
The forward and aft ballast tanks are of the same design, approximately equal distance
from midships, but each one can be independently controlled. The dimension of each
ballast tank is 0.084 m × 0.084 m × 0.084 m, and the weight of the full tank is 600 g. In
addition, both the inflow rate and the outflow rate are set to be 0.0002 m3/s. For the
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attitude adjusting system, the trim angle and the heel angle of the SFRM can be controlled
suitably by fine-tuning the locations of the lead weights. Overall speaking, the total mass,
center of gravity (CG), trim angle and heel angle can be regulated suitably by using ballast
tanks and the attitude adjusting system.

Figure 2. The configuration of ballast tanks and the attitude adjusting system.

2.3. Time-Varying Mass Model

The total mass and weight of the SFRM can be time-varied based on the following
equations:

W(t) = m(t)g (1)

m(t) = m0 +
2

∑
i=1

mi(t) (2)

mi(t) =
∫

.
mi(t)dt = ρQi(t), i = 1, 2 (3)

where t is defined as time; W(t) and m(t) are the total weight and mass of the SFRM; m0 is
the initial mass of the SFRM; m1(t) and m2(t) represent the masses of forward ballast tank
and aft ballast tank;

.
m1(t) and

.
m2(t) denote the rates of masses of forward ballast tank

and aft ballast tank; Q1(t) and Q2(t) denote the flow rates of forward ballast tank and aft
ballast tank; ρ is the water density; t is defined as time.

Since the attitude of the SFRM is determined by the mass variation of the ballast tank,
the coordinate of CG can be determined as below:

xg(t) =
m0xgo + xb1(t)m1(t) + xb2(t)m2(t)

m0 + m1(t) + m2(t)
(4)

yg(t) =
m0ygo + yb1(t)m1(t) + yb2(t)m2(t)

m0 + m1(t) + m2(t)
(5)

zg(t) =
m0zgo + zb1(t)m1(t) + zb2(t)m2(t)

m0 + m1(t) + m2(t)
(6)

where (xgo, ygo, zgo) is the initial coordinate of CG; (xb1, yb1, zb1) is the coordinate of CG for
the forward ballast tank, and (xb2, yb2, zb2) is the coordinate of CG for the aft ballast tank.

Subsequently, the inertia moments of the SFRM are defined by:
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Ixx(t) = Ix0 + [Ixb1(t) + (yb1(t)
2 + zb1(t)

2)×m1(t)] + [Ixb2(t) + (yb2(t)
2 + zb2(t)

2)×m2(t)] (7)

Iyy(t) = Iy0 + [Iyb1(t) + (xb1(t)
2 + zb1(t)

2)×m1(t)] + [Iyb2(t) + (xb2(t)
2 + zb2(t)

2)×m2(t)] (8)

Izz(t) = Iz0 + [Izb1(t) + (xb1(t)
2 + yb1(t)

2)×m1(t)] + [Izb2(t) + (xb2(t)
2 + yb2(t)

2)×m2(t)] (9)

Ixy(t) = Ixy0 +
[

Ixyb1(t) + xb1(t)yb1(t)m1(t)
]
+
[

Ixyb2(t) + xb2(t)yb2(t)m2(t)
]

(10)

Ixz(t) = Ixz0 + [Ixzb1(t) + xb1(t)zb1(t)m1(t)] + [Ixzb2(t) + xb2(t)zb2(t)m2(t)] (11)

Iyz(t) = Iyz0 +
[

Iyzb1(t) + yb1(t)zb1(t)m1(t)
]
+
[

Iyzb2(t) + yb2(t)zb2(t)m2(t)
]

(12)

where Ix0, Iy0, Iz0, Ixy0, Ixz0, and Iyz0 are the inertia moments of the SFRM corresponding
to the origin of the initial coordinate; Ixb1, Iyb1, Izb1, Ixyb1, Ixzb1, and Iyzb1 are the inertia
moments due to mass variation corresponding to the CG of the forward ballast tank; Ixb2,
Iyb2, Izb2, Ixyb2, Ixzb2, and Iyzb2 are the inertia moments due to mass variation corresponding
to the CG of the aft ballast tank.

In conditions of full ballast tanks, the weight of either the forward or aft water tank
is about 600 g. Since the mass variation of ballast tanks causes the change of the pitch
angle, the time-varying mass model would be adopted to understand the time series of the
SFRM’s attitude in the powerless state. Due to asymmetrical positions of ballast tanks on
both sides of the SFRM, the time-varying model of each individual ballast tank was used
to discuss the effect of ballast tanks on the inertia moments in this study.

3. Mathematical Model
3.1. Coordinate Systems

The earth-fixed coordinate system O-XYZ as shown in Figure 3a and the body-fixed
coordinate system o-xyz as shown in Figure 3b–d were considered in this study. The veloc-
ity component of the body-fixed coordinate system was (u, v, w, p, q, r), and the position
in body-fixed coordinate system was (X, Y, Z). The three Euler angles of the body-fixed
coordinate system relative to the earth-fixed coordinate system were expressed as φ (roll),
θ (pitch), and ψ (yaw). The parameters of the six degree-of-freedom (6-DOF) motion are
presented in Table 2.

Table 2. Parameters of the six-degree-of-freedom (6-DOF) motion.

Degree of Freedom Velocity/Angular Velocity Position/Angle

Surge u X

Sway v Y

Heave w Z

Roll p φ

Pitch q θ

Yaw r ψ
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Figure 3. (a) The earth-fixed coordinate system; (b) rear, (c) side, and (d) top views of the body-fixed
coordinate system.

In order to define the relationship between the body-fixed linear and angular velocities
and the time derivative of the earth-fixed vehicle position coordinates, the transformation [28]
can be related by


.

X
.

Y
.
Z

 =


cos ψ cos θ

cos ψ sin φ sin θ
− sin ψ cos φ

sin φ sin ψ+
cos ψ cos φ sin θ

sin ψ cos θ
sin ψ sin φ sin θ
+ cos ψ cos φ

sin ψ cos φ sin θ
− cos ψ sin φ

− sin θ sin φ cos θ cos φ cos θ


 u

v
w

 (13)


.
φ
.
θ
.
ψ

 =

 1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

 p
q
r

. (14)

3.2. Six-Degree-of-Freedom Motion Equations

According to Newton’s Second Law, the equations of motion [7] to represent hy-
drodynamic forces and moments as functions of motion variables were introduced in
Equations (15)–(20). The left-hand side of the equations is the rigid body dynamics,
whereas the right-hand side represents the hydrodynamic force acting on the SFRM.

1 Surge

m
[ .
u− vr + wq− xG

(
q2 + r2)+ yG

(
pq− .

r
)
+ zG

(
pr +

.
q
)]

= ρ
2 L4
[

X′qqq2 + X′rrr2 + X′rprp
]
+ ρ

2 L3
[

X′.u
.
u + X′vrvr + X′wqwq

]
+ ρ

2 L2[X′uuu2 + X′vvv2 + X′www2]+ ρ
2 L2u2

[
X′δrδr

δr
2 + X′δsδs

δs
2 + X′δbδb

δb
2
]

−(W − B) sin θ + XP − XR

(15)
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2 Sway

m
[ .
v + ur− wp + xG

(
pq +

.
r
)
− yG

(
p2 + r2)+ zG

(
qr− .

p
)]

= ρ
2 L4
[
Y′.p

.
p + Y′.r

.
r + Y′pq pq + Y′p|p|p|p|

]
+ ρ

2 L3
[

Y′.v
.
v + Y′wpwp + Y′v|r|

v
|v|

∣∣∣∣(v2 + w2) 1
2

∣∣∣∣|r|+ Ypup + Yrur
]

+ ρ
2 L2
[

Y′uuu2 + Yvuv + Y′v|v|v
∣∣∣∣(v2 + w2) 1

2

∣∣∣∣+ Ywvwv
]
+ ρ

2 L2u2Y′δr
δr

+(W − B) cos θ sin φ + ρ
2 L2(Fy

)
vs

v2+w2

U2 (−w) sin ωt + WFs

(16)

3 Heave

m
[ .
w− uq + vp + xG

(
pr− .

q
)
+ yG

(
qr +

.
p
)
− zG

(
p2 + q2)]

= ρ
2 L4
[

Z′.q
.
q + Z′rrr2 + Z′rprp

]
+ ρ

2 L3
[

Z′.w
.

w + Z′vrvr + Z′vpvp
]

+ ρ
2 L3
[

Z′quq + Z′w|q|
w
|w|

∣∣∣∣(v2 + w2) 1
2

∣∣∣∣|q|]
+ ρ

2 L2
[

Z′uuu2 + Z′wuw + Z′w|w|w
∣∣∣∣(v2 + w2) 1

2

∣∣∣∣]
+ ρ

2 L2
[

Z′|w|u|w|+ Z′ww

∣∣∣∣w(v2 + w2) 1
2

∣∣∣∣+ Z′vvv2
]
+ ρ

2 L2u2
[

Z′δs
δs + Z′δb

δb

]
+(W − B) cos θ cos φ + ρ

2 L2(Fz)vs
v2+w2

U2 v sin ωt + WFH

(17)

4 Roll

Ix
.
p +

(
Iz − Iy

)
qr−

( .
r + pq

)
Ixz + m

[
yG
( .
w− uq + vp

)
− zG

( .
v + ur− wp

)]
= ρ

2 L5
[
K′.p

.
p + K′.r

.
r + K′qrqr + K′p|p|p|p|

]
+ ρ

2 L4
[
K′pup + K′rur + K′.v

.
v + K′wpwp

]
+ ρ

2 L3
[

K′uuu2 + K′vuv + K′vwvw + K′v|v|v
∣∣∣∣(v2 + w2) 1

2

∣∣∣∣]+ ρ
2 L3u2K′δr

δr

+(WyG − ByB) cos θ cos φ− (WzG − BzB) cos θ sin φ + WFR

(18)

5 Pitch

Iy
.
q + (Ix − Iz)pr +

(
p2 − r2)Ixz −m

[
xG
( .
w− uq + vp

)
− zG

( .
u− vr + wq

)]
= ρ

2 L5
[

M′.q
.
q + M′rrr2 + M′rprp

]
+ ρ

2 L4
[

M′quq + M′|w|q

∣∣∣∣(v2 + w2) 1
2

∣∣∣∣q + M′.w
.

w + M′vrvr + M′vpvp
]

+ ρ
2 L3
[

M′uuu2 + M′wuw + M′w|w|w
∣∣∣∣(v2 + w2) 1

2

∣∣∣∣]
+ ρ

2 L3
[

M′|w|u|w|+ M′ww

∣∣∣∣w(v2 + w2) 1
2

∣∣∣∣+ M′vvv2
]
+ ρ

2 L3u2
[

M′δs
δs + M′δb

δb

]
−(WxG − BxB) cos θ cos φ− (WzG − BzB) sin θ + WFP

(19)

6 Yaw

Iz
.
r +

(
Iy − Ix

)
pq +

(
rq− .

p
)

Ixz + m
[
xG
( .
v + ur− wp

)
− yG

( .
u− vr + wq

)]
= ρ

2 L5
[

N′.r
.
r + N′pq pq + N′.p

.
p
]

+ ρ
2 L4
[

N′rur + N′|v|r

∣∣∣∣(v2 + w2) 1
2

∣∣∣∣r + N′pup + N′.v
.
v + N′wpwp

]
+ ρ

2 L3
[

N′uuu2 + N′vuv + N′v|r|

∣∣∣∣(v2 + w2) 1
2

∣∣∣∣+ N′wvwv
]
+ ρ

2 L3u2N′δr
δr

+(WxG − BxB) cos θ cos φ + (WyG − ByB) sin θ + WFY

(20)

where Ix, Iy, and Iz are the inertia moments about the axes of the body-fixed coordinate
system, and Ixz is the cross-sectional area on plane xz. XP and XR are defined as the
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propeller thrust and the resistance, respectively. WFS, WFH , WFR, WFP, and WFY are the
exciting forces of waves that act on each DOF motion. Since the manoeuvre of the SFRM
was given in the condition of neutral buoyancy, the effects of wave exciting forces have
been disregarded.

3.3. Parameter Settings for Hydrodynamic Coefficients

The SFRM was designed and fabricated based on the DARPA SUBOFF model with
full appendages (configuration 8). Due to the limitation of the towing tank dimension,
the SFRM was scaled down. In addition, it is hypothesised that the scale effect has a limited
effect on the hydrodynamic forces of the SFRM. Therefore, the dimensionless hydrodynamic
coefficients for the vertical and horizontal planes were selected according to the published
data and can be summarised in Table 3. Otherwise, the remaining terms in Equations
(15)–(20) were set to be zero for simplicity.

Table 3. Hydrodynamic coefficients of the DARPA SUBOFF model.

Z′w −0.013910 Y′v −0.027834

M′w 0.010324 N′v −0.013648

Z′q −0.007545 K′v −0.000584

M′q −0.003702 Y′r 0.005251

Z′ .
w −0.014529 N′r −0.004444

M′ .
w −0.000561 Y′ .

v −0.016186

Z′ .
q −0.000633 N′ .

v 0.000396

M′ .
q −0.000860 Y′ .

r 0.000398

Z′δs −0.005603 N′ .
r −0.000897

M′δs −0.002409 Y′δr 0.005929

N′δr −0.002217

K′δr −0.000005

4. Autopilot System
4.1. Line-of-Sight Guidance Algorithm

It is demonstrated that the line-of-sight (LOS) guidance algorithm is suitably applied
to the surface ships [29]. In addition, the LOS guidance algorithm plays an important role
in accurate path tracking control of the AUV [30,31]. Since the path tracking cannot be
achieved due to lack of lateral control for the under-actuated AUV, using the LOS guidance
algorithm converts the lateral error to the heading movement, which means that the desired
path tracking is indirectly achieved by heading control [32].

In this study, the LOS guidance algorithm as shown in Figure 4 was adopted to
estimate the desired displacements of the SFRM in the yaw and the pitch modes from the
current position to the next waypoint in the earth-fixed coordinate system. The desired
yaw and pitch angles can be represented as below:

Ψd = tan−1(
Yk −YC
Xk − XC

), k = 1, 2, . . . , n (21)

θd = tan−1(
Zk − ZC
Xk − XC

), k = 1, 2, . . . , n (22)

where both the SFRM’s current position (XC, YC, ZC) and the next waypoint position
(Xk, Yk, Zk) refer to the earth-fixed coordinate system; Ψd and θd denote the desired yaw
angle and pitch angle, respectively; and n is the number of waypoints. Subsequently,
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a sphere of acceptance of the LOS guidance algorithm [26] was required for selecting the
next waypoint as follows:

(Xk − XC(t))
2 + (Yk −YC(t))

2 + (Zk − ZC(t))
2 ≤ R2

0 (23)

where the allowable radius R0 was set to be two times the SFRM’s total length L [26].

Figure 4. The schematic diagrams of the line-of-sight (LOS) guidance algorithm in (a) the horizontal plane and (b) the
vertical plane, respectively.

4.2. PD Controller

In Figure 5, the conventional PD control system is generally introduced in the following
equations including two control gains, i.e., proportional gain (KP) and derivative gain (KD).

δV(t) = KP1(Ψ(t− 1)−Ψd(t− 1)) + KD1
.

Ψ(t− 1) (24)

δH(t) = KP2(θ(t− 1)− θd(t− 1)) + KD2
.
θ(t− 1) (25)

where δV(t) and δH(t) denote control outputs of the rudder plane angle and the stern plane
angle, and they can also be recognised as δr and δs, respectively. KP1 and KD1 are the yaw and
yaw rate gains by the rudder plane, whereas KP2 and KD2 are the pitch and pitch rate gains
by the stern plane.

.
Ψ(t− 1) and

.
θ(t− 1) imply the yaw rate and pitch rate, respectively.

Figure 5. The flow chart of the autopilot system for the submarine free-running model (SFRM)
including the LOS guidance algorithm, the PD controller, the PID tuner, and the 6-DOF manoeuvring
mathematical model.
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In the control system, the trial-and-error method has been adopted to determine
an initial set of control tuning parameters. For an extensive variety of applied methods,
it might be the most familiar one. Sometimes, the trial-and-error method does not offer
fair tuning and tends to provide an evident overshoot. Hence, it usually needs returning
before application. In order to tune the control constraints in demand for an optimal
performance, the PID tuner in MATLAB/Simulink [33] has been suggested to achieve
the design objectives by means of a balance between robustness and performance. Some
important characteristics parameters that need to be considered in the PID tuner are the
rise time, settling time, overshoot, and peak, as shown in Figure 6.

Figure 6. Step response of the PD controller with the PID tuner.

4.3. Post-Processor

Figure 7 introduces the post-processor integrated with the autopilot system for the
SFRM. In the post-processing process, time histories of the SFRM’s trajectories, 6-DOF
motion responses, and rudder displacements were presented by conducting the Cinema
4D modelling [34]. The post-processor, i.e., Cinema 4D modelling, was mainly used to
allow the animated model to match the simulated trajectories and courses graphically.
At the beginning, point coordinates were sampled on the motion trajectories and then
projected on a three-dimensional grid. Subsequently, the path-alignment function was
used to simplify the problem of curve alignment, and parallel lines of equal proportions
were drawn to fix the whole hull.

Figure 8a–f shows each step for the Cinema 4D modelling after the output results of
the SFRM’s trajectories and kinematics were computed. Layer-grid setting as shown in
Figure 8a begins the initial modelling by adjusting the environment and defining the 3D
coordinates. Figure 8b presents the modelling-layer setting by which different viewing and
ordering methods are applied to layers and labels. Furthermore, the material modules such
as color, transparency, and roughness can be selected as illustrated in Figure 8c. Rendering
and animation-recording setting as shown in Figure 8d determines the pixel aspect ratio
in detail when recording animation. Figure 8e implies the setting of animation frame
rate and coordinate record point, in which the inputs such as trajectories were presented
by adjusting animation frame rate and time. Finally, the animation interface exhibits the
real-time motion scenario in the simulated environment, as shown in Figure 8f.
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Figure 7. The flow chart of the autopilot system combining with the Cinema 4D modelling.

Figure 8. The operation steps of the Cinema 4D modelling: (a) layer-grid setting, (b) modelling-layer setting, (c) material
and texture setting, (d) rendering and animation-recording setting, (e) animation frame rate and coordinate record point
setting, and (f) real-time animation interface.
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5. Results and Discussion

For understanding the stability of the SFRM, the trim polygon would be illustrated by
combining the main ballast tanks and the attitude adjusting system. There were several ma-
noeuvring tests, including the turning circle test, horizontal zigzag test, vertical zigzag test,
meander test, and spiral test, which were used for investigating the rudder performance
of the SFRM with the empty ballast tanks. Meanwhile, the propeller revolution speed
corresponding to each sailing speed is assumed constant. The descriptions of simulation
conditions are indicated in Table 4. Subsequently, the optimal control gains on the rudder
operations corresponding to the manoeuvring tests in different sailing speeds would be
presented by the PID tuner. Lastly, autopilot simulations in a 3D map with numerous
waypoints were conducted by adopting different settings of the PD controller.

Table 4. Standard manoeuvring tests for the SFRM.

Test Purpose Measured Parameters

Trim Polygon
Determine all the possible changes

in SFRM’s mass and
longitudinal CG

Mass and trimming moment

Turning Circle Determine steady turning
performance

Advance, transfer,
and tactical diameter

Horizontal Zigzag Demonstrate course-varying
performance in the horizontal plane

Yaw overshoot, width of path
overshoot, time at which each

change of the rudder plane angle is
initiated, and time to the maximum

width excursion

Spiral Determine control authority and
straight-line stability

Steady yaw rate for
each rudder angle

Vertical Zigzag Demonstrate depth-varying
performance in the vertical plane

Pitch overshoot, width of depth
overshoot, time at which each

change of the stern plane angle is
initiated, and time to the maximum

depth excursion

Meander Determine motion stability and
depth keeping performance Path of the SFRM

5.1. Trim Polygon

Similar to the arrangement of a submarine, the SFRM ought to have several types of
ballast tanks. The main ballast tanks are designed for diving and surfacing, whereas the
trimming tanks are used for adjusting the submarine’s attitude on the surface or underwater.
Due to the limitation of the compartment space in the scale model, the trimming tanks
were replaced by the attitude adjusting system without water compensation. Specifically,
the design of the attitude adjusting system is a slider mechanism device installed in the
midsection for adjusting the trim angle.

Figure 9 presents the time series of the mass changes in the forward and aft ballast
tanks, respectively. Both the inflow and outflow rates were given as 20 cm3/s during the
periods of 20 to 50 s and 70 to 100 s. Figure 10 exhibits the time series of the corresponding
pitch angles in the forward and aft ballast tanks, respectively.

Apparently, the maximum pitch angle of the SFRM reached −8◦ when the forward
ballast tank was full. There were some oscillations accompanied by the variation of the
pitch angle. For the aft ballast tank, by using the same mass-variation history of the forward
ballast tank, the maximum pitch angle of the SFRM reached 5◦ with slight oscillations.
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Figure 9. Time series of the mass changes in the forward and aft ballast tanks, respectively.

Figure 10. Time series of the corresponding pitch angles in the forward and aft ballast tanks,
respectively.

Figure 11 shows a typical trim polygon (equilibrium polygon), which is useful to
assess the arrangement of the SFRM. Definitely, it is crucial to determine whether the
ballast tanks and the attitude adjusting system are available to estimate the variation of
SFRM’s mass and the longitudinal CG. According to the procedure [35], the effects of the
ballast tanks and the attitude adjusting system can be plotted as a function of mass and
trimming moment as follows:

0 In the initial stage, the location with zero mass and zero trimming moment indicated
all empty tanks and a zero pitch angle.

1 Move forward the weight of the slider mechanism device. In this stage, there is no
mass variation, but there is an increase of trimming moment due to the movement of
the longitudinal CG.

2 The forward ballast tank is filled completely. There are increases in mass and trimming
moment due to moving forward of the longitudinal CG.

3 The aft ballast tank is filled completely. This is continued until the previous procedure
has been completed. There is an increase in mass but a slight decrease in trimming
moment due to moving backward of the longitudinal CG.

4 Move the weight of the slider mechanism device to the initial location. There is no
change in mass, but there is a slight difference in trimming moment compared with
the line in step 1. When both of the ballast tanks are full, the slight forward of the
longitudinal CG causes a small forward trimming moment.

5 Move backward the weight of the slider mechanism device. The mass is still kept the
same as the one in step 4, but the variation of the trimming moment is even less than
the one in step 4.

6 The forward ballast tank is completely empty. There are decreases in mass and
trimming moment due to moving backward of the longitudinal CG. The variation of
mass is the same as the one in step 3, but the variation of the trimming moment is
even larger than the one in step 3.

7 The aft ballast tank is completely empty. There is a decrease in mass, but an increase
in trimming moment due to the moving forward of the longitudinal CG. The variation
of mass is the same as the one in step 2, but the variation of the trimming moment is
even smaller than the one in step 2.
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8 Move the weight of the slider mechanism device to the initial location. When all the
ballast tanks are empty, the line has returned to the initial location with zero mass
and zero trimming moment.

Figure 11. The trim polygon of the SFRM.

Finally, the results of the trim polygon by adopting the above-mentioned procedure
were introduced in Table 5.

Table 5. Variations of trimming moment and mass in different steps.

Step Trimming Moment [N·m] Mass [g]

0 0 0

1 11.76 0

2 16.63 600

3 13.1 1200

4 1.34 1200

5 −4.54 1200

6 −9.14 600

7 −5.61 0

8 0 0

5.2. Manoeuvring Tests
5.2.1. Turning Circle Test

When the rudder angle was given a constant value, the SFRM would run in a circle
with the direction of its course changing 360◦. In the turning circle test, the tactical diameter,
advance, transfer, drift angle, and speed loss can be measured. At the beginning, the SFRM
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sailed straight for 100 s. Subsequently, the rudder was then pulled to 20◦ immediately for
another 100 s for a total simulation time of 200 s. In the turning circle test, the exact turning
time of the rudder was set to be 1 s.

The main purpose of the turning circle test was to evaluate the turning performance of
the SFRM. Figure 12 compares the trajectories of the simulated SFRM at three sailing speeds:
U = 0.5, 1, and 1.5 m/s. It is clearly found that the straight parts of these three trajectories are
not coincident due to the variation of the critical point [35], which will affect the pitch angle
and the straight-line stability. When executing the turning circle tests, the advances of the
SFRM are 44.8, 95, and 145.6 m, corresponding to three sailing speeds, i.e., U = 0.5, 1, and
1.5 m/s. On the other hand, the transfers are identical to 4.61, 4.52 and 4.47 m, whereas the
tactical diameters are 9.79, 9.77, and 0.68 m, respectively. In contrast to advance, both transfer
and tactical diameter become small with the increase of the sailing speed.

Figure 12. The SFRM’s trajectories at different sailing speeds in the turning circle test.

When the speed was near 1.5 m/s, the SFRM started to exhibit slight vertical vibrations.
It is obvious that the distance and trajectory of the SFRM were evidently affected by the
sailing speed. With the increase of the sailing speed, the trajectory’s vertical vibration
becomes evident due to the increase of hydrodynamic trimming moment.

Figure 13 presents the time series of velocity components at different sailing speeds in
each degree of freedom, including surge (u), sway (v), heave (w), roll (p), pitch (q), and yaw
rates (r). The variations of the 6-DOF velocity components were found to be dominated by
the sailing speeds. This was particularly evident after the rudder was steered, as lateral
resistance caused a considerable decrease in surge velocity (Figure 13a). Additionally,
different speed settings caused the heave velocity and the pitch velocity in Figure 13c,e,
respectively, to undulate slightly when the sailing speed grew high but remained rather
stable when the sailing speed was low.
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Figure 13. Time series of 6-DOF velocity components during the turning circle test at different sailing
speeds. (a) Surge rate: u [m/s], (b) sway rate: v [m/s], (c) heave rate: w [m/s], (d) roll rate: p [rad/s],
(e) pitch rate: q [rad/s], and (f) yaw rate: r [rad/s].
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5.2.2. Horizontal Zigzag Test

In the horizontal zigzag test, the rudder planes were immediately pulled to a fixed
angle (δV) and remained in that position until the desired course angle (Ψd) of the SFRM
is reached; then, the rudder was pulled to the counter rudder angle (−δV) immediately
and remained in that position until the desired course angle turned to −Ψd. Specifically,
different rudder angles (δ) and course (yaw) angles (Ψ) were experimented on in the test.
The course overshooting angle and the time required to reach maximum overshooting
within the duration of each rudder angle change were measured to determine the SFRM’s
manoeuvrability in course change. In the simulation, the SFRM sailed straight for 100 s.
Then, the rudder plane was immediately turned to 20◦, and the position of the rudder plane
was maintained for a certain period. When the yaw angle reached 20◦, the rudder plane
was immediately turned to −20◦, and the position of the rudder plane was maintained
for a certain period. After the yaw angle changed to −20◦, the previous procedure was
repeated. In the horizontal zigzag test, the exact turning time of the rudder was set to be
1 s. Meanwhile, the maintaining time of the rudder angle at ±20◦ was given as 15, 8, and
6 s for U = 0.5, 1, and 1.5 m/s, respectively.

Figure 14 compares the SFRM’s trajectories (top view) at three different sailing speeds:
U = 0.5, 1, and 1.5 m/s, respectively. When U = 1.5 m/s, the trajectory was significantly
longer than those of U = 1 m/s and U = 0.5 m/s. Additionally, the yawing amplitude
(width of the path overshoot) was found to be larger for the case of the faster sailing speed
and varied according to different periods of the rudder operations. For U = 0.5, 1, and
1.5 m/s, the yawing amplitudes are 0.89, 2.07, and 3.36 m. The trajectory of the SFRM at
the highest sailing speed is not straight due to the slight variation of yaw overshoot in the
subsequent horizontal zigzag maneouvres.

Figure 14. The SFRM’s trajectories in the horizontal zigzag test at different sailing speeds.

Figure 15a–c presents the time series of rudder and yaw angles at different sailing
speeds. Figure 15a indicates that when U = 0.5 m/s, a full cycle of turning the yaw angle
from 0◦ to −20◦ and then 20◦ required 21 s. Figure 15b illustrates that when U = 1 m/s,
a full turning cycle was 11 s long. Finally, Figure 15c indicates that when U = 1.5 m/s, a full
turning cycle was 9 s long. Specifically, the time to the maximum width excursion of the
first overshoot from the initial operation of the rudder planes required 7, 4, and 3 s for
U = 0.5, 1.0, and 1.5 m/s. On the other hand, time to the maximum width excursion of the
second overshoot from the initial operation of the rudder planes required 21, 11, and 9 s
for U = 0.5, 1.0, and 1.5 m/s.
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Figure 15. Time series of rudder and yaw angles at (a) U = 0.5 m/s, (b) U = 1 m/s, and (c) U = 1.5 m/s.
The maximum overshooting angle is highlighted by the gray area.

The SFRM’s reaction speed increased considerably at higher sailing speeds. In terms of
overshooting angles, Figure 15a indicates that when U = 0.5 m/s, the maximum overshoot-
ing angle was 9.92◦. In Figure 15b, when U = 1 m/s, the maximum overshooting angle was
12.62◦. Finally, Figure 15c indicates that when U = 1.5 m/s, the maximum overshooting
angle was 18.46◦. The overshooting angle increased considerably in accordance with higher
speeds. Given that the time at which the deflection of rudder angle is initiated is the same,
i.e., t = 100 s, the time to the maximum width excursion of the yaw angle is shorter for
the higher speed than that for the lower speed. Additionally, more turning cycles were
completed at higher speeds than at lower speeds. Therefore, sailing speed was found to
be a critical parameter influencing the relationship between yaw angle, rudder angle, and
overshooting angle.

Figure 16a–f display the time series of surge (u), sway (v), heave (w), roll (p), pitch
(q), and yaw rates (r) at different sailing speeds and corresponding amplitude changes. In
the horizontal zigzag test, the relationship between rudder angle and course angle was
analysed. Accordingly, the velocities and angular velocities in the six degrees of freedom
exhibited more significant changes when U = 1.5 m/s than when U = 1 and 0.5 m/s. In
Figure 16c,e, when the sailing speed reaches close to 1.5 m/s, some vertical vibrations will
begin to appear in the heave and pitch rates.



Appl. Sci. 2021, 11, 410 19 of 33

Figure 16. 6-DOF velocity components in the horizontal zigzag test at different sailing speeds.
(a) Surge rate: u [m/s], (b) sway rate: v [m/s], (c) heave rate: w [m/s], (d) roll rate: p [rad/s], (e) pitch
rate: q [rad/s], and (f) yaw rate: r [rad/s].
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5.2.3. Spiral Test

The main purpose of the spiral test was to evaluate the SFRM’s ability to control
the rudder plane and maintain linear stability. In the simulation, the rudder plane was
immediately pulled to a certain angle, e.g., 25◦, and the angle was gradually reduced until
the stable yaw rate was reached. This was repeated to identify the relationship between
the rudder plane angle and the yaw rate. Figure 17 illustrates the distributions of the spiral
tests for different rudder plane angles at three sailing speeds: U = 0.5, 1, and 1.5 m/s.
Specifically, Figure 17 displays changes in yaw rate and rudder plane angles when the
rudder plane was gradually reduced from 25◦ to−25◦ by 5◦ each time. From the simulation
results, the yaw rate exhibited a relatively linear trend with different rudder plane angles
and sailing speeds. For example, a larger rudder plane angle indicated a faster yaw rate. In
other words, it explained that the yaw rate at each increment is dependent on the initial
sailing speed. The trend also revealed that for small rudder angles, the rate of turn would
depend upon whether the rudder angle is increasing or decreasing [36], especially in case
of high sailing speed.

Figure 17. Relationships between the yaw rates and the rudder plane angles at different sailing
speeds for the spiral test.

5.2.4. Vertical Zigzag Test

In the vertical zigzag test, the stern planes were pulled to a fixed angle (δH), and its
position was maintained until the desired pitch angle (θd) was reached before the stern planes
were pulled to the counter angle (–δH) and maintained until the desired pitch angle of the
SFRM reached −θd. Different stern plane angles (δ) and pitch angles (θ) were experimented
on in the test. The overshooting angle of each pitch movement, the width of depth overshoot,
and time to the maximum depth excursion of each stern plane angle change were measured
to determine the SFRM’s manoeuvrability in depth change. Vertical zigzag manoeuvre is
widely used to evaluate the manoeuvrability of submarines, so this can be definitely used to
evaluate the manoeuvrability of the SFRM. In the simulation, the SFRM first sailed straight
for 100 s; then, the stern planes were turned to 20◦, and its position was maintained for a
certain period. When the pitch angle reached 20◦, the stern plane was immediately turned
to −20◦, and its position was maintained for a certain period. When the pitch angle reached
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−20◦, the procedure was repeated. However, the pitch overshoot was reached only in case of
U = 1.5 m/s. For comparison, the stern plane operations of U = 0.5 and 1.0 m/s were set to
be the same as the ones of U = 1.5 m/s. In the vertical zigzag test, the exact turning time of
the stern plane was set to be 1 s. In addition, the maintaining time of the stern plane angle at
±20◦ was all given as 6 s for U = 0.5, 1, and 1.5 m/s.

Figure 18 compares the SFRM’s trajectories in the vertical zigzag test at sailing speeds
of U = 0.5, 1, and 1.5 m/s. When U = 1.5 m/s, the trajectory was significantly longer than
those of U = 1 m/s and U = 0.5 m/s. When U = 1.5 m/s, the trajectory was significantly
longer than those of U = 1 m/s and U = 0.5 m/s. The pitching amplitude (width of the
depth overshoot) was found to be larger for the case of the faster sailing speed and varied
according to different periods of the stern plane operations. For U = 0.5, 1, and 1.5 m/s,
the pitching amplitudes are 0.44, 0.48, and 1.14 m. The SFRM moved significantly farther
at higher speeds, and a slight pitch motion occurred due to the movement of the critical
point [35]. In addition, the simulated trajectories and time between stern plane position
changes varied at different sailing speeds.

Figure 18. The SFRM’s trajectories in the vertical zigzag test at different sailing speeds.

Figure 19a–c illustrates the variations of time series in stern plane and pitch angles
at three sailing speeds. A full cycle of turning the pitch angle from 0◦ to −20◦ and then
20◦ required 10 s. Specifically, time to the maximum depth excursion of the first overshoot
from the initial operation of the stern planes required 4 s. On the other hand, time to the
maximum depth excursion of the second overshoot from the initial operation of the stern
planes required 10 s.

In terms of overshooting angles, Figure 19a indicates that when U = 0.5 m/s, the
maximum overshooting angle was −14.15◦. In Figure 19b, the maximum overshooting
angle was−6.94◦ when U = 1 m/s. Finally, Figure 19c demonstrates that when U = 1.5 m/s,
the maximum overshooting angle was 2.1◦. Therefore, at high sailing speeds, the maximum
overshooting angle of the SFRM increased significantly compared with that at lower
sailing speeds. Given that the stern-plane operation period is the same, the vertical zigzag
movement is verified to be highly correlated with sailing speed. Since the variation of
ballast tanks has an influence on the vertical zig-zag test, the changes in the vehicle’s
weight, CG, buoyancy center, and moment of inertia must be considered in future work, in
addition to the two aforementioned factors.
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Figure 19. Comparisons of stern plane and pitch angles at sailing speeds of (a) U = 0.5, (b) U = 1, and
(c) U = 1.5 m/s, respectively.

Figure 20a–f illustrate the variations of time series for surge (u), sway (v), heave (w),
roll (p), pitch (q), and yaw rates (r) at different sailing speeds. In the vertical zigzag test,
both the heave rate in Figure 20c and the pitch rate in Figure 20e had the most pronounced
changes, and a slight undulation was observed at high speeds. In Figure 20b,f, the vertical
zigzag has less influence on the sway and the yaw rates of the horizontal plane motion.
Figure 20d indicates that when U = 1.5 m/s between 100 and 150 s, there is a slight swing
in the roll rate caused by the variation of the stern plane.

Figure 20. Conts.
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Figure 20. 6-DOF velocity components in the vertical zigzag test at different sailing speeds. (a) Surge
rate: u [m/s], (b) sway rate: v [m/s], (c) heave rate: w [m/s], (d) roll rate: p [rad/s], (e) pitch rate:
q [rad/s], and (f) yaw rate: r [rad/s].

5.2.5. Meander Test

The meander test is similar to the vertical zigzag test, but the only difference is that the
angle of the stern plane returns to zero when the desired pitch angle is reached. The main
purpose of the meander test is to measure the SFRM’s trajectory, motion stability, and
ability to remain at a fixed depth. In the simulation, the model sailed straight for 100 s;
then, the stern plane was pulled to 20◦ immediately, and its position was maintained for
10 s before the stern plane angle was reset to zero. In the meander test, the exact turning
time of the stern plane was set to be 1 s.

Figure 21 illustrates the trajectories in the meander test when the simulated SFRM
moved at three different sailing speeds: U = 0.5, 1, and 1.5 m/s. The SFRM moved farther
at high sailing speeds, and a slight vertical pitching motion occurred when the stern plane
was reset to zero in the fixed depth test. The depth excursions are 0.051, 0.992, and 2.365 m,
corresponding to U = 0.5, 1, and 1.5 m/s. Moreover, the results of the meander tests
indicated that motion stability and depth keeping ability would be unstable for the higher
sailing speed by observing the variation of their trajectories.
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Figure 21. The SFRM’s trajectories in the meander test at different sailing speeds.

Figure 22a–c illustrates the time series of the stern plane and pitch angles at different
sailing speeds. The simulation results were similar to those of the vertical zigzag test and
indicated a high correlation with sailing speed. Figure 22a,b indicates that when U = 0.5
and 1 m/s, the desired pitch angle could not be reached because of insufficient thrust force.
Figure 22c indicates that when U = 1.5 m/s, the desired pitch angle was reached. These results
were similar to those of the vertical zigzag test, suggesting that changes in pitch angle and
ability to remain at a fixed depth have a crucial relationship with sailing speed adjustment.
When conducting this test, changes in the vehicle’s weight, CG, buoyancy center, and amount
of inertia must be considered, and a state of neutral buoyancy must be ensured. Finally, at
high speeds, relatively large undulation is likely to be observed in the pitch mode.

Figure 22. Comparisons of rudder and pitch angles at different sailing speeds. (a) U = 0.5, (b) U = 1,
and (c) U = 1.5 m/s.
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Figure 23a–f displays the time series of surge (u), sway (v), heave (w), roll (p), pitch
(q), and yaw rates (r) under different sailing speed conditions. Since the meander test is
highly similar to the vertical zigzag test, changes of the heave rate in Figure 23c and the
pitch rate in Figure 23e were evident. It is obvious in Figure 23b,d,f that the sway, roll, and
yaw rates have little variations because the meander test is principally a test of vertical
depth-determination ability.

Figure 23. Time series of 6-DOF velocity components in the meander test. (a) Surge rate: u [m/s],
(b) sway rate: v [m/s], (c) heave rate: w [m/s], (d) roll rate: p [rad/s], (e) pitch rate: q [rad/s], and (f)
yaw rate: r [rad/s].
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5.3. Optimal PD Control Gains

After each manoeuvring test was conducted to determine the operation limit for
rudder performance, the optimal PD control gains for each test would be calculated by
using the PID tuner. Figure 24a–e show the step responses, i.e., the output of the control
system for a step input, of different manoeuvring tests with three sailing speeds. Since the
characteristics parameters, including rise time, settling time, and overshoot, change with
the variation of the control gains (KP, KD), a set of optimal control gains can be obtained
by examining the values of the characteristics parameters. To determine the efficacy of the
proposed 6-DOF manoeuvring mathematical model combined with the PD controller, the
PD control gains and the characteristics parameters of manoeuvring tests with the PID
tuner are introduced in Table 6.

Figure 24. Conts.
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Figure 24. Step responses of the PD controller with respect to three sailing speeds, U = 0.5, 1, and 1.5 m/s, for (a) the turning
circle test, (b) the horizontal zigzag test, (c) the spiral test, (d) the vertical zigzag test, and (e) the meander test.

Table 6. The characteristics parameters and the gains of the PD controller with the PID tuner for different manoeuvring tests.

Test U [m/s] KP KD Rise Time [s] Settling Time [s] Overshoot [%] Peak

Turning Circle
0.5 0.63 0.32 1.11 7.19 29.1 1.29

1 0.82 0.46 0.918 8.06 34.4 1.32

1.5 1.03 0.43 0.74 6.79 37.8 1.38

Horizontal ZigZag
0.5 0.98 0.32 1.09 6.66 17.8 1.19

1 1.23 0.52 0.817 6.48 24.9 1.25

1.5 1.47 0.61 0.764 6.42 31 1.31

Spiral
0.5 1.12 0.62 1.08 6.19 28.1 1.28

1 1.33 0.67 0.93 6.83 32.4 1.31

1.5 1.48 0.73 0.84 6.79 36.8 1.33

Vertical ZigZag
0.5 0.49 0.29 0.856 5.42 12.8 1.15

1 0.78 0.75 0.981 6.71 22.8 1.25

1.5 1.21 0.35 0.869 6.04 29.7 1.3

Meander

0.5 0.56 0.52 1.28 6.69 17.5 1.18

1 0.92 0.82 0.866 6.03 19.5 1.22

1.5 1.13 0.85 0.809 6.68 28.4 1.28

For the manoeuvring tests in the horizontal plane, i.e., turning circle, horizontal zigzag
and spiral tests, the turning circle test has the largest percentage of overshoot on the basis
of different sailing speeds. By contrast, the horizontal zigzag test and the spiral test have
less amounts of overshoot than the turning circle test. Furthermore, the horizontal zigzag
test has the minimum amount of overshoot, rise time, and settling time among all of the
horizontal plane tests. In terms of the optimum action of the PD controller, the horizontal
zigzag test has a better performance than the other two horizontal-plane tests.

For the manoeuvring tests in the vertical plane, i.e., vertical zigzag and meander tests,
the amounts of overshoot for the meander test appear to be less than those for the vertical
zigzag test mostly. On the other hand, the vertical zigzag test has a better performance of
settling time than the meander test. In general, the values of rise time for the meander test
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are smaller than those for the vertical zigzag test. Consequently, it is difficult to judge the
efficacy of the PID tuner by comparing the vertical zigzag test with the meander test.

5.4. Autopilot Simulation

In order to test turning and diving abilities of the SFRM with the PD controller, a 3D
map with numerous waypoints was established. The coordinates of waypoints in the
3D map are described in Table 7. An autopilot system consists of a 6-DOF manoeuvring
mathematical model and a course-keeping PD controller for an LOS-based guidance system.
Simulation results of tuning PD control on the rudder planes and the stern planes would
be presented by comparing with two types of controlling modes, i.e., A-type and B-type. It
is worth mentioning that the PD control gains of the A-type controller are tuned by the
horizontal zigzag test and the vertical zigzag test, whereas the ones of the B-type controller
are tuned by the horizontal zigzag test and the meander test, respectively.

Table 7. The coordinates of waypoints in the 3D map. Unit: [m].

Waypoint Number Coordinate (X, Y, Z)

1 (20, 0, 0)

2 (20, −35, −5)

3 (55, −35, −10)

4 (55, 0, −15)

5 (90, 0, −20)

6 (90, −35, −25)

7 (125, −35, −30)

8 (125, 0, −35)

9 (145, 0, −40)

Figure 25a–c shows the trajectories of the SFRM with three-view angles based on
U = 1.5 m/s in the 3D map by comparing the A-type with the B-type controllers. Com-
prehensively, the total sailing distance of the A-type controller is 382 m with the sailing
time of 297 s, whereas the total sailing distance of the B-type controller is 387 m with the
sailing time of 301 s. Compared with the B-type controller, the A-type controller is capable
of saving 1.3% sailing distance and 0.7% sailing time. Although both simulated trajectories
are very similar to each other, the A-type controller appears to have better performances of
turning and diving abilities than those of the B-type.

Figure 26a,b presents variations of the rudder angle and the stern plane angle in the
time domain. It is clearly found that both the rudder angle and the stern plane angle of the
A-type controller are more sensitive to changes in the course angles during the passage.

On the other hand, time records of 6-DOF velocity components of the SFRM with the
A-type and B-type controllers are illustrated in Figure 27a–f, respectively. There are large
differences of heave rates (Figure 27c) and pitch rates (Figure 27e) between the A-type and
the B-type controllers. Generally speaking, the A-type controller appears to have faster
motion responses, especially for the heave rate and the pitch rate, than the B-type. The
average power spent by the A-type controller is 5.02 W, which is better than 5.01 W spent
by the B-type controller. In addition, the entire work done by using the A-type controller
is 1490.94 J, whereas the result by using the B-type controller is 1508.01 J. In the case of
efficiency, it would be more appropriate to adopt the A-type controller than the B-type in
the autopilot simulation of the SFRM.
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Figure 25. Sailing trajectories of the SFRM by comparing the A-type controller with the B-type
controller in (a) the stereo view; (b) the top view; and (c) the side view, respectively.
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Figure 26. Time series of (a) rudder angle, and (b) stern plane angles for the A-type and B-type
controllers, respectively.

Figure 27. Conts.



Appl. Sci. 2021, 11, 410 31 of 33

Figure 27. Time series of velocity components. (a) Surge rate: u [m/s], (b) sway rate: v [m/s],
(c) heave rate: w [m/s], (d) roll rate: p [rad/s], (e) pitch rate: q [rad/s], and (f) yaw rate: r [rad/s] for
the A-type and B-type controllers, respectively.

6. Conclusions

In this study, the 6-DOF manoeuvring mathematical model of the SFRM with the
autopilot system was developed to conduct a preliminary evaluation of motion perfor-
mance for optimal control gains. In order to realise the turning and diving performances
of the SFRM, a series of manoeuvring tests, including turning circle, horizontal zigzag,
vertical zigzag, meander, and spiral tests, would be implemented based on three sailing
speeds with empty ballast tanks. Furthermore, the PID tuner was used to acquire the
optimal control gains for each manoeuvring test by considering characteristics parameters.
Therefore, two types of control gains by combining different horizontal plane motion
tests with vertical plane motion tests were adopted for subsequent autopilot simulation.
The post-processor based on the Cinema 4D modelling is capable of allowing the animated
model to match the simulated trajectories and course angles graphically. The concluding
remarks can be summarised as below:

1. There were only linear terms of hydrodynamic coefficients considered in the present
simulation regardless of the scale effect. The sailing speed and the operation of control
surface were considered as the influential parameters in the manoeuvring tests with
empty ballast tanks.

2. Through a series of manoeuvring tests, the operation performances by adopting
different combinations of rudder commands and sailing speeds were well analysed.

3. After evaluating the characteristics parameters of the PD controller for manoeuvring
tests in the horizontal and vertical plane, both the A-type (horizontal zigzag plus
vertical zigzag) and the B-type (horizontal zigzag plus meander) controllers were
compared in the autopilot simulation.
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4. When conducting the autopilot simulation in the 3D map, the A-type PD controller
with the LOS guidance algorithm was proved to be more efficient than the B-type in
the average power, total sailing distance, and consuming time.

5. In case of low-speed conditions, the SFRM can not reach the desired pitch angle with
empty ballast tanks. In the future study, the PD control on the ballast tanks and the
attitude adjusting system will be considered in the autopilot system of the SFRM for
improving its stability and manoeuvrability.
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