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Hybrid synchronization is one of the most significant aspects of a dynamic system. We achieve nonlinear control unit results to
synchronize two comparable 7D structures in this study. Many dynamic systems are directly connected to health care and directly
enhance health.We employed linearization and Lyapunov as analytical methods, and since the linearizationmethod does not need
updating the Lyapunov function, it is more successful in achieving synchronization phenomena with better outcomes than the
Lyapunov method. )e two methods were combined, and the result was a striking resemblance to the dynamic system’s mistake.
)e mathematical system with control and error of the dynamic system was subjected to digital emulation. )e digital good
outcomes were comparable to the two methods previously stated. We compared the outcomes of three hybrid synchronizations
based on Lyapunov and linearizationmethods. Finally, we used the existing system, presenting it in a new attractor and comparing
the findings to those of other similar systems.

1. Introduction

Real-world turbulent dynamics are studied and analyzed
with greater importance in many aspects of nonlinear dy-
namic systems. )e Lorenz system, which includes only true
variables and was uncovered in 1963, is the first physical and
mathematical model of a chaotic system, opening new
pathways to other chaos systems such as the Chen system,
Liu system , Lu’s system, and Pan system. In each system,
there are 3D differential equations and a positive exponent of
Lyapunov [1–5].

In the complete synchronization scheme, we focused on
the nonlinear control strategy, and another method was
suggested, namely, linearization; in addition, we used the

Lyapunov method which is adopted in all previous works in
order to compare and verify between the two methods. )e
results show that the linearization method is the best for
achieving the synchronization; because the stability Lya-
punov method needs, the Lyapunov exponent and the
nonlinear dynamic system attractor are the base. Encryption
[6–9], engineering [10–13], and nonlinear trunks [14] have
generated greater interest in computer technology and other
science applications. Safe networking is one of the leading
engineering technologies. Messages made nuts by simple
dysfunction mechanisms are not inherently stable. To solve
this problem, the idea is higher dimensions, hyperchaotic
systems, eradicate randomness, and unpredictability from
the equation [15–17].

Hindawi
Advances in Materials Science and Engineering
Volume 2021, Article ID 8148772, 11 pages
https://doi.org/10.1155/2021/8148772

mailto:zelalemmeraf@inu.edu.et
https://orcid.org/0000-0003-0497-5115
https://orcid.org/0000-0001-5997-5185
https://orcid.org/0000-0001-7964-1051
https://orcid.org/0000-0002-8187-2286
https://orcid.org/0000-0002-8148-9260
https://orcid.org/0000-0002-5842-4944
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8148772


Rössler found the first 7D hyperchaotic system in 1979,
containing real variables and two positive exponents for
Lyapunov, as well as alternative 7D and 5D systems, with
three positive exponents for Lyapunov [18]. Complex
structures in higher dimensions are more efficient than low-
dimensional systems [19–21].

Most papers deal with the contemporary hyperchaotic
systems in higher dimensions (5D). )e majority of ex-
periments are focused on 7D and 5D systems and some
studies are carried out in 6D nonlinear dynamic systems
[20]. )e equilibrium and equilibrium exponents from
Lyapunov include the characteristics of 7D, which include
ten operators with seven parameters and different functions.
)e exciting attractor is one of the latest dynamic systems
with recent studies which differentiate between autonomous
and secret types of attractors. In the following paragraphs,
the results of this review are outlined.

(i) )e coordination between related 7D hyperchaotic
structures is therefore explored, and a computa-
tional engineering application is suggested to dis-
tinguish dynamics errors for each and their secure
contact

(ii) Nonlinear control is based on Lyapunov stability
techniques, and linearization creates a large number
of controllers for various synchronization
phenomena

(iii) )e right controllers are calculated by comparing
the effects of the Lyapunov and linearization
processes

2. The Description of the Problem and
Our Solution

)is research provides the second Lyapunov approach and
linearization methods in which it shows that Lyapunov
serves as a specific building tool:

V(e) �
1
2

􏽘

n

i�1
e
2
i � e

T
Pe ,

P � diag
1
2
,
1
2
, ...,

1
2

􏼒 􏼓,

(1)

where P denotes a normal function and R denotes a random
function.

Derivatives of the Lyapunov function:

_V(e) � 􏽘
n

i�1
ei _ei � − e

T
Qe. (2)

)is is clearly a negative result since Q is a positive
matrix of the cube. In the case of negativeQmatrix, however,
the P matrix must be modified, in order to achieve the
optimal Q matrix.

In the last two decades, extensive studies have been
conducted on the properties of nonlinear dynamical sys-
tems. )e most important characteristic of nonlinear dy-
namical systems is chaos. )is phenomenon is an important
topic in nonlinear sciences and has been extensively in-
vestigated in mathematics, physics, engineering sciences,
and communications secrecy.

In a nutshell, this final point clarifies three key questions.
Is the Lyapunov method always successful? Is the lineari-
zation method, on the contrary, superior? And, finally, how
can we tell the difference between these two approaches?
)is paper establishes the preceding questions and, in the
end, provides a clear answer to them.

3. System Portrayal

)e Lorenz method is the most common 3D chaotic system
and is widely applied. Using a linear feedback control sys-
tem, the original architecture is converted into a 5D and 7D
hyperchaotic configuration. )e built 7D hyperchaotic
frame is made up of LE1 � 0.94613, LE2 � 0.28714,
LE3 � 0.0047625, and LE5 � − 0.19386, LE6 � − 0.79691, and
LE7 � − 12.701. )e system is mathematically explained as
follows:

x � a(y − x) + u,

y � cx − xz + w − y + hs,

z � xy − bz,

u � − xz + hu − v,

v � qy − pv − rx,

w � rv + qs − px,

s � ry − qw.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

)e variables x1, x2, x3, x4, x5, x6, x7, as well as the pa-
rameters a, b, c, h, p, q, and r, all have positive real values
equal to (10, 8/3, 28, 1, 0.2, 8, 0.5), and this 7D device is filled
with dynamical properties. Figures 1 and 2 depict the sys-
tem’s 3D attractor (3), while Figures 3 and 4 depict the
structure’s 2D attractor (3).

3.1. Lyapunov Exponents and Dimensions. A numerical
emulation of a � 10, b � 8/3, c � 28, h � 1, p � 0.2, q � 8,

and r � 0.5 was proved usingMATLAB andWolf algorithm.
LE1 � 0.9461, LE2 � 0.2871, LE3 � 0.0048, LE4 � 0.0007,

LE5 � − 0.19386, LE6 � − 0.7969, and LE7 � − 12.702, with
three positive Lyapunov exponents, LE1 � 0.9461, LE2 �

0.2871, LE3 � 0.0048, LE4 � 0.0007, LE5 � − 0.19386, and
LE6 � − 0.7969, LE.

Figure 5 depicts the exponents of the Lyapunov diagram.
Lyapunov’s proportions are as follows:
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DLE � j +
1

LEj+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

j

i�1
LEi � 6 +

LE1 + LE2 + LE3 + LE4 + LE5 + LE6

LE7
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� − 0.012798. (4)

3.2. Hybrid Synchronization. )eoretically, this section es-
tablishes with its numerical emulation which is one of the
main applications of protected information engineering.)e
first device (known as the drive system) thus represents the
massage information to be communicated, while the second
system displays the sound preceding this information to
keep it from being violated. Suppose the computer (3) is a
drive and the second method is written (called response
system).

Hybrid synchronization, where one part of the system is
synchronized with another part of asynchrony so that full
synchronization and asynchrony coexist in the system
mathematically; the phenomenon of hybrid synchronization
of the two systems is achieved when limt⟶∞Y − αX � 0,
where Y and X are the state vectors of the drive-response
system, respectively, and (α � ∓1):

x � a(y − x) + u,

y � cx − xz + w − y + hs,

z � xy − bz,

u � − xz + hu − v,

v � qy − pv − rx,

w � rv + qs − px,

s � ry − qw.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

While the response system is as follows:

x′ � a y′ − x′( 􏼁 + u′ + u1,

y′ � cx′ − x′z′ + w′ − y′ + hs′ + u2,

z′ � x′y′ − bz′ + u3,

u′ � − x′z′ + hu′ − v′ + u4,

v′ � qy′ − pv′ − rx′ + u5,

w′ � rv′ + qs′ − px′ + u6,

s′ � ry′ − qw′ + u7,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

and let U � [u1, u2, u3, u4, u5, u6, u7]
T be the nonlinear

controller to be designed.
)e 7D hyperchaotic system (4) and system (5) syn-

chronization error dynamics are known as

ei � x′ ± αix,

i � 1, 2, 3, 4, 5.6, 7,

lim
t⟶∞

ei � 0.

(7)

Response system and hybrid synchronization are satis-
fied. )e following is a description of the error’s dynamics:

_e1 � ae2 � ae1 + e4 − 2u + u1,

_e2 � ce1 + 2cx − e2 − x′e3 + ze1 � 2x′z + e6 + he7,

_e3 � − be3 + e1e2 − ye1 + xe2 − 2xy + u3,

_e4 � he4 − x′e3 + ze1 − 2x′z − e5 − 2v + u4,

_e5 � qe2 − 2qy − pe5 − ge1 + u5,

_e6 � ge5 + 2v − qe7 + 2s + pe1 + u6,

_e7 � − qe6 − 2w + ge2 − 2y + u6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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Figure 1: )ree-dimensional attractor of system (3) in the (x1, x2, x3) space.
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System (7) of error dynamics is unpredictable based on
linearization approach and legislation |λI6 − JE1| � 0.

)e characteristic equation and eigenvalues are, re-
spectively, as

− x
7

−
193
15

x
6

+
3163
10

x
5

+
13661
10

x
4

−
505483
30

x
3

−
411241
12

x
2

+
816488
15

x + 46576,

λ1 � − 8,

λ2 � −
8
3
,

λ3 � 11.8983,

λ4 � 7.8681,

λ5 � 1.5246,

λ6 � − 0.6703,

λ7 � − 22.8207.

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

After many controller systems have been developed
using Lyapunov and linearization approach, we can calculate
the power of the error mechanism (6). )e concern arises as
to which of these two tactics is superior. Our questions are
answered by the following theorems.

Theorem 1. If the regulator U of structure (6) is the scheme
as

u1 � − ae2 − e4 + 2u,

u2 � − ce1 − 2cx + x′e3 − ze1 + 2x′z − e6 − he7 − 2s,

u3 � − e1e2 + ye1 − xe2 + 2xy,

u4 � − 2he4 + x′e3 − ze1 + 2x′z + e5 + 2v,

u5 � − qe2 + 2qy + ge1,

u6 � − ge5 − +2v + qe7 − 2s − pe1 − e6,

u7 � qe6 + 2w − ge2 + 2y − e7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Machine (6) can then be monitored using two different
methods (5).

Proof. If we replace the error dynamics (6) mechanism with
control,

_e1 � − ae1,

_e2 � − e2,

_e3 � − be3,

_e4 � − he4,

_e5 � − pe5,

_e6 � − e6,

_e7 � − e7,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

positively defined Lyapunovs are successfully built and
elected, depending on the rules of Lyapunov method:

V(e) � e
T

Pe �
1
2
e
2
1 +

1
2
e
2
2 +

1
2
e
2
3 +

1
2
e
2
4 +

1
2
e
2
5 +

1
2
e
2
6 +

1
2
e
2
7,

(12)

where P is defined in formula (1); the derivative function of
Lyapunov V(e) is related to time:

_V � e1 _e1 + e2 _e2 + e3 _e3 + e4 _e4 + e5 _e5 + e6 _e6 + e7 _e7,

_V � e1 − ae1( 􏼁 + e2 − e2( 􏼁 + e3 − be3( 􏼁 + e4 − he4( 􏼁 + e5 − pe5( 􏼁 + e6 − e6( 􏼁 + e7 − e7( 􏼁,

_V � − ae
2
1 − e

2
2 − be

2
3 − he

2
4 − pe

2
5 − e

2
6 − e

2
7 � − e

T
Qe,

(13)
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where Q � diag(a, 1, b, h, p, 1, 1), so Q> 0. Consequently,
_V(ei) is negative definite on R4. )e nonlinear controller
works and eventually the syncing is complete.

In the second method (linearization method), the law
|λI6 − JE1| � 0 on system (11) is applied; then, the given
equations and eigenvalues are shown as follows:

x
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+
253
15

x
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+
260
3

x
5

+
610
3

x
4

+ 249x
3

+
485
3

x
2

+
758
15

x
1

+
16
3

,

λ1 � − 1,

λ2 � − 1,

λ3 � − 1,

λ4 � − 1,

λ5 � − 10,

λ6 � − 1/5,

λ7 � − 8/5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)
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Figure 2: )ree-dimensional attractor of system (3) in the (x2, x3, x4) space.
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Figure 3: Two-dimensional attractor of system (3) in the (x4, x1) plane.
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Naturally, linearization is done with unit (5) to machine
hybrid synchronization (6).

Of course, in all roots with negative real components, the
linearization process successfully synchronizes system (6)
and system (5). Figure 6 shows the numerical inspections of
those steps. Figure 7 contains the eigenvalues during the

response of driving processes and drive systems for con-
trolling the convergence of the system. □

4. Circuit Experimment

Utilizing Kirchhoff’s law, the corresponding circuit equa-
tions can be written as

_X �
1

C1R1
(X) +

1
C1R2

R5

R4
(− Y) +

1
C1R2

R7

R6
(− U),

_Y �
1

C2R10

R9

R8
(− X) +

1
C2R11

(X∗Z) +
1

C2R12

R16

R15
(− W) +

1
C2R13

(Y) +
1

C2R14

R7

R6
(− S),

_Z �
1

C3R21

R22

R21
(− X∗Y) +

1
C3R24

(Z),

_U �
1

C4R27
(X∗Z) +

1
C4R28

R31

R30
(− U) +

1
C4R29

(V),

_V �
1

C5R34

R33

R32
(− Y) +

1
C5R35

(V) +
1

C5R36
(X),

_W �
1

C6R39

R38

R37
(− V) +

1
C6R40

R43

R42
(− S) +

1
C6R41

(X),

_S �
1

C7R46

R45

R44
(− Y) +

1
C7R47

(X),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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Figure 4: Two-dimensional attractor of system (3) in the (x1, x2) plane.
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Figure 8: Circuit diagram of system (1).
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where x′, y′, z′, u′, v′, w′, and s′ represent voltages on
capacitors C1, C2, C3, C4, C5, C6, and C7, respectively.)e
implement circuit is shown in Figure 8.

5. Conclusions

By Lyapunov and linearization techniques, we have been
attempting to comprehend the inconsistencies in each step
and how to achieve synchronization. To achieve hybrid
synchronization, two identical 7D hyperchaotic systems are
employed in this article. What is the most effective method?
)is study uses the linearization technique to answer such
problems based on the outcomes and comparisons con-
ducted between the two processes. It is important to note
that the Lyapunov method should not be changed or con-
structed as a supporting function. )e linearization method
is superior to the Lyapunov way. )e same results were
explained using a computer simulation.
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