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Abstract: Salient Object Detection (SOD) in RGB-D images plays a crucial role in the field of computer
vision, with its central aim being to identify and segment the most visually striking objects within a
scene. However, optimizing the fusion of multi-modal and multi-scale features to enhance detection
performance remains a challenge. To address this issue, we propose a network model based on seman-
tic localization and multi-scale fusion (SLMSF-Net), specifically designed for RGB-D SOD. Firstly, we
designed a Deep Attention Module (DAM), which extracts valuable depth feature information from
both channel and spatial perspectives and efficiently merges it with RGB features. Subsequently, a
Semantic Localization Module (SLM) is introduced to enhance the top-level modality fusion features,
enabling the precise localization of salient objects. Finally, a Multi-Scale Fusion Module (MSF) is
employed to perform inverse decoding on the modality fusion features, thus restoring the detailed
information of the objects and generating high-precision saliency maps. Our approach has been
validated across six RGB-D salient object detection datasets. The experimental results indicate an
improvement of 0.20~1.80%, 0.09~1.46%, 0.19~1.05%, and 0.0002~0.0062, respectively in maxF, maxE,
S, and MAE metrics, compared to the best competing methods (AFNet, DCMF, and C2DFNet).

Keywords: RGB-D; salient object detection; multi-modal and multi-scale features

1. Introduction

Salient Object Detection (SOD) plays a crucial role in the field of computer vision, with
its primary objective being the identification and accentuation of the most visually engaging
objects within a scene [1,2]. These objects typically draw the majority of observer attention
and play a vital role in image and video processing tasks, such as object tracking [3,4],
image segmentation [5,6], and scene understanding [7,8]. With the rapid advancement of
depth sensor technology, RGB-D salient object detection has elicited significant interest
among researchers. Compared to using only RGB images, RGB-D datasets offer a richer
array of information, including color and depth details, which are invaluable in enhancing
the performance of salient object detection. However, the achievement of accurate salient
object detection under complex scenarios, with multi-scale objects and noise interference,
continues to present a substantial challenge. Current research is confronted with two main
issues [9–37]:

1. The Modality Fusion Problem: Undoubtedly, depth information opens up signifi-
cant possibilities for enhancing detection performance. The distance information
it provides between objects aids in clearly distinguishing the foreground from the
background, thereby endowing the algorithm with robustness when dealing with
complex scenarios. However, an urgent challenge that remains to be solved is how to
fully exploit this depth information and effectively integrate it with the color, texture,
and other features of RGB images to extract richer and more discriminative features.
This challenge becomes particularly pressing when dealing with issues of incom-
plete depth information and noise interference, which necessitate further exploration
and research.
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2. The Multi-level Feature Integration Problem: To more effectively integrate multi-level
features, it’s vital to fully consider the characteristics of both high-level and low-level
features. High-level features contain discriminative semantic information, which
aids in the localization of salient objects, while low-level features are rich in detailed
information, beneficial for optimizing object edges. Traditional RGB-D salient object
detection methods often fuse features from different levels directly, disregarding their
inherent differences. This approach can lead to semantic information loss and make
the method vulnerable to noise and background interference. Therefore, there is a
need to explore more refined feature fusion techniques that fully take into account
the characteristics of different levels of features, aiming to boost the performance of
salient object detection.

To address the aforementioned challenges, we propose a Semantic Localization and
Multi-Scale Fusion Network (SLMSF-Net) for RGB-D salient object detection. SLMSF-Net
constitutes two stages: encoding and decoding. During the encoding phase, SLMSF-Net
utilizes the ResNet50 network to separately extract features from RGB and depth images
and employs a depth attention module for modal feature fusion. In the decoding phase,
SLMSF-Net first accurately localizes salient objects through a semantic localization module,
and then constructs a reverse decoder using a Multi-Scale Fusion Module to restore the
detailed information of the salient objects. Our main contributions can be summarized
as follows:

1. We propose a depth attention module that leverages channel and spatial attention
mechanisms to fully explore the effective information of depth images and enhance
the matching ability between RGB and depth feature maps.

2. We propose a semantic localization module that constructs a global view for the
precise localization of salient objects.

3. We propose a reverse decoding network based on multi-scale fusion, which imple-
ments reverse decoding on modal fusion features and generates detailed information
on salient objects through multi-scale feature fusion.

The design of the SLMSF-Net is poised to address key issues in the current RGB-D
salient object detection domain and provide new research insights for other tasks within
the field of computer vision. Extensive experimental results fully demonstrate that the
SLMSF-Net exhibits excellent performance in RGB-D SOD tasks, enhancing the accuracy
and effectiveness of salient object detection.

2. Related Works

In this section, we will review research works [17–37] related to the RGB-D salient
object detection method that we propose. These related studies can be broadly divided into
two categories: salient object detection based on RGB images and salient object detection
based on RGB-D images.

2.1. Salient Object Detection Based on RGB Images

Salient object detection based on RGB images mainly focuses on visual cues such as
color, texture, and contrast. Early saliency detection methods primarily depended on hand-
crafted features and heuristic rules. For instance, Itti et al. [17] proposed a saliency detection
model based on the biological visual system, which estimates saliency by calculating the
local contrast of color, brightness, and directional features. Achanta et al. [18] introduced a
frequency-tuned salient region detection method, which extracts global contrast features
in the frequency domain of the image to detect salient regions. Tong et al. [19] combined
global and local cues for salient object detection, using a variety of cues (such as color,
texture, and contrast) to handle complex scenarios.

In recent years, deep learning technology has achieved significant success in the field
of salient object detection. Models such as the deep learning saliency model proposed
by Chen et al. [20] accomplish hierarchical representation of saliency features to realize
end-to-end salient object detection. Cong et al. [21] proposed a salient object detection
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method based on a Fully Convolutional Network (FCN), which uses global contextual
information and local detail information for saliency prediction. Hou et al. [22] developed
a deeply supervised network for salient object detection, improving upon the Holistically
Nested Edge Detector (HED) architecture. They introduced short connections between
network layers, enhancing salient object detection by combining low-level and high-level
features. Zhao et al. [23] proposed GateNet, a new network architecture for salient object
detection. This model introduced multilevel gate units to balance encoder block contri-
butions, suppressing non-salient features and contextualizing for the decoder. They also
included Fold-ASPP to gather multiscale semantic information, enhancing atrous convolu-
tion for better feature extraction. Zhang et al. [24] combined neural network layer features
to improve salient object detection accuracy in images. Their approach used both coarse
and fine image details and incorporated edge-aware maps to enhance boundary detection.
Wu et al. [25] proposed a cascaded partial decoder that discarded low-level features to
reduce computational complexity while refining high-level features for accuracy.

Moreover, some researchers have applied attention mechanisms to RGB-based salient
object detection models, such as [26–28]. These methods enable the models to concentrate
their attention on the visually prominent regions of the image. Chen et al. [26] presented
an approach for enhancing salient object detection through the use of reverse attention
and side-output residual learning. This method aimed to refine saliency maps with a
particular focus on improving resolution and reducing the model’s size. Wang et al. [27]
presented PAGE-Net, a model for salient object detection. The model utilized a pyra-
mid attention module to enhance saliency representation by incorporating multi-scale
information, thereby effectively boosting detection accuracy. Additionally, it featured a
salient edge detection module, which sharpened the detection of salient object boundaries.
Wang et al. [28] introduced PiNet, a salient object detection model designed for enhancing
feature extraction and the progressive refinement of saliency. The model incorporated
level-specific feature extraction mechanisms and employed a coarse-to-fine process for
refining saliency features, which helped in overcoming common issues in existing methods
like noise accumulation and spatial detail dilution. Although methods based on RGB
images can achieve good performance in many situations, they lack the ability to handle
depth information.

2.2. Salient Object Detection Based on RGB-D Images

With the advancement of depth sensors, RGB-D images (which contain both color and
depth information) have been widely applied in salient object detection. For instance, Lang
et al. [29] investigated the impact of depth cues on saliency detection, where they found
that depth information holds significant value for salient object detection. Based on this,
many researchers have begun to explore how to fully utilize depth information for salient
object detection.

Peng et al. [30] proposed a multi-modal fusion framework that improves saliency
detection performance by fusing local and global depth features with color and texture fea-
tures. Zhang et al. [31] presented a new RGB-D salient object detection model, addressing
challenges with depth image quality and foreground–background consistency. The model
introduced a two-stage approach: firstly, an image generation stage that created high-
quality, foreground-consistent pseudo-depth images, and secondly, a saliency reasoning
stage that utilized these images for enhanced depth feature calibration and cross-modal fu-
sion. Ikeda et al. [32] introduced a model for RGB-D salient object detection that integrated
saliency and edge features with reverse attention. This approach effectively enhanced
object boundary detection and saliency in complex scenes. The model also incorporated
a Multi-Scale Interactive Module for improved global image information understanding
and utilized supervised learning to enhance accuracy in salient object and boundary areas.
Xu et al. [33] introduced a new approach to RGB-D salient object detection, addressing
the object-part relationship dilemma in Salient Object Detection (SOD). The proposed
CCNet model utilized a Convolutional Capsule Network based on Feature Extraction and
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Integration (CCNet) to efficiently explore the object-part relationship in RGB-D SOD with
reduced computational demand. Cong et al. [34] presented a comprehensive approach to
RGB-D salient object detection, focusing on enhancing the interaction and integration of
features from both RGB and depth modalities. It introduced a new network architecture
that efficiently combined these modalities, addressing challenges in feature representation
and fusion. However, these methods overlook the feature differences between different
modalities, resulting in insufficient information fusion.

To address this issue, Qu et al. [35] introduced a simple yet effective deep learning
model, which learns the interaction mechanism between RGB and depth-induced saliency
features. Yi et al. [36] proposed a Cross-stage Multi-scale Interaction Network (CMINet),
which intertwines features at different stages with the use of a Multi-scale Spatial Pooling
(MSP) module and a Cross-stage Pyramid Interaction (CPI) module. They then designed
an Adaptive Weight Fusion (AWF) module for balancing the importance of multi-modal
features and fusing them. Liu et al. [37] proposed a cross-modal edge-guided salient object
detection model for RGB-D images. This model extracts edge information from cross-modal
color and depth information and integrates the edge information into cross-modal color and
depth features, generating a saliency map with clear boundaries. Sun et al. [38] introduced
an RGB-D salient object detection method that combined cross-modal interactive fusion
with global awareness. This method embedded a transformer network within a U-Net struc-
ture to merge global attention mechanisms with local convolution, aiming for enhanced
feature extraction. It utilized a U-shaped structure for extracting dual-stream features from
RGB and depth images, employing a multi-level information reconstruction approach to
suppress lower-layer disturbances and minimize redundant details. Peng et al. [39] intro-
duced MFCG-Net, an RGB-D salient object detection method that leveraged multimodal
fusion and contour guidance to improve detection accuracy. It incorporated attention
mechanisms for feature optimization and designed an interactive feature fusion module to
effectively integrate RGB and depth image features. Additionally, the method utilized con-
tour features to guide the detection process, achieving clearer boundaries for salient objects.
Sun et al. [40] introduced a new approach for RGB-D salient object detection, leveraging a
cascaded and aggregated Transformer Network structure to enhance feature extraction and
fusion. They employed three key modules: the Attention Feature Enhancement Module
(AFEM) for multi-scale semantic information, the Cross-Modal Fusion Module (CMFM) to
address depth map quality issues, and the Cascaded Correction Decoder (CCD) to refine
feature scale differences and suppress noise. Although some significant results have been
achieved in existing research, it remains a formidable challenge to achieve accurate salient
object detection in complex scenes through cross-modal and cross-level feature fusion.

3. Proposed Method

In this section, we first provide an overview of our method in Section 3.1. Following
that, in Section 3.2, we elaborate on the depth attention module we propose, which is used
to mine valuable depth information. In Sections 3.3 and 3.4, we introduce the semantic
localization module and the reverse decoding network based on the Multi-Scale Fusion
Module, respectively. Finally, in Section 3.5, we discuss the loss function.

3.1. Overview of SLMSF-Net

Figure 1 displays the overall network structure of SLMSF-Net. Without loss of gener-
ality, we adopt Resnet50 [41] as the backbone network to extract features from both RGB
images and depth images separately. Resnet50 encompasses five convolution stages; we
removed the final pooling layer and the fully connected layer, resulting in a fully convolu-
tional neural network, and use the outputs of the intermediate five convolution blocks as
feature outputs. These output feature maps are denoted as M1, M2, M3, M4, and M5, with
their sizes being 1/2, 1/4, 1/8, 1/16, and 1/32 of the original image, respectively.
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1. Modal Feature Fusion: As shown in Figure 1, we proposed a Depth Attention Module.
This module performs a modal fusion of RGB image features and depth image features,
forming the modal fusion features FFuse

1 , FFuse
2 , FFuse

3 , FFuse
4 and FFuse

5 .
2. Semantic Localization: We proposed a Semantic Localization Module. This module

first downsamples the top-level modal fusion feature to compute a global view. It
then performs coordinate localization on the global view and ultimately fuses the
localization information with the global view, thereby precisely locating the salient
object. Assuming the semantic localization module is represented as the SLM function,
its output result can be written as: Fo f= SLM(FFuse

5 ).
3. Multi-Scale Fusion Decoding: After performing semantic localization, we predicted

the clear boundaries of the salient object through reverse multi-level feature inte-
gration from front to back. To accomplish this multi-level feature integration, we
constructed a Multi-Scale Fusion Module, which effectively fuses features at all levels.
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3.2. Depth Attention Module

In the process of fusing RGB and depth features, we need to address two main
issues. The first one is the modal mismatch problem, which requires us to resolve the
modal differences between the two types of features. The second one is the information
complementarity problem; since RGB and depth features often capture different aspects of
object information, we need to consider how to let these two types of features complement
each other’s information, aiming to enhance the accuracy and robustness of object detection.
Inspired by [42], we designed a depth attention module to improve the matching and
complementarity of multi-modal features.

Specifically, FRGB
i represents the ith RGB image feature and FDep

i represents the ith
depth image feature, where i is a natural number from 1 to 5. As shown in Figure 2, the
depth attention module first enhances the depth image feature through channel attention.
The enhanced result is then multiplied element-wise with the RGB image feature to obtain
the channel-enhanced fusion feature. Following this, the channel-enhanced fusion feature
undergoes spatial attention enhancement, and the enhanced result is multiplied element-
wise with the RGB image feature, thus obtaining the modal fusion feature. To enhance
the matching of depth features, we stacked a depth attention module behind each depth
feature branch. By introducing attention units, we can enhance the saliency representation
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ability of depth features. The fusion process of the two modal features can be expressed as
follows:

FFuse
i = FRGB

i × SA(FRGB
i × CA(FDep

i )) (1)

Herein, CA(·) symbolizes the channel attention operation, SA(·) indicates the spatial
attention operation, and × represents the element-wise multiplication operation.
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3.3. Semantic Localization Module

In the process of salient object localization, high-level features play a crucial role.
Compared to low-level features, high-level features are capable of capturing more abstract
information, which aids in highlighting the location of salient objects. Therefore, we
introduced a semantic localization module designed to effectively learn the global view of
the entire image, thereby achieving more precise salient object localization. As depicted
in Figure 3, the semantic localization process is divided into three stages: initially, the
first stage downsamples the top-level modal fusion features to compute a global view;
subsequently, the second stage carries out coordinate localization on the global view; finally,
the third stage fuses the localization information with the global view.
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In the first stage, we implement a 1/2 scale downsample operation on the top-level
modal fusion features FFuse

5 , followed by two ConvBR3×3 operations, thereby obtaining
the first layer of the global feature map Fov

1 . Subsequently, we perform the same 1/2 scale
downsample and two ConvBR3×3 operations on the first layer of the global feature map,
resulting in the second layer of the global feature map Fov

2 . As observed, these two global
feature maps possess a significantly large receptive field, enabling them to serve as the
global view of the entire image. The computation process for the global view can be
described as follows:

Fov
1 = ConvBR3×3(ConvBR3×3(DownS1/2(FFuse

5 ))) (2)

Fov
2 = ConvBR3×3(ConvBR3×3(DownS1/2(Fov

1 ))) (3)

Herein, DownS1/2(·) denotes a 1/2 scale downsample operation on the input feature
map. ConvBR3×3(·) represents a convolution operation performed on the input feature
map using a kernel size of 3× 3, followed by batch normalization and activation operations,
where the activation function is Relu. This can be expressed as:

ConvBR3×3(X) = Relu(BN(Conv3×3(X))) (4)

Herein, Conv(·) symbolizes the convolution operation, BN(·) denotes the batch nor-
malization operation, and Relu(·) represents the Relu activation function.

In the second stage, for the second layer of the global feature map Fov
2 , we utilize a

pooling kernel of size (1, W) to perform average pooling along the vertical coordinate of the
feature map, followed by a convolution operation with a kernel size of 1 × 1, resulting in
the height-oriented feature map TH. Simultaneously, we use a pooling kernel of size (H, 1)
to conduct average pooling along the horizontal coordinate of the feature map Fov

2 , then
perform a convolution operation with a kernel size of 1 × 1, yielding the width-oriented
feature map TW. This can be described as:

TH = ConvBR1×1(
1

W ∑
0≤i<W

Fov
2 (H, i)) (5)

TW = ConvBR1×1(
1
H ∑

0≤j<H
Fov

2 (j, W)) (6)

Herein, feature map TH extends in the width direction, while feature map TW expands
in the height direction. The two expanded feature maps undergo pixel-wise multiplication,
and then through a Sigmoid activation function, a coordinate localization feature map FC is
formed. This can be described as:

FC= Sigmoid(K(TH)× K(TW)) (7)

Herein, the K(·) operation refers to expanding the input feature map in the width or
height direction to match the size of feature map A, while Sigmoid(·) signifies the Sigmoid
activation function.

In the third stage, we view the localization feature map as a self-attention mechanism
for calibrating the global view. Specifically, we perform a pixel-wise multiplication oper-
ation between the localization feature map FC and the second layer of the global feature
map Fov

2 , followed by a pyramid feature fusion operation on the multiplication results,
yielding feature map Fof

∗ . Subsequently, we upscale the localization feature map FC twice
and perform a pixel-wise multiplication operation with the first layer of the global feature
map Fov

1 . The result is stacked with Fof
∗ , and then the stacked result is subjected to a pyramid

feature fusion operation to finally obtain the global localization fusion feature Fof. This can
be described as:

Fof
∗ = Pyramid(FC × Fov

2 ) (8)
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Fof= Pyramid(concat(UP( FC)× Fov
1 , Fof

∗ )) (9)

Herein, Pyramid(·) represents the pyramid feature fusion operation, concat(·) signi-
fies the stacking operation along the channel, and UP(·) denotes the operation of upscaling
by a factor of two.

The pyramid feature fusion operation is depicted in Figure 4. Initially, we conduct a
convolution operation with a kernel size 1 × 1, adjusting the number of channels in the
input feature map X to 32, which yields the feature map Y. Following this, we execute
feature extraction on Y, with the specific extraction method detailed as follows:

Y= ConvBR1×1(X) (10)

P1= ConvBR3×3(ConvBR 3×3(Y)) (11)

Pi= ConvBR2i−1
3×3 (ConvBR 3×3(Y)+Pi−1)), i(i ∈ {2, 3}) (12)
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Herein, ConvBR2i−1
3×3 (·) represents a dilated convolution with a kernel size of 3 × 3 and

a dilation rate of 2i − 1. We perform a concatenation operation along the channel with
the three extracted features. Subsequently, we conduct a convolution operation on the
concatenation result with a kernel size of 1 × 1, adjusting the channel count to match that
of the input feature map. Finally, a residual connection is established with the input feature
map. This process can be described as follows:

Pyramid(X) = ConvBR1×1(concat(P1, P2, P3, P4)) + X (13)

3.4. Multi-Scale Fusion Module and the Reverse Decoding Process

Following semantic localization, we integrate multi-layer features in a forward-to-
backward manner to delineate intricate details of the salient object. To achieve this multi-
layer feature integration, we designed and constructed a Multi-Scale Fusion Module. The
reverse decoder operates in five stages, each accepting the output from the preceding stage
for reverse multi-scale fusion decoding. Importantly, the input for the fifth stage of the
decoder is the global localization fusion feature Fof. The process of the reverse decoder can
be described as follows:

Decode∗5 = UP(ConvBR1×1(Fof)) (14)

Decode5 = MSF(concat(ConvBR1×1(FFuse
5 ), Decode∗5)) (15)

Decode∗i = UP(ConvBR1×1(Decodei+1)) (16)

Decodei = MSF(concat(ConvBR1×1(FFuse
i ), Decode∗i )), i(i ∈ {1, 2, 3, 4}) (17)

Herein, MSF(·) stands for the Multi-Scale Fusion Module. We upscale the output from
the first stage of the decoder to the size of the input image, thereby obtaining the final
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saliency prediction map. The specific formula used to generate the saliency prediction map
is as follows:

S = Sigmoid(Conv 1×1(UP in(Decode1))) (18)

Herein, S represents the saliency prediction map, UPin(·) denotes the upscaling of
the feature map to the size of the input image, while Conv1×1(·) signifies a single-channel
convolution with a kernel size of 1 × 1. The primary purpose of Conv1×1(·) is to adjust the
channel count of the feature map to 1.

As illustrated in Figure 5, the multi-scale feature fusion module comprises four parallel
branches and a residual connection. Initially, we employ a convolutional operation with
a kernel of size 1 × 1 to reduce the number of channels in the input feature map to 64.
Following this, in the first branch, we sequentially execute a convolution with a kernel also
of size 1 × 1, followed by another with a kernel of size 3 × 3. For the i−th(i ∈ {2, 3, 4})
branch of the module, the procedure commences with a convolution involving a kernel
of size (2i − 1)× 1, proceeded by another convolution with a kernel of size 1 × (2i − 1).
Finally, a dilated convolution operation with a kernel of size 3 × 3 and a dilation rate of
2i − 1 is applied. This design strategy is aimed at extracting multi-scale information from
the multi-modal fusion features, thereby enriching the representational power of the model.
Next, the outputs from the four branches are stacked along the channel dimension, and the
channel count of the stacked output is adjusted to match the input feature map’s channel
count, using a convolution operation with a kernel size of 1 × 1. Finally, the adjusted result
is connected to the input feature map via a residual connection. The entire fusion process
can be described as follows:

branch1(x) = ConvBR3×3(ConvBR1×1(x)) (19)

branchi(x) = ConvBR2i−1
3×3 (ConvBR1×(2i−1)(ConvBR(2i−1)×1(ConvBR1×1(x)))),

i ∈ {2, 3, 4}
(20)

MSF(x) = ConvBR1×1(concat(branch1(x), branch2(x), branch3(x), branch4(x))) + x (21)
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Herein, branchi(x) denotes the ith parallel branch, while x symbolizes the input
feature map.

3.5. Loss Function

As depicted in Figure 1, at each stage of the decoder, the decoded output is upsampled
to the size of the input image. Following this, a convolution operation with a single-channel
convolution kernel of 1 × 1 is performed, and then a prediction saliency map is generated
through a sigmoid activation function. The saliency maps predicted at each of the five
stages are denoted as Oi (i = 1, 2, · · · , 5). Following the same process, we can also generate
the predicted saliency map Oof corresponding to the output of the semantic localization
module. This process can be described as follows:

Oi = Sigmoid(Conv1×1(UPin(Decodei))) (22)

Oof = Sigmoid(Conv1×1(UPin(Fof))) (23)

Assuming the predicted saliency map is denoted as O, and the real saliency map
is denoted as GT, the formula for calculating the loss value of the prediction results is
as follows:

Loss(O, GT) = Bce(O, GT) + Dice(O, GT) (24)

Bce(O, GT) = GT · logO + (1 − GT) · log(1 − O) (25)

Dice(O, GT) = 1 − 2 · GT · O
||GT||+||O|| (26)

Herein, Bce(·) represents the binary cross-entropy loss function, Dice(·) denotes the
Dice loss function [43], and ||·|| represents the L1 norm. The total loss function during the
training phase is described as follows:

L = α ·
5

∑
i=1

Loss(Oi, GT) + (1 − α) · Loss(Oof, GT) (27)

wherein, α represents the weight coefficients. During the testing phase, O1 is the final
prediction result of the model.

4. Experiments

Section 4.1 provides a detailed description of the implementation details, Section 4.2
discusses the sources of the datasets used, Section 4.3 introduces the setup of the evalua-
tion metrics, Section 4.4 presents the comparison with the current state-of-the-art (SOTA)
methods, and Section 4.5 is dedicated to the discussion of the ablation experiments. To-
gether, these sections form the experimental analysis and evaluation part of the paper,
comprehensively demonstrating the effectiveness and reliability of the research method.

4.1. Implementation Details

The salient object detection method proposed in this paper is implemented based
on the Pytorch framework [44,45], and all experimental procedures were carried out on a
single NVIDIA RTX A6000 GPU(NVIDIA, Santa Clara City, CA, USA). The initialization
parameters of the backbone model, ResNet50, are derived from a pre-trained model on
ImageNet [46]. Specifically, both the RGB image branch and the depth image branch use a
ResNet50 model for feature extraction, with the only difference being that the input channel
number for the depth image branch is 1. To enhance the model’s generalization capability,
various augmentation strategies, such as random flipping, rotation, and boundary cropping,
were applied to all training images. Throughout the training process, the Adam optimizer
was employed, with parameters set to β1 = 0.9 and β2 = 0.999, and a batch size of 10.
The initial learning rate was set to 1 × 10−4 and was divided by 10 every 50 rounds. The
dimensions of the input images were all adjusted to 768 × 768. The model converged
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within 200 rounds. In order to show the training process of our model more clearly, we
report the training and validation loss curve of our network in Figure 6.
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4.2. Datasets

In this study, SLMSF-Net was extensively evaluated across six widely used datasets,
including NJU2K [47], NLPR [30], STERE [48], SSD [49], SIP [50], and DES [51]. These
datasets contain 1985, 1000, 1000, 80, 929, and 135 images, respectively. For the training
phase, we utilized 1485 images from the NJU2K dataset and 700 images from the NLPR
dataset. During the testing phase, the remaining images from the NJU2K and NLPR
datasets, as well as the entire STERE, SSD, SIP, and DES datasets were used.

4.3. Evaluation Metrics

We employed four widely used evaluation metrics to compare SLMSF-Net with
previous state-of-the-art methods, namely E-Measure, F-measure, S-measure, and MAE.

E-Measure (Eξ) is a saliency map evaluation method based on cognitive vision, capable
of integrating statistical information at both the image level and local pixel level. This
measurement strategy was proposed by [52] and is defined as follows:

Eξ =
l

W × H

W

∑
i=1

H

∑
j=1

ξ(i, j) (28)

Here, W and H represent the width and height of the saliency map, respectively,
while ξ signifies the enhanced alignment matrix. E-measure has three different variants:
maximum E-measure, adaptive E-measure, and average E-measure. In our experiments,
we used the maximum E-measure (maxE) as the evaluation criterion.

F-measure (Fβ) serves as a weighted harmonic mean of precision and recall. It is
defined as follows:

Fβ =
(1 + β2)Precision × Recall

β2 × Precision + Recall
(29)

Here, β is a parameter used to balance Precision and Recall. In this study, we set β² to
0.3. Similar to E-measure, F-measure also has three different variants: maximum F-measure,
adaptive F-measure, and average F-measure. In our experiments, we reported the results
of the maximum F-measure (maxF).
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S-measure (Sα) is a method for evaluating structural similarity. It assesses from
two perspectives: region awareness (Sr) and object awareness (So). It is defined as follows:

Sα = α × So + (1 − α)Sr (30)

Here, α ∈ [0, 1] is a hyperparameter used to balance between So and Sr. In our
experiments, α is set to 0.5.

MAE (Mean Absolute Error) represents the average per-pixel absolute error between
the predicted saliency map S and the ground truth map GT. It is defined as follows:

MAE =
1

W × H

W

∑
i=1

H

∑
j=1

|S(i, j)− GT(i, j)| (31)

Here, W and H, respectively, denote the width and height of the saliency map. The
MAE is normalized to a value in the [0, 1] interval.

4.4. Comparison with SOTA Methods

We compared the SLMSF-Net model proposed in this study with ten deep learning-
based RGB-D saliency detection methods, including AFNet [53], HINet [54], C2DFNet [55],
DCMF [56], CFIDNet [57], CIR-Net [58], DCF [59], DASNet [60], D3Net [50], and ICNet [61].
To ensure a fair comparison, we used the saliency maps provided by the authors. If the
saliency maps were not provided, we computed them using the source code and model
files provided by the authors.

4.4.1. Quantitative Comparison

Figure 7 presents the comparison results of PR curves from different methods, while
Table 1 presents the quantitative comparison results for four evaluation metrics. As shown
in the figure and table, our PR curve outperforms all other comparison methods, whether
on the NJU2K, NLPR, DES, SIP, SSD, or STERE datasets. This advantage is largely at-
tributed to our designed semantic localization and multi-scale fusion strategies, which,
respectively, achieve precise localization of salient objects and capture of detailed boundary
information. Additionally, our designed depth attention module can effectively utilize
depth information to enhance the model’s segmentation performance. Concurrently, the
table data reflects the same conclusion, i.e., our method outperforms all comparison meth-
ods in performance on the NJU2K, NLPR, DES, SIP, SSD, and STERE datasets. Compared
with the best comparison methods (AFNet, C2DFNet, and DCMF), we have improved the
MAE, maxFβ, maxEξ, Sα evaluation metrics by 0.0002~0.0062, 0.2~1.8%, 0.09~1.46%, and
0.19~1.05%, respectively. Therefore, both the PR curves and evaluation metrics affirm the
effectiveness and superiority of our method proposed for the RGB-D SOD task.

Table 1. Comparison of results for four evaluation metrics—mean absolute error (MAE), maximum
F-measure (maxF), maximum E-measure (maxE), and S-measure (S)—across six datasets. The symbol
“↑” indicates that a higher value is better for the metric, while “↓” indicates that a lower value is
better. The best performance in each row is highlighted in bold.

Datasets Evaluation
Metrics

Deep Learning-Based RGB-D Saliency Detection Methods

DASNet
ICMM2020

D3Net
TNNLS

2020

ICNet
TIP2020

DCF
CVPR2021

CIRNet
TIP2022

CFIDNet
NCA2022

DCMF
TIP2022

C2DFNet
TMM2022

HINet
PR2023

AFNet
NC2023 Ours

NJU2K
[47]

MAE↓ 0.0418 0.0467 0.0519 0.0357 0.0350 0.0378 0.0357 0.0387 0.0385 0.0317 0.0315

maxF↑ 0.9015 0.8993 0.8905 0.9147 0.9281 0.9148 0.9252 0.9089 0.9138 0.9282 0.9352

maxE↑ 0.9393 0.9381 0.9264 0.9504 0.9547 0.9464 0.9582 0.9425 0.9447 0.9578 0.9615

S↑ 0.9025 0.9 0.8941 0.9116 0.9252 0.9142 0.9247 0.9082 0.9153 0.9262 0.9306
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Table 1. Cont.

Datasets Evaluation
Metrics

Deep Learning-Based RGB-D Saliency Detection Methods

DASNet
ICMM2020

D3Net
TNNLS

2020

ICNet
TIP2020

DCF
CVPR2021

CIRNet
TIP2022

CFIDNet
NCA2022

DCMF
TIP2022

C2DFNet
TMM2022

HINet
PR2023

AFNet
NC2023 Ours

NLPR
[30]

MAE↓ 0.0212 0.0298 0.0281 0.0217 0.0280 0.0256 0.0290 0.0217 0.0257 0.0201 0.0199

maxF↑ 0.9218 0.8968 0.9079 0.9118 0.9071 0.9054 0.9057 0.9166 0.9062 0.9249 0.9298

maxE↑ 0.9641 0.9529 0.9524 0.9628 0.9554 0.9553 0.9541 0.9605 0.9565 0.9684 0.9693

S↑ 0.9294 0.9118 0.9227 0.9239 0.9208 0.9219 0.9220 0.9279 0.9223 0.9362 0.9388

DES
[51]

MAE↓ 0.0246 0.0314 0.0266 0.0241 0.0287 0.0233 0.0232 0.0199 0.0215 0.0221 0.0176

maxF↑ 0.9025 0.8842 0.9132 0.8935 0.8917 0.9108 0.9239 0.9159 0.9220 0.9225 0.9307

maxE↑ 0.9390 0.9451 0.9598 0.9514 0.9407 0.9396 0.9679 0.9590 0.9670 0.9529 0.9739

S↑ 0.9047 0.8973 0.9201 0.9049 0.9067 0.9169 0.9324 0.9217 0.9274 0.9252 0.9403

SIP
[50]

MAE↓ 0.0508 0.0632 0.0695 0.0518 0.0685 0.0601 0.0623 0.0529 0.0656 0.0434 0.0422

maxF↑ 0.8864 0.861 0.8571 0.8844 0.8662 0.8699 0.8719 0.8770 0.8550 0.9089 0.9114

maxE↑ 0.9247 0.9085 0.9033 0.9217 0.9047 0.9088 0.9111 0.9160 0.8993 0.9389 0.9408

S↑ 0.8767 0.8603 0.8538 0.8756 0.8615 0.8638 0.8700 0.8715 0.8561 0.8959 0.9045

SSD
[49]

MAE↓ 0.0423 0.0585 0.0637 0.0498 0.0523 0.0504 0.0731 0.0478 0.0488 0.0383 0.0321

maxF↑ 0.8725 0.834 0.8414 0.8509 0.8547 0.8707 0.8108 0.8598 0.8524 0.8848 0.9007

maxE↑ 0.9298 0.9105 0.9025 0.9090 0.9119 0.9261 0.8970 0.9171 0.9160 0.9427 0.9565

S↑ 0.8846 0.8566 0.8484 0.8644 0.8725 0.8791 0.8382 0.8718 0.8652 0.8968 0.9062

STERE
[48]

MAE↓ 0.0368 0.0462 0.0446 0.0389 0.0457 0.0426 0.0433 0.0385 0.0490 0.0336 0.0331

maxF↑ 0.9043 0.8911 0.8978 0.9009 0.8966 0.8971 0.9061 0.8973 0.8828 0.9177 0.9195

maxE↑ 0.9436 0.9382 0.9415 0.9447 0.9388 0.9420 0.9463 0.9429 0.9325 0.9572 0.9584

S↑ 0.9104 0.8985 0.9025 0.9022 0.9013 0.9012 0.9097 0.9023 0.8919 0.9184 0.9201

4.4.2. Qualitative Comparison

For a qualitative comparison, we present a selection of representative visual examples
in Figure 8. Upon observation, our method demonstrates superior performance in several
challenging scenarios compared to other methods. Examples of these scenarios include
situations where the foreground and background colors are similar (rows 1–2), in complex
environments (rows 3–4), in scenes with multiple objects present (rows 5–6), for small
object detection (rows 7–8), and under conditions of low-quality depth images (rows 9–10).
These visual examples show that our method can more precisely locate salient objects and
generate more accurate saliency maps.

4.5. Ablation Studies

As shown in Table 2, we conducted an in-depth ablation analysis to verify the effec-
tiveness of each module. DAM represents the Deep Attention Module, SLM is the Semantic
Localization Module, and MSFM stands for Multi-Scale Fusion Module. “Without DAM”,
“without SLM”, and “without MSFM” refer to the models obtained after removing the
DAM, SLM, and MSFM modules from the SLMSF-Net model, respectively. By comparing
the data in the third column with the sixth column, we can clearly see that the introduction
of the DAM module significantly improves the performance of the model. Similarly, by
comparing the data in the fourth and sixth columns, we can see that the introduction of
the SLM module can significantly enhance the performance of the model. Comparing the
data in the fifth and sixth columns, we can see that adding the MSFM module will enhance
the model’s performance. These results prove the importance of the three modules: the
DAM module introduces depth image information, the SLM module realizes the precise
semantic location of salient objects, and the MSFM module can fuse multi-scale features to
refine the boundaries of salient objects. Each of these three functional modules resulted
in a significant increase in model performance. In the last column, we can see that the
SLMSF-Net model that incorporates these three modules achieved the best results.
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Table 2. Comparison of ablation study results. The symbol “↑” indicates that a higher value is better
for the metric, while “↓” indicates that a lower value is better. The best performance in each row is
highlighted in bold.

Datasets Evaluation
Metrics Without DAM Without SLM Without MSFM SLMSF-Net

NJU2K
[47]

MAE↓ 0.0362 0.0352 0.0393 0.0315

maxF↑ 0.9214 0.9215 0.9165 0.9352

maxE↑ 0.9516 0.9508 0.9478 0.9615

S↑ 0.921 0.9225 0.9185 0.9306

NLPR
[30]

MAE↓ 0.0235 0.0234 0.0284 0.0199

maxF↑ 0.9226 0.9193 0.911 0.9298

maxE↑ 0.9627 0.964 0.9593 0.9693

S↑ 0.9328 0.9327 0.9238 0.9388
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Table 2. Cont.

Datasets Evaluation
Metrics Without DAM Without SLM Without MSFM SLMSF-Net

DES
[51]

MAE↓ 0.0191 0.0228 0.0231 0.0176

maxF↑ 0.9284 0.9174 0.9263 0.9307

maxE↑ 0.9704 0.9618 0.9687 0.9739

S↑ 0.9342 0.9260 0.9317 0.9403

SIP
[50]

MAE↓ 0.0569 0.0528 0.0600 0.0422

maxF↑ 0.8827 0.8916 0.8748 0.9114

maxE↑ 0.9154 0.9202 0.9119 0.9408

S↑ 0.8776 0.8830 0.8739 0.9045

SSD
[49]

MAE↓ 0.0537 0.0534 0.0548 0.0321

maxF↑ 0.8378 0.8381 0.8395 0.9007

maxE↑ 0.9093 0.9042 0.9045 0.9565

S↑ 0.8661 0.865 0.8658 0.9062

STERE
[48]

MAE↓ 0.0443 0.0376 0.0508 0.0331

maxF↑ 0.8919 0.9100 0.8906 0.9195

maxE↑ 0.9381 0.9479 0.9330 0.9584

S↑ 0.9014 0.9143 0.8986 0.9201

5. Conclusions

In complex scenarios, achieving precise RGB-D salient object detection against mul-
tiple scales of objects and noisy backgrounds remains a daunting task. Current research
primarily faces two major challenges: modality fusion and multi-level feature integration.
To address these challenges, we propose an innovative RGB-D salient object detection
network, the Semantic Localization and Multi-Scale Fusion Network (SLMSF-Net). This
network comprises two main stages: encoding and decoding. In the encoding stage,
SLMSF-Net utilizes ResNet50 to extract features from RGB and depth images and employs
a depth attention module for the effective fusion of modal features. In the decoding stage,
the network precisely locates salient objects through the semantic localization module and
restores the detailed information of salient objects in the reverse decoder via the Multi-Scale
Fusion Module. Rigorous experimental validation shows that SLMSF-Net exhibits superior
accuracy and robustness on multiple RGB-D salient object detection datasets, outperform-
ing existing technologies. In the future, we plan to further optimize the model, improve the
attention mechanism, delve into refining edge details, and explore its application in RGB-T
salient object detection tasks.
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