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Abstract

Clinical trials demand a comprehensive evaluation of multiple endpoints to provide a thorough understanding
of intervention efficacy and safety. In response to a discerned gap in existing literature, this study introduces
an innovative global nonparametric testing procedure, grounded in multivariate ranks, for the holistic analysis
of these diverse endpoints. Unlike conventional approaches that heavily rely on pairwise comparisons for
individual endpoints, our method takes a novel approach by directly incorporating multivariate ranks. This
methodology builds on the strengths of previous models while addressing their limitations, ensuring a more
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nuanced and robust assessment. By considering the joint ranking of all endpoints, our approach exhibits
heightened resilience against diverse data distributions and common censoring mechanisms commonly
encountered in clinical trials. The proposed method emerges from a thoughtful integration of existing models,
contributing to the methodological evolution in the field. To illustrate its superiority, extensive simulations
have been conducted. The results unequivocally demonstrate the superior performance of our multivariate
rank-based approach, showcasing its ability to effectively control type I error and achieve higher power
compared to conventional rank-based methods. This empirical validation not only underscores the method’s
efficacy but also highlights its versatility and robustness across a spectrum of clinical trial settings.

Keywords: Global testing; multivariate rank; multiple endpoints; rank-based methods.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16

1 Introduction

In clinical trials, patients are often evaluated using multiple measures of treatment effectiveness, such as survival
time, biomarker dynamics, and functional evaluations. To ensure a comprehensive evaluation of therapeutic
benefits, it is important to consider multiple endpoints simultaneously. For instance, spinal muscular atrophy
(SMA), a rare neuromuscular disorder causing motor neuron loss and progressive muscle degeneration, is assessed
in treatment trials by comparing therapies based on both survival time and changes in muscle function measured
using the Hammersmith Functional Motor Scale-Expanded (HFMSE). To draw a conclusive judgment on the
effectiveness of treatment across multiple outcomes, several approaches have been suggested to summarize the
treatment effect. One such approach involves employing multiple testing correction techniques, which adjust
the individual p-values obtained from statistical tests to account for the possibility of false positives. Examples
of such correction methods include the Bonferroni correction [1] and the Benjamini-Hochberg procedure [2].
Nevertheless, these methods are unable to provide a comprehensive assessment regarding the overall efficacy
of clinical intervention. Furthermore, the endpoints measured in a clinical trial often exhibit high correlation,
which introduces further challenges when utilizing these approaches. Often, however, people might be more
interested in highlighting whether a subset of variables is jointly suggestive of a treatment effect [3]. In such
cases, instead of testing each outcome individually, an overall statement should be claimed to assess therapeutic
benefit. An alternative approach to address the issue of multiplicity is to create a composite endpoint by merging
all relevant clinical outcomes into a single variable. This allows for an evaluation of the overall therapeutic
benefit in a comprehensive manner, providing a “global” assessment. By conducting a single statistical test
on the composite endpoint, there is no need for adjustment or correction for multiple comparisons. This
approach simplifies the analysis and interpretation process by considering all relevant outcomes simultaneously.
In essence, the global test procedure transforms a multivariate problem into a univariate scale, enabling the
announcement of a single probability statement regarding the success of targeted intervention strategies. By
utilizing a global testing procedure, it becomes possible to summarize the overall effect of treatment across
multiple outcomes in a more flexible manner. This approach allows for a comprehensive evaluation of treatment
efficacy, considering the collective impact of various outcomes simultaneously. In this paper, we introduce
a nonparametric global testing procedure based on (multivariate) rank energy statistics developed by [4].
This procedure is designed to summarize the overall treatment effect across multiple measurements, including
censored outcomes. The proposed method enables the integration of various measurements, accommodating
both continuous, discrete, and censored data, to provide a comprehensive assessment of the treatment’s impact
across multiple measurements, including censored outcomes.

Before proceeding, let us first review some of the global test procedures that have been proposed in the literature.
To name a few, [5] proposed a nonparametric rank-sum-type test to compare the distribution of two samples
with multiple outcomes by summing up the ranks for each individual outcome and the test statistics is proven
to be asymptotically normal distributed under the null hypothesis that the two multivariate samples have the
same distribution. [6] presented a nonparametric test for time to event endpoint and longitudinal measure. [7]
introduced a family of simple testing procedures for scoring multivariate ordinal data. [8] considered the sample
size computation problem for clinical trial design with multiple primary outcomes. [9] constructed a hierarchical
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global ranking of a survival endpoint and a longitudinal measure to test the null hypothesis that neither of
the outcomes is associated with treatment. [10] described a new endpoint for amyotrophic lateral sclerosis
by combining survival time and change in function score. [11] further generalized the aforementioned global
nonparametric rank tests using U-statistics and discussed the choice of optimal weighting schemes. Specifically,
Let xik, yjk be the observed outcome k for subject i in the control group, i = 1, . . . ,m and subject j in the
treatment group, j = 1, . . . , n, where k = 1, . . . , d. Denote xi = (xi1, . . . , xid)

>, yj = (yj1, . . . , yjd)
> as the

observed vector. [11] defined r
(k)
ij (xik, yjk) : R × R → [−1, 1] be the rank score between i-th subject in control

group and j-th subject in the treatment group for outcome k. For example, r
(k)
ij (xik, yjk) = 1(xik > yjk)−1(xik <

yjk). [11] further defined rij(xi, yj) = (r
(1)
ij (xi1, yj1), . . . , r

(d)
ij (xid, yjd)) as the vector of rank scores between i-th

subject and j-th subject, and for simplicity, we sometimes write rij for rij(xi, yj), r
(k)
ij for r

(k)
ij (xik, yjk) if no

confusion arises. Then, the two-sample U-statistics generalized by [11] was defined as the summation among all
the pairwise comparisons between two groups after mapping rij to a univariate score:

U =
1

mn

m∑
i=1

n∑
j=1

φ(rij), (1.1)

where φ : Rd → R maps the vector of comparison for each outcome to a one-dimensional score, which gives us
the overall evaluation. Ideally, the maximizer and minimizer of φ(rij) should be (1, . . . , 1) and (−1, . . . ,−1),
respectively. Several choices of φ have been derived in literature. For example, in [5], the author proposed a
nonparametric procedure that calculated an overall rank by summing outcome-specific ranks for each subject
and used a two-sample rank-sum or t test to test for the null hypothesis. In other word, map φ in [5] is given by

φ(rij) = r
(1)
ij + r

(2)
ij + . . .+ r

(d)
ij . (1.2)

In [5], the underlying assumption is that each outcome has the same importance. However, in practice, not
all the endpoints may contribute equally to the treatment effect, so, the rank-sum test by [5] could be further

generalized to the weighted summation as φ(rij) =
∑p
k=1 wkr

(k)
ij , where wk ≥ 0 is the weight associated with each

component. The Finkelstein-Schoenfeld test introduced by [6] compared a mortality outcome and a longitudinal
outcome in a hierarchical manner, where subjects are first compared pairwise on survival using the Gehan scoring
function [12], and then on the longitudinal marker if it is indeterminate who survived longer. In their framework,
the function φ is defined as

φ(rij) = r
(1)
ij + 1(r

(1)
ij = 0)r

(2)
ij + . . .+ 1(r

(1)
ij = . . . = r

(d−1)
ij = 0)r

(d)
ij .

In [7], the authors conducted pairwise comparisons of subjects based on ordinal measures. They considered two
situations: (1) assigning a score of 1 to the subject whose outcomes are all favorable, and (2) assigning a score
of 1 to the subject who has more favorable outcomes. The corresponding function φ can be expressed as

φ(rij) = 1( max
k=1,...,d

{r(k)ij } > 0)− 1( min
k=1,...,d

{r(k)ij } < 0), for situation (1)

φ(rij) = 1(

d∑
k=1

r
(k)
ij > 0)− 1(

d∑
k=1

r
(k)
ij < 0), for situation (2).

All the methods mentioned above utilized the univariate rank of each individual endpoint and mapped each pair
to a one-dimensional score. In addition to rank-based testing procedures, various other testing procedures have
been explored in the literature for handling multiple endpoints, such as [13, 14, 15]. For a comprehensive review
of these and other testing procedures, please refer to [3].

The remainder of the paper is organized as follows. Section 2 formulates the statistical problem and presents
nonparametric global rank testing for survival and multiple endpoints using multivariate ranks as well as the
implementation. Section 3 evaluates the finite-sample performance of the proposed methodology by several
simulation studies and some concluding remarks are provided in Section 4.
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2 Methodology

Before presenting the proposed nonparametric global test statistics, we first formulate the problem under study.
Suppose in a clinical trial, people collect d measurements to verify the efficacy of an intervention. Let xik, yjk
be the observed outcome k for subject i in the control group, i = 1, . . . ,m and subject j in the treatment
group, j = 1, . . . , n, where k = 1, . . . , d. Denote xi = (xi1, . . . , xid)

>, yj = (yj1, . . . , yjd)
> as the observed

vector. Suppose x1, . . . , xm
i.i.d.∼ µx and y1, . . . , yn

i.i.d.∼ µy, where µx, µy are two d-dimensional distributions.
The following nonparametric two-sample goodness-of-fit testing problem is considered

H0 : µx = µy, versus H1 : µx 6= µy. (2.1)

When d = 1 and µx, µy are unknown, the problem is a classical nonparametric two-sample test and several
methods have been proposed for it, which includes Spearman’s rank correlation test [16], two-sample Cramér-
von Mises statistic [17], two-sample Kolmogorov-Smirnov test [18], Wald-Wolfowitz run test [19], Wilcoxon-
Mann-Whitney rank test [20], Hoeffding’s D-test [21], among others. In the case when d > 1, the problem of
nonparametric two-sample testing for multivariate distributions has also a long history and has recently gained
significant attention. Various methods have been proposed, such as those by [22, 23, 24, 25, 26, 27, 28, 29], [30],
[31], [32]. In this work, we specifically focus on the (multivariate) rank-based approach proposed by [4].

2.1 Multivariate Rank

[4] introduced the concept of multivariate rank, which utilizes low-discrepancy sequences to transform the original
data into a unit hypercube. Without loss of generality, we let Rd be the d-dimensional input space, and the d-
dimensional unit hypercube to which the data is mapped by the multivariate rank process is represented by [0, 1]d.
The families of all probability distributions on Rd are denoted by P(Rd), while the families of Lebesgue absolutely
continuous probability measures on Rd are represented by Pac(Rd), and the uniform distribution on [0, 1]d is
denoted by Ud. The multivariate rank approach is implemented using a measure transportation technique, also
known as optimal transportation. Specifically, this involves finding a suitable function G : Rd → Rd that maps
a given measure µ ∈ P(Rd) to ν ∈ P(Rd), represented as G#µ = ν. In other words, if x follows the distribution
µ, then G(x) follows the distribution ν. Suppose the observed data follows distribution µ ∈ Pac(Rd), then the
idea of multivariate rank introduced by [4] is to find a rank function R(·) such that R#µ = Ud, that is, R(x)
follows a uniform distribution in Rd. The following theorem guarantees the existence of the (population) rank
function R(·).

Theorem 2.1 (McCann’s theorem [33]). Suppose µ, ν ∈ Pac(Rd), then there exists a unique function R(·), up
to measure zero sets with respect to µ, which is the gradient of an extended real-valued d-variate convex function,
such that R#µ = ν. Moreover, if µ and ν have finite second moments, then R(·) is also the solution to Monge’s
problem, i.e.,

R(·) =G

∫
‖x−G(x)‖2dµ(x), subject to G#µ = ν. (2.2)

However, in practice, it is infeasible to know the true distribution µ, instead, the only available information
regarding the measure µ is obtained through empirical observations x1, . . . , xn. [4] put forward a novel approach
for estimating the (population) rank function using empirical observations. To understand this approach, it is
first necessary to review the definition of the low-discrepancy sequence, which plays a crucial role in the method.

A low-discrepancy sequence is a sequence of points in a multi-dimensional space that is designed to have better
distribution properties than random sequences. In particular, these sequences are constructed to have a low
discrepancy, which measures the uniformity of the distribution of points in a given region. To be more precise,
let us consider a d-dimensional hypercube [0, 1]d and let A be a set of n points in this hypercube. The discrepancy
of a set A is defined as:

D(A) = sup
B⊂[0,1]d

∣∣∣∣#(A ∩ B)

n
− Leb(B)

∣∣∣∣ ,
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where B is any region in [0, 1]d, #(A ∩ B) denotes the number of points in A that fall in B, and Leb(B) is the
Lebesgue measure of B. In other words, the discrepancy measures the maximum difference between the fraction
of points in A that fall in any subinterval of [0, 1]d and the measure of that subinterval. A low-discrepancy
sequence is a sequence of points in [0, 1]d that has a small discrepancy and the proportion of points in the
sequence falling into an arbitrary set B is close to the proportional of the measure of B. There are many
different constructions of low-discrepancy sequences, such as Hammersley sequences [34], Halton sequences [35],
and Sobol sequences [36]. [4] proposed a novel approach for estimating the population rank function using a
low-discrepancy sequence of points. In their method, they first generated a low-discrepancy sequence of points
in the d-dimensional space of features, which was a good representation of Ud. Then, the (empirical) rank
map was defined as the solution of the empirical version of Monge’s problem in (2.2). To be more specific, let
x1, ..., xn ∈ Rd be the i.i.d. observations, and {c1, ..., cn} ⊂ [0, 1]d be a low-discrepancy sequence on [0, 1]d. Let δa
denote the Dirac measure that assigns probability 1 to the point a and µxn(x) = n−1∑n

i=1 δxi , νn = n−1∑n
i=1 δci .

Then the (empirical) rank map is defined as

R̂(·) =F

∫
‖x− F (x)‖2dµxn(x), subject to F#µxn = νn,

which is equivalent to the following optimization problem:

σ̂ =σ=(σ(1),...,σ(n))∈Sn

n∑
i=1

‖ xi − cσ(i) ‖2=σ=(σ(1),...,σ(n))∈Sn

n∑
i=1

〈xi, cσ(i)〉, (2.3)

where ‖ · ‖ and 〈·, ·〉 denote the usual Euclidean norm and inner product, and Sn is the set of all permutations
of {1, 2, ..., n}. Finally, the (empirical) multivariate rank of xi is a d-dimensional vector defined as

R̂(xi) = cσ̂(i), for i = 1, . . . ,m. (2.4)

Fig. 1. illustrates the idea of univariate rank on [0, 1] and multivariate rank on [0, 1]2. In the following sections.
we proceed to show how to construct a nonparametric global test for different types of endpoints based on
multivariate rank. It is worthwhile to mention that the multivariate rank defined by [4] has also been extended
to other areas, such as deep learning [37], and variable selection [38].

Data Points
Empirical Ranks

Data Points
Empirical Ranks

Fig. 1. Left: Univariate rank on [0, 1], the red dots are randomly generated from a standard
normal distribution, and the blue dots are evenly spaced on [0, 1]. The leftmost (smallest) red
dot will be assigned to the first blue dot, thus rank 1, and so on. Right: Multivariate rank on

[0, 1]2, the blue dots are two-dimensional Sobol’ sequence on [0, 1]2, while the green box
represents the region [0, 1]2. The multivariate rank method will map the two-dimensional red

dots to the blue dots, which correspond to their multivariate ranks.
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Fig. 2. Left: The dots are randomly generated from a uniform distribution. Right: The dots are
generated using the Sobol’ sequence. The Sobol’ sequence provides a more even distribution of

points compared to randomly generated points.

2.2 A Global Test Statistics Based on Multivariate Rank

We now proceed to study the nonparametric global test problem in (2.1) based on multivariate rank. Given
the observations of control group x1, . . . , xm and treatment group y1, . . . , yn, first, pool the sample of (m + n)
observations into a single group and get the (empirical) multivariate rank of xi, yj through (2.4), denoted as

R̂x,ym,n (xi) , R̂
x,y
m,n (yj). The corresponding test statistic based on multivariate rank is defined as

RE2
m,n :=

2

mn

m∑
i=1

n∑
j=1

∥∥∥R̂x,ym,n (xi)− R̂x,ym,n (yj)
∥∥∥− 1

m2

m∑
i,j=1

∥∥∥R̂x,ym,n (xi)− R̂x,ym,n (xj)
∥∥∥

− 1

n2

n∑
i,j=1

∥∥∥R̂x,ym,n (yi)− R̂y,ym,n (yj)
∥∥∥ . (2.5)

Under Theorem 4.3 in [4], we know RE2
m,n is Op(1) with the following limiting distribution

mn

m+ n
RE2

m,n
w−→

∞∑
j=1

τjZ
2
j , min(m,n)→∞, (2.6)

where Zj ’s are i.i.d. standard normals and τj ’s are fixed nonnegative constants which does not depend on the
distribution xi, yj , and

w−→ denotes the weak convergence of distributions. Given predetermined significance level
α, let

cm,n := inf
{
c > 0 : PH0

(
mn(m+ n)−1RE2

m,n ≥ c
)
≤ α

}
, (2.7)

and the decision rule for testing (2.1) at significance level α can be defined as follows

φm,n = 1(mn(m+ n)−1RE2
m,n ≥ cm,n),

where RE2
m,n, cm,n are defined in (2.5) and (2.7), respectively. We reject the null hypothesis in (2.1) if and

only if φm,n = 1. By the definition of cm,n, clearly, the test is level α. It is worth noting that for any fixed
m,n, RE2

m,n, cm,n do not depend on µx, µy. Unfortunately, as mentioned in [4], the theoretical value of cm,n
is infeasible to achieve, the only way to get cm,n as of now is through numerical experiments. We summarize
the asymptotic thresholds for mn(m + n)−1RE2

m,n in Table 3. and provide the procedure to estimate cm,n in
Algorithm 2.3.
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Table 1. Asymptotic thresholds for mn(m+ n)−1RE2
m,n when α = 0.05, 0.10, d ≤ 6. The numbers are

obtained through Algorithm 2.3.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

α = 0.05 0.94 1.12 1.26 1.37 1.45 1.54

α = 0.10 0.70 0.92 1.07 1.17 1.28 1.37

Algorithm 2.2. Input: (x1, . . . , xm) and (y1, . . . , yn).
Pool (x1, . . . , xm) and (y1, . . . , yn) into a single group.
Generate a low-discrepancy sequence {c1, ..., c(m+n)} on [0, 1]d with size (m+ n).
Solve the optimal assignment problem:

σ̂ =σ=(σ(1),...,σ(m+n))∈Sm+n

(∑m
i=1 ‖ xi − cσ(i) ‖

2 +
∑m+n
j=m+1 ‖ yj−m − cσ(j) ‖

2
)

.

Compute the (empirical) multivariate rank of xi, yj by

R̂x,ym,n(xi) = cσ̂(i), i = 1, . . . ,m, R̂x,ym,n(yj) = cσ̂(j+m), j = 1, . . . , n.
Return: test statistic RE2

m,n in (2.5).

Algorithm 2.3. Initialization: set nrun := 106 and A = [0, . . . , 0] as a zero array with length nrun;
Input: m,n > 0, α, p;
for i in 1, . . . , nrun do

generate x1, . . . , xm, y1, . . . , yn from standard d-dimensional multivariate normal distribution independently;
compute test statistics RE2

m,n using Algorithm 2.2;
A[i]← RE2

m,n;
end for
Return: cm,n = (1− α) quantile of A.

2.3 Time-to-Event Endpoint

In the following subsection, we consider the problem that one of the endpoint is the time-to-event outcome.
Without loss of generality, we assume the first component of the d measurements is the survival endpoint
and the rest d − 1 components are non-survival endpoints. we assume xi1, yj1 be the survival endpoint and
xi1 = min{T xi , Cxi }, yj1 = min{T yj , C

y
j }, δ

x
i = 1(T xi ≤ Cxi ), δyj = 1(T yj ≤ Cyj ), where T xi (T yj ), Cxi (Cyj ), δxi (δyj ) is

the unknown survival time, censoring time, and the censoring indicator of subject i(j) in control(treatment)
group. In order to apply the global test based on multivariate rank for the survival endpoint, we use the idea
from the Gehan–Wilcoxon test [12], which is an extension of the classical Wilcoxon rank-sum test for comparing
survival curves between two or more groups. More specifically, in the first step, we pool the two samples of
(m + n) survival times (x11, . . . , xm1, y11, . . . , yn1) into a single group (t1, . . . , tm+n), and we use a superscript
‘+’ to indicate that the corresponding observation is censored. Then we construct a score by comparing each
individual with the remaining (m+ n− 1) subjects based on the following rule:

ũij =


+1 if ti > tj or t+i ≥ tj ,
−1 if ti < tj or ti ≤ t+j ,
0 otherwise .

(2.8)

Then the importance score for each individual is defined as ui =
∑m+n
j=1 ũij . In other words, Ui represents the

number of survival (or censored) times which are definitely less than ti (or t+i ) minus the number of survival (or
censored) times which are definitely greater than ti (or t+i ). Once we get the importance score for each individual,
the next step is straightforward. We can just easily replace the original survival times (x11, . . . , xm1, y11, . . . , xn1, )
with (u1, . . . , um+n). We summarize the procedure in Algorithm 2.4.

Algorithm 2.4. Input: (x1, . . . , xm) and (y1, . . . , yn).
Pool (x11, . . . , xm1) and (y11, . . . , yn1) into a single group as (t1, . . . , tm+n).

68



Li et al.; Asian J. Prob. Stat., vol. 26, no. 2, pp. 62-75, 2024; Article no.AJPAS.112095

Compute the importance score ui =
∑m+n
j=1 ũij by (2.8).

Replace (x11, . . . , xm1) and (y11, . . . , yn1) with (u1, . . . , um) and (um+1, . . . , um+n), respectively.
Compute test statistic RE2

m,n using Algorithm 2.2 with input (x̃1, . . . , x̃m) and (ỹ1, . . . , ỹn), where x̃i =
(ui, xi2, . . . , xid)

>, ỹj = (um+j , yj2, . . . , yjd)
>.

Return: test statistic RE2
m,n.

In the first step, we utilize the generalized Wilcoxon pairwise comparisons proposed by Gehan [12] to calculate
the relative rank of the survival term for each subject. It is important to note that there are other methods
available for obtaining relative ranks, such as imputation-based approaches [39] or inverse probability of censoring
weighting approach [9]. For a more comprehensive review of these methods, please refer to [40].

3 Simulation

In this section, we assess the finite sample performance of the global multivariate rank-based approach and
compare it with two other rank-based approaches: O’Brien’s rank-sum procedure [5] and Wittkowski’s method

[7]. In Wittkowski’s method, the pairwise comparison is based on φ(rij) = 1(
∑d
k=1 r

(k)
ij > 0)−1(

∑d
k=1 r

(k)
ij < 0),

where a score of 1 is assigned if subject 1 has more favorable outcomes than subject 2.

3.1 Multiple Uncensored Outcomes

In this section, we conduct simulation studies to evaluate the performance of the test procedure on uncensored
endpoints. We consider two scenarios in which we examine both continuous and discrete endpoints.

[label=]scenario 1: Suppose we collect d = 8 measurements to verify the efficacy of an intervention and
the observed values for two arms follow

x1, . . . , xm
i.i.d.∼ N (µ,Σ), y1, . . . , yn

i.i.d.∼ N (rµ,Σ),

where µ = (1, 0.1, 0.2, 0.3, 0.1, 0.8, 0.1, 0)> represents the mean vector, σij = 1 if i = j, and σij = ρ if
i 6= j represents the (i, j)th entry of the covariance matrix Σ. We consider ρ = 0.3, 0.8 and r from 1 to
3. In particular, r = 1 is used to examine the empirical size of the proposed test under H0, and other
values of r are used to check the empirical powers against alternatives. The target significance level is
chosen as α = 0.05. The results are summarized in Fig. 3. It can be observed that the type I error of all
three methods is well controlled. However, the multivariate rank approach performs significantly better
when r > 0, indicating its superiority under H1. An interesting observation is that Wittkowski’s method
performs better than O’Brien’s method when the correlation between each endpoint is stronger. scenario
2: In this scenario, we consider four correlated endpoints (d = 4) where three of them are continuous and
one is discrete. Specifically, we let xi = (xi1, xi2, xi3, xi4)>, yj = (yj1, yj2, yj3, yj4)> ∈ R4, where

(xi1, xi2, xi3)>
i.i.d.∼ N (µ,Σ), (yj1, yj2, yj3)>

i.i.d.∼ N (µ− rν,Σ),

xi4
i.i.d.∼ Bernoulli(px), yj4

i.i.d.∼ Bernoulli(py),

where

px =
exp{−3 + β1xi1 + β2xi2 + β3xi3}

1 + exp{−3 + β1xi1 + β2xi2 + β3xi3)} ,

py =
exp{−3 + β1yj1 + β2yj2 + β3yj3}

1 + exp{−3 + β1yj1 + β2yj2 + β3yj3}
,

Σ =

102 7 0.6
7 1 0.4

0.6 0.4 152

 ,
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(β1, β2, β3)> = (0.1, 0.4, 0.1)>, µ = (150, 6, 250)>, ν = (10, 0.1, 10)>.. For our analysis, we vary the
treatment effect parameter r from 0 to 1. Specifically, we set r = 0 to examine the empirical size of the
proposed test under the null hypothesis H0. The results are summarized in Fig. 4. It can be observed that
when including a discrete endpoint, the type I error of the multivariate rank approach and Wittkowski’s
methods can still be well controlled at the target significance level. However, O’Brien’s method shows an
inflated type I error. Additionally, the multivariate rank approach exhibits greater power compared to
Wittkowski’s method.
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Fig. 3. Empirical rejection rates for scenario 1.

3.2 Time-to-Event Endpoint

In this section, we carry out simulation studies to assess the finite sample performance of the test procedure
on right-censored survival data. Let Sxi (t|xi) = P(T xi > t|xi), Syj (t|yj) = P(T yj > t|yj) be the survical function,
representing the probability of surviving beyond time t, where T xi , T

y
j are the survival times of subject xi, yj ,

respectively, and xi = (xi2, . . . , xid)
>, yj = (yj2, . . . , yjd)

>. We conciser the following Cox proportional hazards
model

Sxi (t|xi) = exp (−H0(t) exp(ψ(xi))) , S
y
j (t|yj) = exp (−H0(t) exp(ψ(yj))) ,
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Fig. 4. Empirical rejection rates for scenario 2.

where H0(t) is the cumulative baseline hazard function and ψ(x) is the covariates effect. We use the inverse
probability method by [41] to generate T xi , T

y
j from the hazard function. Specifically, let Ui, Uj be uniformly

distributed on [0, 1], then the corresponding event time

T xi = (Sxi )−1(Ui|xi) = H0(t)−1

(
− log(Ui)

exp(ψ(xi))

)
, T yj = (Syj )−1(Uj |yj) = H0(t)−1

(
− log(Uj)

exp(ψ(yj))

)
.

In this simulation, we consider the number of endpoints d = 6, where

xi = (xi2, . . . , xi6)>
i.i.d.∼ N (µ,Σ), yj = (yj2, . . . , yj6)>

i.i.d.∼ N (µ− rν,Σ),

with µ = (3, 2, 2, 1, 1)>, ν = (1, 0.1, 0, 0.1, 0.2)>, σij = 1 if i = j, and σij = ρ if i 6= j representing the (i, j)th
entry of the covariance matrix Σ. We consider ρ = 0.3, 0.6. In the context of the survival times T xi , T

y
j , we

assume the baseline hazard function is constant, i.e. the survival times are exponentially distributed which are
generated from

T xi = (Sxi )−1(Ui|xi) = − log(Ui)

λ exp(β>xi)
, T yj = (Syj )−1(Uj |yj) = − log(Uj)

λ exp(β>yj)
,

with λ = 0.1, β = (0.5, 0.2, 0.3, 0.3, 0.5)>. The corresponding survival endpoint xi1 and yj1 are defined as
xi1 = min{T xi , Cxi }, yj1 = min{T yj , C

y
j }, where censoring times Cxi , C

y
j are generated from a uniform distribution

U(0, 3) and δxi = 1(T xi ≤ Cxi ), δyj = 1(T yj ≤ Cyj ) denote the censoring indicator. To extend O’Brien’s and
Wittkowski’s methods to survival endpoints, similar to the description in Section 2.3, we first use Wilcoxon
pairwise comparison to obtain the relative rank of the survival time for each subject. We then replace the
survival endpoint with the corresponding relative rank. We applied Algorithm 2.4 to examine the empirical
size and empirical power of three testing procedures, and the results are summarized in Fig. 5. It can be
observed that when r = 0 (under H0), the empirical rejection rates are all around 5%, indicating that the type I
error is well controlled in all three testing procedures. However, as r exceeds a threshold, the testing procedure
based on the multivariate rank shows significantly better performance compared to the other two methods.
Furthermore, as the correlation between each endpoint becomes stronger, the difference in power becomes larger,
and Wittkowski’s method outperforms O’Brien’s method when the correlation is stronger. These findings are
consistent with the results observed in scenario 1. The results demonstrate the validity of Algorithm 2.4.

3.3 Sensitivity Analysis

In this section, we conduct a sensitivity analysis to examine the influence of the low-discrepancy sequence used
in the construction of multivariate ranks, as described in Section 2. We compare four different methods: uniform
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number in [0, 1]d, Hammersley sequence [34], Halton sequences [35], and Sobol’ sequences [36]. For the uniform
number, each component is generated from a standard uniform distribution. We evaluate the empirical rejection
rates using scenario 1 with ρ = 0.8. Fig. 6. presents the results, indicating that all methods effectively control
the type I error. However, the low-discrepancy sequences (Hammersley, Halton, and Sobol’) demonstrate higher
power compared to the uniform numbers method. Importantly, the choice of low-discrepancy sequence does not
significantly impact the performance. This finding is consistent with Fig. 2, which illustrates the more even
distribution of points provided by low-discrepancy sequences compared to randomly generated points.
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Fig. 5. Empirical rejection rates for the simulation of time-to-event endpoint in Section 3.2.
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Fig. 6. Empirical rejection rates of scenario 1 for various value of r and ρ = 0.8 using different
low-discrepancy methods.
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4 Conclusion

In this study, we studied a global nonparametric testing procedure based on multivariate rank for the analysis of
multiple endpoints in clinical trials. We compared the multivariate rank approach with other two existing rank-
based methods, namely O’Brien’s rank-sum procedure and Wittkowski’s method. Through extensive simulations,
we observed that the multivariate rank approach consistently outperformed the classical methods in terms of both
type I error control and power. The use of multivariate rank allowed us to directly incorporate the relationships
among multiple endpoints in the testing procedure, providing a more comprehensive and informative analysis.
This approach exhibited robustness against various data distributions and censoring mechanisms commonly
encountered in clinical trials. Additionally, we conducted sensitivity analyses to assess the impact of low-
discrepancy sequences on the performance of the multivariate rank-based approach. The results showed that
incorporating low-discrepancy sequences, such as Hammersley, Halton, and Sobol’, further enhanced the power
of the method without compromising its overall performance. In conclusion, our study highlights the utility of
the multivariate rank-based approach for the analysis of multiple endpoints in clinical trials. By leveraging the
relationships among endpoints, this method offers improved power and robustness compared to existing rank-
based methods. Further research could explore the extension of these methods to handle additional complexities
and real-world clinical trial datasets.
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