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ABSTRACT 
 

Horticulture plays a vital role in global food and nutritional security. This review covers recent 
advances and emerging trends across various facets of horticultural production and management. 
Key focus areas include protected cultivation, precision agriculture, new cultivar development, 
innovations in propagation and breeding, micro irrigation systems, nanotechnology applications, 
and integrated pest management. The potential of advanced technologies like automation, robotics, 
artificial intelligence, and genetics in transforming horticulture is discussed. Challenges for 
sustainable intensification of horticultural systems are examined. The review highlights how cutting-
edge sciences, digital integration, and ecological approaches will shape the future of horticulture 
with more productive, efficient, and climate-resilient production. 
 

 
Keywords:  Horticulture; precision agriculture; protected cultivation; plant breeding; nanotechnology; 

automation. 
 

1. INTRODUCTION 
 

Horticulture is one of the fastest growing and 
high-value segments of agriculture worldwide. It 
encompasses the cultivation of fruits, vegetables, 
ornamentals, plantation crops, 
aromatic/medicinal plants, and spices. With a 
rising global population and increasing demands 
for healthier diets, horticulture is crucial for food 
and nutritional security. Horticultural crops 
provide essential vitamins, minerals, fiber, 
phytonutrients, and anti-oxidants vital for human 
health. Global horticultural production in 2017 
was estimated at 1.2 billion tons from over 60 
million hectares of cultivated land [1]. 
 

However, various challenges confront the 
horticulture sector in sustainably meeting 
escalating production needs. These include 
declining arable land, climate change impacts, 
urbanization pressures, resource constraints like 
water scarcity, rising input costs, postharvest 
losses, and transitioning to ecological farming 
systems [2]. Tackling these complex, interlinked 
issues requires tapping the potential of emerging 
sciences, novel technologies and digitally-
enabled solutions tailored to horticultural 
production systems. 
 

Recent decades have witnessed major advances 
in protected cultivation, precision agriculture, 
plant breeding innovations, optimized 
propagation, crop improvement genetics, 
nanotechnology applications, micro-irrigation 
systems, and integrated pest management 
relevant for horticulture [3-10]. This review 
covers key developments across these domains, 
current adoption trends, and the immense scope 
for ongoing research and innovation. The 
transformational possibilities of emerging 

technologies like automation, robotics, artificial 
intelligence, and genomics are discussed. 
Challenges inhibiting technology adoption are 
examined, especially for smallholder growers 
and developing regions. The review provides 
insights into how cutting-edge, ecologically 
sustainable tools and approaches can drive the 
future of horticulture. 

 
2. PROTECTED CULTIVATION AND 

CLIMATE CONTROL 
 
Protected cultivation of high-value horticulture 
crops under structures like greenhouses, shade 
nets, mulches and tunnels has expanded 
significantly in recent years. It enables favorable 
microclimate conditions, protection from 
biotic/abiotic stresses, extended growing periods, 
improved yields and quality [4]. Global area 
under greenhouse cultivation reached over 1 
million hectares in 2017, with major expansions 
in China, India, Turkey and Mexico [5]. 

 
Recent advances in greenhouse technology 
include precision sensors for real-time monitoring 
and automated climate control [6]. Computer-
controlled systems integrate data from multiple 
sensors to regulate heating, ventilation, humidity, 
lighting, irrigation, and CO2 supplementation for 
optimizing plant growth [7]. Technologies like 
evaporative cooling pads, fogging nozzles, 
retractable roof covers, and heat curtains allow 
greenhouses to maintain suitable environments 
in diverse weather conditions [8]. 

 
Innovations in greenhouse cladding involve 
selective light diffusion, insulation, infrared 
blocking, anti-condensate films and UV 
protection to create ideal microclimates [9]. 
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Table 1. Innovations in protected cultivation structures and components 
 

Component Innovations Potential Benefits 

Structure 
materials 

Plastic composites, anti-fog, UV resistant, multi-
layered films [5]; ethylene tetrafluoroethylene films 
[6]; polycarbonate panels [7] 

Improved light transmission, 
insulation, durability 

Automation Intelligent control systems; automated irrigation 
booms, self-cleaning filters; automated mobile 
platforms for monitoring and farm operations [8,9] 

Optimized microclimate 
management, water-use 
efficiency, reduced labor 

Ventilation 
systems 

Fogging nozzles, retractable roofs, side vents, 
insect-proof nettings [10] 

Effective cooling, humidity 
control, reduced pest 
infestation 

Lighting LEDs for supplemental lighting; light-diffusing 
coatings on cladding [11,12] 

Stimulate photosynthesis, 
flowering, optimized growth 

Water 
disinfection/ 
treatment 

Slow sand filtration, UV, ozone, ultrasonic 
treatment [13] 

Reduce microbial 
contamination in recirculating 
nutrient solutions 

Renewable 
energy 
integration 

Solar photovoltaic panels; biofuel generators [14] Reduce reliance on fossil 
fuels for electricity, heating 

 
Plastics with improved durability, thermal 
properties, light transmission characteristics, and 
insulation values are emerging [10]. Green-walls, 
hydroponics and aquaponics are being 
integrated into greenhouses for resource use 
efficiency [11]. However, high infrastructure and 
operating costs of modern greenhouses pose 
barriers, especially for smallholder growers in 
developing regions [12]. Low-cost protected 
cultivation options tailored for local conditions are 
essential. 
 

2.1 Precision Agriculture and Smart 
Systems 

 

Precision agriculture aims to enable data-driven 
efficient resource management and enhanced 
productivity [13]. Recent horticultural applications 
include precision planting, targeted spraying, 
automated pruning/harvesting, autonomous 
robots, variable rate irrigation, drone monitoring, 
and decision support systems [14-16]. GPS, GIS 
mapping, wireless sensor networks, Big Data 
analytics and the Internet of Things are driving 
smart precision solutions [17]. 

 
Real-time yield monitors using spectral 
reflectance sensors on harvesters provide intra-
field crop quality data to refine management 
practices [18]. Wireless soil moisture probes and 
plant sensors networked via the cloud allow 
remote monitoring of irrigation needs and 
scheduling [19]. Unmanned aerial systems (UAS) 
equipped with multispectral cameras can quickly 
scan entire fields to diagnose plant stress and 
variability for early intervention [20]. Small robot 

fleets show promise for automated fruit 
harvesting and picking [21]. 
 

However, wider adoption of these technologies 
faces barriers like high upfront costs, technical 
complexity, inadequate rural broadband 
infrastructure and grower awareness. Key 
opportunities lie in developing solutions tailored 
for smallholder farms and tropical conditions [22]. 

 

3. CULTIVAR DEVELOPMENT AND 
BREEDING INNOVATIONS 

 

Horticulture crop diversity is being expanded 
through breeding advancements, introduction of 
exotic germplasm, and improved cultivars [23]. 
Key objectives include higher yield potential, 
better nutritional quality, extended shelf-life, 
tolerance to biotic and abiotic stresses, and 
suitability for minimal processing [24]. Marker-
assisted selection enables rapid integration of 
traits for pest/disease resistance, postharvest 
quality, and nutritional enhancement identified 
through genetic mapping studies [25]. 
 

Hybrid seeds and F1 varieties with hybrid vigor 
are accelerating yields of vegetables like 
tomatoes, peppers, melons, and cole crops [26]. 
Mutation breeding and polyploidy have 
generated new cultivars like seedless triploid 
watermelons and tetraploid cabbage [27]. New 
early-maturing peach, apple, and citrus cultivars 
allow extension of fruit production into new 
latitudes and climates [28]. Postharvest shelf life 
has been improved through breeding Asian pears 
with enhanced ethylene and respiration control 
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[29]. Introducing wild germplasm broadens the 
genetic diversity pool for desired traits [30]. 

 
Major cucurbit breeding advances include virus-
resistant cucumber, gynoecious melon hybrids, 
bitter-free watermelon, and parthenocarpic 
summer squash [31]. Salinity-tolerant tomato 
cultivars have been bred using wild relatives 
native to coastal habitats [32]. White strawberry 
varieties with enhanced flavor and shelf life have 
been developed [33]. Genomics approaches like 
genome editing can accelerate the breeding 
process from field to fork [34]. 

 
3.1 Propagation and Micropropagation 
 
Recent propagation advances enable mass 
multiplication of high quality planting material to 
boost horticulture productivity [35]. Improved 
methods for sexual/asexual propagation and in 
vitro micropropagation ensure wider availability 
of elite cultivars [36]. Aeroponics, hydroponics, 
mist chambers and fogging systems achieve 
rapid, high-throughput propagation for 
vegetables, flowers, fruits and spices [37,38]. 
Sand hydroponics developed for lettuce 
propagation enhances seed germination and 
seedling quality [39]. Automated 

micropropagation systems permit year-round 
production of pathogen-free microplants [40]. 
 

Novel grafting methods foster development of 
transgenic rootstocks in cucurbits for managing 
soilborne diseases [41]. Micrografting and tube 
grafting technologies have enabled high-
efficiency grafting in tomatoes, eggplant, 
peppers, and watermelon even in small nurseries 
[42]. Modified grafting clips reduce labor and 
costs [43]. However, wider use of quality planting 
material remains constrained across developing 
countries due to inadequacies in production 
infrastructure, policy support and supply logistics 
[44]. 
 

3.2 Nanotechnology Applications 
 

Nanotechnology offers tremendous potential in 
developing smarter systems for horticultural 
advancement [45]. Diverse applications include 
nano-encapsulated fertilizers and pesticides for 
controlled release, nanoparticles to enhance crop 
growth and stress tolerance, nanochips for plant 
health monitoring, and nanocomposites for 
horticultural packaging [46-49]. Silver 
nanoparticles incorporated in coatings, films and 
packaging materials provide longer and broader 
antimicrobial protection during postharvest 
storage and transport [50]. 

 

 
 

Fig. 1. Components of integrated precision horticulture solutions 
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Fig. 2. Application of frontier genomic tools in horticultural crop improvement 
 

Nanosensors and nanobiosensors enable rapid 
ultrasensitive detection of toxins, nutrients, 
pathogens, and plant health indicators for 
precision management [51]. Quantum dot 
nanosensors detect plant viruses at femtomolar 
levels [52]. Fluorescent nanoparticle tags and 
QR code nanoparticles enable tracking food 
provenance across supply chains [53]. However, 
challenges remain regarding regulation, 
environmental impacts, and commercial 
translation of nanotechnology for horticulture 
[54]. Addressing health and safety concerns 
through rigorous testing is vital. 
 

3.2.1 Protected cultivation technologies 
 

1. Greenhouses - Enclosed structures 
covered with transparent material to 
provide controlled growing environments 
protected from external fluctuations. 
Enable year-round fresh vegetable and 
flower production. 

2. Shade houses - Simple roofed structures 
covered with shade netting to reduce 
sunlight intensity for protected cultivation of 
shade-loving crops. Help mitigate 
excessive heat. 

3. Low tunnels - Mini greenhouse structures 
created by bending plastics or rods over 
beds and covering them with polyethylene 
films for temporary protection from 
weather. Provide early season growth. 

4. Mulching - Covering soil with plastic 
sheets or organic materials to conserve 
moisture, reduce weeds, and create 
favorable microclimate. Promotes plant 
growth. 

 
3.2.2 Precision agriculture technologies 

 
1. Guidance systems - GPS-enabled tractor 

guidance combined with GIS field maps for 
precise field operations like spraying, 
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fertilizer application, and inter-row 
cultivating. Avoid overlaps or gaps. 

2. Variable rate application - GPS-guided 
application equipment adjusts input rates 
based on precise crop needs determined 
through remote sensing maps and soil 
tests. Optimizes resource use. 

3. Crop sensors - Proximal optical sensors 
mounted on equipment provide real-time 
data on crop growth and conditions for 
managing irrigation, nutrients, and field 
variability. Support early diagnostics. 

4. Weather stations - Provide localized 
weather data like temperature, rainfall, 
humidity, wind etc to guide irrigation 
schedules, predict disease outbreaks, and 
support farm decision-making. 

 

4. MICRO IRRIGATION SYSTEMS 
 

Micro-irrigation delivers water directly to the plant 
root zone or foliage using efficient methods that 
minimize water losses [55]. Drip irrigation applies 
water through emitters or drippers with flow rates 
up to 8 liters per hour [56]. Subsurface drip 

irrigation pipes placed underground significantly 
reduce evaporation losses while enabling 
fertigation [57]. Micro-sprinkler and micro-spray 
irrigation deliver precise water and nutrient 
volumes to tree crops and vineyards [58]. 
Overhead systems use impact or rotating 
sprinkler heads with flow rates up to 200 liters 
per hour for uniform water distribution [59]. A 
global analysis found average water savings of 
33% with micro-irrigation adoption, with yields 
improving despite using less water compared to 
conventional irrigation [60]. However, high 
installation costs, maintenance requirements, 
and limited farmer awareness constrain wider 
adoption, especially in developing countries [61]. 
Institutional support for micro-irrigation through 
subsidized infrastructure and farmer training will 
be crucial. 

 
Key Production Advances in Major Fruit Crops 
Significant innovations in fruit production, 
especially for bananas, apples, grapes, 
strawberries and mangoes, are transforming 
productivity and quality. 

 

 
 

Fig. 3. Potential applications of nanotechnology for enhancing horticulture productivity and 
sustainability 
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Bananas Banana breeding programs are 
accelerating with the aid of genomic selection to 
precisely identify disease resistant and improved 
quality varieties [83]. This allows targeted 
crossing and selection even with complex 
polygenic traits. CRISPR gene editing has also 
been demonstrated in bananas for rapid 
introduction of beneficial mutations like Fusarium 
wilt resistance, which causes massive losses 
globally [84]. Postharvest treatments using nitric 
oxide and 1-methylcyclopropene (1-MCP) gas 
are being commercialized to inhibit ethylene 
production and extend green life and shelf life of 
bananas [85]. 
 
Apples High density orchards with compact 
geometries now dominate apple cultivation, 
enabled by drip irrigation, mechanized pruning, 
and dwarfing rootstocks [86]. Precision crop load 
management through flower/fruit thinning 
optimizes fruit size and quality. Genomic assisted 
breeding has enabled development of biotic and 
abiotic stress resilient apple varieties [87]. 
Postharvest treatments with 1-MCP and dynamic 
controlled atmosphere (CA) storage technologies 
help achieve low oxygen and high carbon            
dioxide environments that reduce respiration  
and associated losses for prolonged storage life 
[88]. 
 
4.1 Grapes 
 
In vineyards, digital farming solutions like 
unmanned aerial vehicles (UAVs) now allow 
early yield forecasting by analyzing canopy 
attributes using spectral imagery [89]. Deficit 
irrigation schedules are being optimized using 
soil and plant sensors to enhance water 
productivity and quality [90]. Omic profiling 
approaches analyzing genes, proteins and 
metabolites provide insights into grape 
development processes aiding quality 
improvement [91]. Sulfur dioxide (SO2)-
generating sheets are emerging as chemical-free 
alternatives to curb postharvest fungal rots in 
table grapes during storage [92]. 
 
Strawberries Soilless aeroponic cultivation 
integrated with vertical multi-tier growth 
chambers and LED lighting facilitate off-season 
strawberry production [93]. Plasticulture using 
fumigation enhances yields and fruit quality for 
field cultivation [94]. New cultivars with perpetual 
flowering allow extended harvest duration 
beyond traditional short fruiting seasons [95]. 
Mangoes High density mango orchards are 
gaining ground due to mechanized pruning 

combined with compact architecture and 
dwarfing rootstocks to maximize productivity [96]. 
Postharvest dip treatments using hot water or 
low dose irradiation effectively control fruit flies 
as well as fungal decays during storage [97]. 
Shelf life extension up to three weeks has been 
achieved using Aloe vera gel-based edible 
coatings enriched with essential oils [98]. 
 
Advances are being reported for other fruit crops 
also like citrus, melons, peaches, cherries, 
pineapple etc. Customizing technology toolkits 
based on crop biology and farm specificity is vital 
for wider technology adoption. Postharvest 
Technology Advances Postharvest losses 
average around 50% of produce in developing 
regions, underlining the need for cost-effective 
technological solutions [99]. Major causes of food 
losses are mechanical damage, moisture loss, 
physiological deterioration, microbial decay and 
chilling injury during postharvest handling. 
 

4.2 Emerging Technological 
Opportunities for Reducing 
Postharvest Losses Include 

 
Edible Coatings Thin edible protein and 
polysaccharide-based coatings serve as 
moisture barriers helping retain water and texture 
[100]. Common biopolymers used include starch, 
cellulose, chitosan, whey, zein, and gellan gum. 
Antimicrobial essential oils are often incorporated 
as active ingredients. Coatings delay ripening 
and oxidation while enhancing microbiological 
safety. 
 
Active/Smart Packaging Incorporating oxygen 
absorbers, moisture control pads, antimicrobial 
films/particles and freshness indicators adds 
active functionality to packaging for maintained 
quality [101]. Active packaging works by 
scavenging oxygen and moisture or releasing 
preservatives like sulfur dioxide, ethanol, plant 
extracts depending on produce respiration. 
Intelligent indicators signal microbial growth or 
off-odor accumulation for dynamic control. 
Nanotechnology Deploying antimicrobial 
metal/metal oxide nanoparticles (silver, zinc 
oxide, titanium dioxide) and nano-sensors 
augments safety, tracing and monitoring [102]. 
Nanoparticles act by disrupting cell membranes, 
inhibiting enzymes and inducing reactive oxygen 
species in microbes. Wireless nano-sensor 
networks enable fine-grained monitoring of 
produce geolocation, temperature, humidity and 
gas composition during storage and transport for 
decision making. 
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4.3 Non-thermal Processing 
 
Non-thermal approaches like ultraviolet (UV) 
radiation, ozone fumigation, ultrasonication and 
pulsed electric fields avoid nutritional loss 
associated with heat pasteurization [103]. UV 
targets the microbial DNA while ozone oxidizes 
cellular components. Ultrasound and electric 
pulses damage cell membranes and alter 
enzymes through mechanical or electromagnetic 
effects inducing viability loss. Milder process 
regimes ensure safety with low energy input. 
RFID Tracking Radio frequency identification 
(RFID) tags and wireless sensor networks 
provide item-level monitoring of transit conditions 
and enable cold chain management [104]. RFID 
tags attached to packaging offer contactless 
tracking and recording of sensor data like 
temperature. Real-time visibility of produce 
status assists dynamic decision making for 
optimized handling and storage control. 
 
Blockchain Platforms Blockchain based 
distributed ledger platforms offer supply chain 
transparency and traceability by permanent time-
stamped recording of product movement, 
analyzing conditions and verification data [105]. 
Decentralized tamper-proof ledgers increase 
trust through systemwide data sharing between 
companies and consumers. Blockchain also 
facilitates payments, authenticity claims and 
tracking origination or sustainability credentials. 
Among postharvest innovations, edible coatings, 
antimicrobial packaging, mild processing 
technologies and nanotechnology solutions 
directly enhance produce shelf life besides 
quality assurance [100-103]. Supply chain 
visibility technologies like RFID and blockchain 
offer monitoring and streamlined coordination 
benefits but require interoperability of data 
systems between stakeholders [104,105]. 
Investing in cold storage infrastructure, 
packaging houses, refrigerated transport and 
skills development for best handling practices 
remains equally important to curtail food losses. 
Government policies and regulations also need 
to catalyze adoption of emerging science-based 
and digital postharvest technologies. Ultimately 
curtailing economic losses requires coordinated 
efforts across the supply chain to retain nutrition 
and value. 
 

4.4 Integrated Pest Management (IPM) 
 
IPM aims to combine biological, cultural, physical 
and chemical tools for holistic, ecological crop 
protection and sustainable pest control [62]. IPM 

strategies include cultural practices like crop 
sanitation and rotation, biological control agents, 
biopesticides, physical barriers, pheromone 
traps, and resistant cultivars [63]. 
Nanotechnology also offers IPM solutions 
through nanoencapsulated pesticides, 
nanobiosensors for pest detection, and 
antimicrobial nano-coatings [64]. 
 
IPM adoption brings multiple benefits including 
reduced pesticide usage and residues, 
prevention of resistance, conservation of natural 
enemies, lower farmer exposure to chemicals, 
and improved food safety [65]. However, IPM 
faces adoption barriers regarding technical 
expertise, upfront costs, infrastructure availability, 
and policy support [66]. These need to be 
addressed through multi-stakeholder efforts and 
greater training of extension staff and farmers. 
 

4.5 Future Prospects and Emerging 
Technologies 

 
The Fourth Industrial Revolution driven by 
automation, artificial intelligence, robotics, 
sensors, big data analytics and the Internet of 
Things is poised to transform horticulture [67]. 
Integration of these exponential technologies can 
lead to smart, data-driven, hyper-efficient 
horticulture systems [68]. Autonomous robots are 
gaining traction for labor-intensive tasks like 
harvesting delicate fruits and picking leafy greens 
[69]. Apple-picking robots with artificial vision 
have achieved over 75% success rates [70]. AI 
models enable real-time detection of crop 
diseases and nutrient deficiencies from aerial 
images for prompt intervention [71]. GPS-guided 
robots can perform ultra-precise weeding to 
reduce agrochemical use [72]. Blockchain 
technology offers potential to track crops from 
farm to consumer for enhanced traceability and 
supply chain transparency [73]. 
 

Indoor vertical farms equipped with LED lighting, 
hydroponics and automation are expanding fresh 
vegetable production near urban centers while 
minimizing resource demands [74]. CRISPR 
gene editing can rapidly improve traits for higher 
yields, pest resistance, environmental tolerance, 
and nutrition [75]. Leveraging such exponential 
technologies in a responsible, evidence-based 
manner will shape the future of horticulture. 
 
However, technology integration faces 
challenges like high upfront costs, lack of 
technical knowledge among farmers, inadequate 
rural infrastructure in developing countries, and 
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Table 2. Innovative postharvest treatments for shelf life extension 
 

Treatment Produce Effect 

Aloe vera coating Table grapes Controlled weight loss and ripening [106] 
Ozone exposure Strawberries, raspberries Reduced fungal decay [107] 
Carvacrol 
nanoemulsions 

Peaches Inhibited fungal rot [108] 

Mild heat treatment Mangoes, bananas Delayed ripening by inhibiting ethylene [109] 
Hypobaric storage Strawberries, peppers Preserved texture and appearance [110] 
Wash treatments Apples, citrus, mangoes Removed field heat, reduced microbes [111] 
Edible wax coatings Oranges, lemons, apples Moisture barrier against shriveling [112] 
UV-C radiation Tomatoes, berries Contained mold growth [113] 
Biocontrol agents Pome and stone fruits Impeded fungal and bacterial pathogens [114] 

 
Table 3. IPM Practices in Horticultural Crops 

 

IPM Practice Description 

Crop rotation Rotating between different crop types to disrupt pest cycles [79] 
Resistant crop varieties Planting crops bred to be resistant to key pests [80] 
Beneficial insects Releasing predators/parasites that attack crop pests[80] 
Pheromone trapping Using pheromones to monitor/control insect pests [81] 
Biopesticides Using microbial pesticides derived from natural materials [81] 

 

Table 4. Emerging IPM technologies in horticulture 
 

Technology Description 

Automated pest 
monitoring 

Use of sensors and AI for automated pest detection and monitoring in 
fields/greenhouses [77] 

Precision application 
technologies 

Precise targeted spraying/release of pesticides, semiochemicals, 
biopesticides in response to monitoring data [78] 

Robotics Development of robots for weed removal, targeted spraying, etc. to reduce 
pesticide use [78] 

Gene editing Gene editing to develop pest-resistant crop varieties [79] 

 
concerns regarding data privacy, job impacts, 
and equitable development [76]. Inclusive 
innovation policies emphasizing smallholder 
inclusion, capacity building, and progressive 
partnerships will be vital for responsible adoption. 
Central to the technology-enabled horticulture 
future must be a farmer-centric approach guided 
by sustainability. 
 

5. RESULTS 
 

Global horticulture is witnessing major 
technological advances aiding sustainable 
intensification across various segments from 
nurseries to protected cultivation to open-field 
production. 
 

5.1 Propagation and Planting Material 
 

Automated micropropagation systems are 
emerging to enable mass scale-up of elite clones 
ensuring pest-free and uniform planting material 
[115]. Novel cryopreservation techniques using 

vitrification agents facilitate long-term germplasm 
storage in plant tissue banks [116]. DNA 
fingerprinting helps authenticate parentage 
supporting breeding documentation and 
proprietary registrations [117]. 
 

5.2 Protected Cultivation 
 

Greenhouse automation through ambient sensor 
networks and decision support systems allows 
precise microclimate control for optimal growth 
[118]. Intelligent shade and thermal screens 
conserve energy while creating ideal 
environments [119]. Supplemental LED lighting 
drives higher yields and quicker harvests 
compared to traditional practices [120]. 
Aeroponics and other soilless systems enable 
off-season production and better resource use 
efficiencies [121]. 
 

5.3 Open Field Production 
 

Mechanized and robotic solutions are reducing 
reliance on labor for key field operations like 
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pruning, thinning, harvesting and grading fruit 
crops [122]. Canopy monitoring using aerial 
imagery and proximal sensors helps optimize 
inputs and harvest logistics [123]. Deficit 
irrigation enhances water productivity without 
yield losses using soil/plant feedback based 
automation [124]. Novel biodegradable films 
(biofilm) offer alternatives to polyethylene mulch 
for weed control and moisture conservation 
[125]. 

 
5.4 Vertical Farming 
 
Indoor vertical farms leveraging IIoT,                
automation and LED lighting sustain year-round 
output near urban centers [126]. Multi-level 
hydroponic, aeroponic or aquaponic food 
factories enable precision agriculture 
unconstrained by climate or soil factors [127]. 
Postharvest losses are minimized owing to 
protected transport and storage with lower food 
miles [128]. Former industrial buildings are               
being repurposed as eco-efficient plant factories 
using renewable energy and recycled inputs 
[129]. 

 
5.5 Crop Protection 
 
RNA interference and gene editing strategies 
facilitate rapid development of pest/disease 
resistant varieties in fruit and vegetable crops 
[130, 131]. Biological solutions based on 
botanicals, microbials and semiochemicals curb 
resistance issues compared to chemical controls 
[132]. Automated sprayers, pollinators and crop 
scouting robots enable targeted application 
minimizing nontarget impacts [133]. 
Nanopesticides and nanoencapsulated 
agrochemicals boost efficacy at lower doses than 
conventional formulations [134]. 

 
5.6 Post Harvest Management 
 
Omic approaches uncover biomarkers for 
product quality helping segregate produce and 
determine optimal harvest timing [135]. 
Nonthermal processing using UV, ozone, other 
emerging technologies assure safety while 
preserving nutrition [136]. Active packaging 
solutions dynamically regulate internal 
atmosphere for freshness retention [137]. Radio 
frequency identification (RFID) sensors and 
blockchain platforms enhance supply chain 
transparency from farm to consumers [138, 139]. 
Molecular pharming produces high value 

bioactive proteins and metabolites using plants 
as biofactories [140]. 

 
5.7 Key Production Advances 
 

5.7.1 Fruit crops 
 

Banana breeding programs accelerate using 
genomic selection for traits like Fusarium 
resistance and shelf life [141]. CRISPR gene 
editing targets agronomic characteristics 
including defense against viral diseases [142]. 
Novel postharvest treatments (nitric oxide, 1-
MCP) extend green life by inhibiting ethylene 
production [143]. High density apple orchards are 
enabled by mechanized pruning, drip irrigation 
and dwarfing rootstocks to enhance productivity 
[144]. Weather station monitored supplementary 
lighting improves return bloom by up to 70% 
[145]. Controlled atmosphere storage and 1-MCP 
maintain quality during cold storage [146]. 
 

Grapevine physiology models and proximal 
sensors guide optimization of irrigation, nutrition 
and canopy architecture [147,148]. Omic 
analysis provides markers for quality traits and 
berry development [149]. SO2 impregnated 
sheets are chemical free alternatives for 
managing postharvest rots [150].  Aeroponics, 
hybrid lighting technologies and perpetual 
flowering genetics extend strawberry production 
beyond seasons [151-153]. 
 

High density mango orchards maximize yields 
through compact architecture, mechanized 
pruning and dwarfing rootstocks [154,155]. Low 
dose irradiation, essential oils and biocontrol 
effectively manage postharvest anthracnose, 
stem end rot and fruit flies [156-158]. Similar 
production and postharvest advances are being 
implemented across horticulture commodities to 
enhance productivity and value. 
 

5.7.2 Protected cultivation 
 

Greenhouse crop yields are 1.5 to 2 times higher 
than open-field cultivation by allowing favorable 
temperature, humidity and light conditions [159]. 
Quasi continuous production enables out-of-
season availability and reliable supply chains 
[160]. Netherlands has pioneered ultra high-tech 
glasshouse facilities achieving productivity over 
40 kg/m2 annually for tomatoes using 
supplemental LEDs and hydroponics [161]. 
 

Shade houses, polyhouses and net houses are 
gaining ground as low-cost protected structures 
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across Asian and African countries [162]. Nearly 
10,000 hectares are added annually under 
polyhouse cultivation in India with demonstrated 
benefits in capsicum, cucumber, rose and 
carnation [163]. Climate risks are driving vertical 
expansions like multi-level indoor facilities for 
raising nursery saplings [164]. Rooftop 
greenhouse installations and container farming 
models are becoming viable urban production 
alternatives [165]. Adoption of renewable energy 
technologies can mitigate challenges related to 
lighting and cooling expenses over the long term 
[166]. 
 
5.7.3 Hydroponics and aeroponics 
 
Soilless cultivation techniques including 
hydroponics and aeroponics enable greater 
control over the root zone environment for 
improved productivity and quality [167]. They 
substantially reduce water and nutrient 
requirements compared to conventional methods 
since solutions are recirculated without leakage 
or runoff losses. 
 
Aeroponics combined with indoor vertical farming 
provides cost advantage over expensive artificial 
lighting in single layer greenhouses [168]. 
AeroFarms claims over 900 times higher output 
per hectare for leafy greens grown using reused 
fabrics in stacked levels under LED lighting [169]. 
Central monitoring allows remote oversight 
without constant human presence. However, 
backup power and technical skills are vital to 
avoid system crashes. Investments in R&D can 
enhance efficiency, expand crop choices and 
drive modularization for wider adoption beyond 
advanced countries [170]. Favorable policy 
support for infrastructure, technical training and 
input availability will prove decisive for controlled 
environment agriculture techniques [171]. 
 

5.8 Robotics and Automation 
 
Agricultural robotics aims to raise farm 
productivity while lowering high manual labor 
expenses involved. Vision guided robotic arms 
accomplish selective harvesting of ripe 
strawberry and apple fruits attaining over 90% 
accuracy [172,173]. Challenges remain in 
achieving cost targets under $10,000 for viability 
at farm scale. Enhancing gently handling of 
fragile produce also needs ongoing innovation 
[174]. In orchard spraying applications, 
automated PastoPod spot sprayers matching 
canopy shape enabled 64-87% pesticide 
reductions [175]. Similarly targeted fertilizer 

delivery to grapevine root zones increased 
nutrient uptake efficiency up to 85% compared to 
broadcast methods [176]. Variable rate irrigation 
promises major water savings but involves high 
initial machine costs presently. 
 
Japan leads horticulture automation with internet 
connected technologies accounting for over 50% 
of commercial grape, strawberry and tomato 
production [177]. Self-driving tractors, weeding 
robots and fruit picking machines will disrupt 
open field production as innovations materialize 
into commercial solutions over the next decade 
[178]. 5G cellular networks would enable 
widescale coordination essential for realizing 
autonomous farm concepts [179]. India offers a 
$500 million market opportunity for agricultural 
drones or unmanned aerial vehicles (UAVs) 
across crop health monitoring, spraying and land 
survey applications by 2025 [180]. UAVs          
carrying multispectral cameras quantify 
vegetation indices signaling irrigation needs or 
yield estimates weeks prior to harvest [181]. 
However, beyond line ofsight restrictions hamper 
adoption currently. Satellite remote sensing 
offers cost effective alternatives for regional 
analytics though lacking plot level details                
[182]. 
 
Innovations in solar renewable energy 
harvesting, battery storage solutions and material 
engineering denote falling costs trajectories for 
automation technologies [183]. Larger 
deployment would demonstrate reliability in real 
world conditions across small, marginal holdings 
beyond controlled research station environments 
[184]. 
 

5.9 Hydroponic Fodder Production 
 
Hydroponic fodder systems facilitate 
decentralized, land independent livestock feed 
production while using 10 times less water than 
field grown grains [185]. Seven day sprouted 
barley or maize contains over 20% protein and 
rich antioxidants compared to 12% protein in 
mature hay [186]. Cattle fed with such green 
fodder give 12-15% higher milk yields compared 
to dry feed alone [187]. India has seen a growth 
of small hydroponic fodder enterprises supplying 
nutrition rich animal feed to dairy farmers using 
discarded containers [188]. Affordable micro-
irrigation systems recirculate nutrient solutions 
intermittently sprinkling seeds held in trays until 
sprouting [189]. LED lighting integration enables 
year round consistent output [190]. 
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Such highly productive, soilless feed systems 
present climate smart, ethical alternatives 
reducing pressure on land and water resources 
[191]. Wider adoption hinges on demonstrating 
long term economic viability and nutritional 
quality to farmers besides structural 
improvements handling drainage recycling [192]. 
Government schemes like Rashtriya Krishi Vikas 
Yojana fund hi-tech infrastructure for protected 
cultivation including net houses and polyhouses 
with micro-irrigation [193]. Private sector players 
are entering contract farming partnerships while 
leveraging digital platforms to connect local crop 
producers to urban consumers [194]. 
 
5.10 Nutrient Use Efficiency 
 
Balanced fertilization meeting crop demands is 
vital to raise productivity, farm incomes and 
environmental sustainability. Site specific nutrient 
management (SSNM) tailors recommendations 
to spatial soil variability and yield potential [195]. 
Rice yields increased 10-15% while saving 20-25 
kg/ha urea using SSNM techniques across 
villages in India [196]. Growing reliance on 
imports exceeding 50% of consumption 
underlines urgent improvements needed in 
fertilizer use efficiency for India's food security 
ambitions [197]. Nearly 50% of applied nitrogen 
is lost via leaching, denitrification and 
volatilization causing pollution [198]. Urea deep 
placement and neem/polymer coated fertilizers 
demonstrating reduced losses need policy 
incentives to expand manufacturing [199]. 
Soil test based prescriptions, leaf color charts 
signaling mid-season adjustments and decision 
tools leveraging IR spectroscopy present 
pathways for enhancing nutrient recovery [200]. 
Real time nitrogen monitoring allows variable 
rate delivery matching crop demands across 
production landscapes [201]. Partnerships along 
the agrifood value chain can promote sustainable 
nutrient stewardship programs [202]. 
Government is promoting soil health cards 
benchmarking farm level status while subsidizing 
micronutrients otherwise unaffordable to 
smallholders [203]. Production clusters,                
contract farming models and collective                    
input procurement via farmer producer 
organizations offer models for judicious                       
use of nutrients and pest protection chemicals 
[204]. 
 

5.11 Climate Resilience 
 
With climate change exacerbating weather 
variability, developing resilient varieties has 

become imperative to stabilize farmer incomes 
and productivity. Speed breeding protocols 
accelerate generation turnover using extended 
photoperiods and controlled growth chambers 
[205]. Marker assisted recurrent selection allows 
precise stacking of complex drought                   
tolerance traits related to water use                   
efficiency, root architecture and osmotic 
adjustments [206]. CRISPR-Cas9 enables 
targeted editing of climate resilience genes such 
as those regulating stomatal conductance, 
chloroplastic functions and senescence 
dynamics [207]. Genome edited crops generally 
face lower regulatory barriers for release 
compared to transgenics allowing timely farmer 
access [208]. 
 
Climate smart villages demonstrating integrated 
adaptation strategies provide institutional 
innovation bridging technological, agronomic, 
financial and policy interventions [209]. 
Crowdsourced weather data fills station gaps 
aiding hyperlocal advisories [210]. Index 
insurance, price guarantees, warehousing 
integration and crop diversification address 
distinct climate vulnerability aspects [211]. 
Mainstreaming gender inclusive practices, social 
protection schemes and climate literacy 
programs ensures vulnerable communities                    
have risk coping capacities [212].                        
Upgrading rural infrastructure around irrigation, 
electricity and roads builds resilience to           
extreme events for strengthening farm livelihoods 
[213]. 
 

6. DISCUSSION 
 
The results reveal transformative yet nascent 
innovations across nurseries, protected zones 
and open field horticulture production systems. 
Technology infusion with biology and ecology 
principles can catalyze sustainable gains in 
productivity, profitability and environmental 
performance simultaneously. Propagation 
material quality and health assurance form the 
starting point for longevity and productivity 
pursuits [115]. Aeroponics, hydroponics and 
vertical farms make possible previously 
unfathomable cropping options in non-traditional 
spaces [126]. Automation and intelligent decision 
tools guide precisely tailored crop management 
for optimizing both quality and yields [118]. 
Incorporating the latest advances will prove 
essential for producers to retain their competitive 
edge. Government and industry partnerships 
should funnel greater R&D investments for 
contextual needs while balancing tradeoffs. 
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Progressive policies and regulatory frameworks 
must keep pace with technological change to 
harness opportunities responsibly while 
mitigating risks [214]. Gene editing constitutes a 
versatile breeding technique but off-target effects 
and ecological issues like gene flow warrant 
ongoing assessment [130]. Most countries still 
lack enhanced clarity between older and modern 
breeding methods. Nanopesticides, microbial 
biostimulants and synthetic biology also 
necessitate evidence-based oversight and life 
cycle evaluations [215]. International 
harmonization of regulations would aid global 
diffusion by aligning inconsistencies. True 
disruptive innovation requires reimagining entire 
value chains rather than incremental additions 
[216]. Blockchain integration in AgriFood supply 
chains enhances end-to-end transparency 
benefiting diverse stakeholders [139]. Circular 
models minimizing waste via resource recovery 
and reuse are gaining prominence [217]. Former 
brownfield sites are being converted into vertical 
infrastructure for eco-efficient year-round 
production [129]. Outcome based business 
models warrants pilot testing to appraise viability. 
 
Climate smart technologies should be prioritized 
given the existential threats posed by weather 
extremes, water scarcity among other challenges 
[168]. Satellite guided advisories on drought or 
flood risks allow early interventions to mitigate 
productivity losses [182,218]. Genome edited 
climate resilient cultivars offer lasting solutions 
but may face trade barriers lacking international 
consensus on regulation [207]. Strengthening 
rural institutions and social protection are vital to 
make farming communities resilient [209]. 
 

7. CONCLUSION 
 
This review covered significant advances and 
emerging opportunities across diverse facets of 
horticultural production and management. 
Protected cultivation, precision agriculture, 
improved cultivars, innovations in propagation 
and micro-irrigation offer avenues to enhance 
productivity, quality, resource efficiency and farm 
incomes sustainably. IPM and nanotechnology 
applications support eco-friendly horticulture. 
 
However, considerable innovation gaps need 
bridging to unlock the full potential of technology-
driven sustainable intensification of horticulture. 
Developing localized, affordable solutions 
tailored for smallholder systems and tropical 
climates is crucial. Capacity building and 
inclusion of youth and women through 

progressive policies and partnerships can 
accelerate equitable technology adoption. 
Further R&D should align emerging tools with 
agroecological imperatives within holistic 
production ecosystems. There are tremendous 
prospects for cutting-edge science and 
technology to sustainably transform horticulture 
and improve livelihoods of producers and 
communities across the developing world. The 
horticulture future needs to be driven by 
inclusivity, ecological integrity, climate resilience, 
and shared prosperity. 
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