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ABSTRACT

A curved ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) on the vertical intrinsic
spacetime hyperplane; its invariantly projected flat ‘two-dimensional’ absolute proper intrinsic
metric spacetime (∅ρ′ab,∅csab∅t′ab) and a flat ‘two-dimensional’ absolute proper metric spacetime
(ρ′ab, csabt

′
ab), as the outward manifestation of the latter, evolve from a flat ‘four-dimensional’

absolute metric spacetime (ÎE3, ĉst̂) and its underlying flat ‘two-dimensional’ absolute intrinsic
metric spacetime (∅ρ̂,∅ĉs∅t̂), in all finite neighborhood of the source of a long-range metric force
field. The flat four-dimensional relative proper metric spacetime (IE′3, cst

′) and its underlying flat
two-dimensional relative proper intrinsic metric spacetime (∅ρ′,∅cs∅t′), remain unchanged within
the field. The geometry is valid with respect to 3-observers located in the relative proper Euclidean
3-space IE′3.
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A pair of absolute intrinsic metric tensor equations derived on the curved (∅ρ̂,∅ĉs∅t̂) are solved
algebraically to obtain the absolute intrinsic metric tensor and absolute intrinsic Ricci tensor on the
curved (∅ρ̂,∅ĉs∅t̂) in terms of an isolated absolute intrinsic geometrical parameter, referred to as
absolute intrinsic ‘static flow’ speed, which the source of a long-range absolute intrinsic metric force
field causes to be established on the extended curved (∅ρ̂,∅ĉs∅t̂) from its location. This third
part of this paper is the conclusion of the development of absolute intrinsic Riemann geometry on
the curved ‘two-dimensional’ (∅ρ̂,∅ĉs∅t̂) at the first stage of evolutions of spacetime and intrinsic
spacetime in long-range metric force fields, started in the first and second parts. The first stage
shows up as a numerical evolution. Extension to the second stage shall be done in the fourth and
final part of this paper. Particularization to the gravitational field shall then follow in another article.

Keywords: Long-range metric force fields; first stage of evolution of spacetime; numerical evolution
of spacetime; absolute intrinsic Riemannian spacetime geometry; coexisting absolute
intrinsic metric spacetimes; superposition procedure; resultant absolute intrinsic metric

tensor; resultant absolute intrinsic Ricci tensor.

1 INTRODUCTION

This third part of this paper is continuation
of the derivation of absolute intrinsic
Riemann geometry of curved absolute intrinsic
Riemannian metric spacetime started in the first
and second parts [1, 2]. As started with in [1],
an initial flat ‘four-dimensional’ absolute metric
spacetime (ÎE3, ĉst̂ ) is underlay by flat ‘four–
dimensional’ absolute intrinsic metric spacetime
(∅ÎE3,∅ĉs∅t̂ ), where the flat ‘three-dimensional’
absolute metric space ÎE3 and its underlying
flat ‘three-dimensional’ absolute intrinsic metric
space ∅ÎE3 lie as flat hyper-surfaces along the
horizontal, while the straight line absolute metric
time dimension ĉst̂ and straight line absolute
intrinsic metric time dimension ∅ĉs∅t̂ lie along
the vertical pseudo-orthogonal to the three-
dimensional hyper-surfaces, with the assumed
absence of absolute metric force field and
absolute intrinsic force field.

The introduction of the source of a long-
range absolute metric force field at a point
in the absolute metric space is accompanied
by the automatic location of the source of the
counterpart absolute intrinsic metric force field at
the corresponding point in the absolute intrinsic
metric space. This follows from the perfect
symmetry of state among the four symmetrical
universes of the four-world picture, as explained
in sub-section 3.1 of [3]. This action will cause
the ‘three-dimensional’ absolute intrinsic metric
space ∅ÎE3 to be curved as a curved hyper-

surface toward the absolute intrinsic metric time
dimension ∅ĉs∅t̂ along the vertical, thereby
projecting flat absolute proper intrinsic metric
space ∅IE′3

ab along the horizontal, which is made
manifested outwardly in flat ‘three-dimensional’
absolute proper metric space IE′3

ab, obtained by
simply removing the symbol ∅—used to denote
“intrinsic”—from ∅IE′3

ab.

The initial flat ‘three-dimensional’ absolute metric
space ÎE3 underlay by ∅ÎE3 has transformed
into flat IE′3

ab underly by flat ∅IE′3
ab, as a

consequence of the introduction of the source
of absolute metric force-field in the initial flat
ÎE3 and the source of absolute intrinsic metric
force-field in the initial flat ∅ÎE3. This is
accompanied by automatic appearance of flat
three-dimensional relative proper metric space
IE′3 and its underlying flat three-dimensional
relative proper intrinsic metric space ∅IE′3 in
the geometry, such that observers are located
in the flat relative proper (or physical) metric 3-
space IE′3. The projective straight line absolute
proper intrinsic metric space ∅ρ′ab is embedded
in the straight line relative proper intrinsic metric
space ∅ρ′ that appears and ∅ρ′ab, as outward
manifestation of ∅ρ′, is embedded in IE′3, as
outward manifestation of ∅ρ′.

On the other hand, the absolute intrinsic metric
time dimension ∅ĉs∅t̂ is not simultaneously
curved with the absolute intrinsic metric space
∅ÎE3, because it is unaffected by (or is invariant
with) the presence of absolute intrinsic metric
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force-field in the absolute intrinsic metric space.
Thus an initial flat absolute metric spacetime
(ÎE3, ĉst̂ ) and its underlay flat absolute intrinsic
metric spacetime (∅ÎE3,∅ĉs∅t̂ ), evolve into the
geometry of Figs. 6a and 6b of [1], reproduced
as Figs. 1a and 1b here, as a consequence of
the introduction of absolute metric force-field in
an initial flat ÎE3 and absolute intrinsic metric
force-field in the underlying initial flat ∅ÎE3.
Figure 1b is the outward manifestation of the
flat (∅IE′3

ab,∅ĉs∅t̂ ) in Fig. 1a. The two figures
are one; they are separated for the sake of clarity
only.

As developed in section 2 of the second part
of this paper [2], the perfect isotropy of the
absolute proper metric space IE′3

ab, the absolute
proper intrinsic metric space ∅IE′3

ab and the
curved absolute intrinsic metric space ∅IM̂3,

with respect to observers in the relative proper
metric space IE′3, causes them to be naturally
contracted to ‘one-dimensional absolute proper
metric space ρ′ab, one-dimensional absolute
proper intrinsic metric space ∅ρ′ab and curved
‘one-dimensional’ absolute intrinsic metric space
∅ρ̂, respectively, with respect to these observers.
Consequently Figs. 6a and 6b of [1] become
Fig. 6 of [2], presented as Fig. 2 of this article.

The absolute intrinsic Riemannian spacetime
geometry being developed in this article and its
preceding first and second parts is a pure novel
effort of the author. No related work in physics
or mathematics exists in the open literature, as
far as can be found. This thereby limits the
references in this paper to the previous papers
of the author upon which it is based essentially.

curved absolute
intrinsic metric ‘3-space’

flat relative proper
intrinsic metric 3-space

flat relative proper
metric 3-space

flat absolute proper
intrinsic metric ‘3-space’

flat absolute proper
metric ‘3-space’

ab
h

ab h
ab

h
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Fig. 1. (a) The ‘3-dimensional’ absolute intrinsic metric space curving toward the absolute
intrinsic metric time ‘dimension’ along the vertical, projects flat 3-dimensional absolute

proper intrinsic metric space ∅IE′3
ab along the horizontal and flat relative proper

three-dimensional intrinsic metric space ∅IE′3 appears along the horizontal, (b) the flat ∅IE′3
ab

and ∅IE′3 in (a) are made manifested in flat 3-dimensional absolute proper metric space IE′3
ab,

where observers are located in IE′3; (Figs. 6a&b of [1])
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ab

ab
ab

cs t cst

Fig. 2. A curved ‘one-dimensional’ absolute intrinsic metric space ∅ρ̂, curving toward the
absolute time/absolute intrinsic time ‘dimensions’ along the vertical, projects a straight line
one-dimensional isotropic absolute proper intrinsic metric space ∅ρ′ab along the horizontal,
which is made manifested in straight line absolute proper metric space ρ′ab, and straight line

relative proper intrinsic metric space ∅ρ′ appears, which is made manifested in flat
three-dimensional relative metric space IE′3 (as a hyper-surface) along the horizontal, with

respect to 3-observers in IE′3 in our (or positive) universe; (Fig. 6 of [2])

2 INCLUSION OF CURVED
ABSOLUTE INTRINSIC
METRIC TIME ‘DIMEN-
SION’

One crucial feature of Fig. 2 is that the absolute
intrinsic metric time ‘dimension’, ∅x̂0 ≡ ∅ĉs∅t̂,
is not curved along with the absolute intrinsic
metric space ∅ρ̂, with respect to 3-observers
in IE′3. This, as shall be explained with further
development in this article, is due to the fact
that the presence of a long-range absolute
intrinsic metric force field on an initially flat ‘two-
dimensional’ absolute intrinsic metric spacetime
(∅ρ̂,∅ĉs∅t̂) (that is, ∅ρ̂ is a straight line along
the horizontal and ∅ĉs∅t̂ is a straight line along
the vertical), underlying an initially flat absolute
metric spacetime (ÎE3, ĉst̂) (as shall be illustrated
later in this article), which causes curved
absolute intrinsic metric space ∅ρ̂ to evolve
within the absolute metric force field (as in Fig. 2),
does not give rise to simultaneous curvature of
the absolute intrinsic metric time ‘dimension’
∅ĉs∅t̂ from its vertical position, with respect
to 3-observers in the relative proper Euclidean
metric 3-space IE′3. This is the geometrical
interpretation of the fact that absolute time and

absolute intrinsic time are invariant (or remain
unchanged) and, hence, do not transform into
absolute proper metric time and absolute proper
intrinsic metric time respectively, with respect to
3-observers in IE′3, in the context of absolute
physics/absolute intrinsic physics.

The feature of the geometry of Fig. 2 discussed
in the preceding paragraph makes the absolute
intrinsic line element to take on the Gaussian
form of Eq. (89) of part two of this paper [2],
on the curved absolute intrinsic metric space
∅ρ̂, with respect to 3-observers in the underlying
relative proper metric Euclidean 3-space IE′3,
which shall be re-produced here as follows

(d∅ŝ)2 = (d∅x̂0)2 −∅ĝ11(d∅ρ̂)2 , (1)

where

∅ĝ11 = sec2 ∅ψ̂P = (1−∅k̂2P )−1 ; (2)

∅ψ̂P is the absolute intrinsic angle of inclination
of the curved absolute intrinsic metric space ∅ρ̂
to its projective absolute proper intrinsic metric
space ∅ρ′ab along the horizontal, at point P
along ∅ρ̂; ∅k̂P is the absolute intrinsic curvature
parameter at point P along the curved ∅ρ̂ and
∅k̂P = sin∅ψ̂P , as derived in in sub-section 1.1
of part two of this paper [2].
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As developed in sub-section 1.3 of [3], the
relative proper metric time dimension cst

′ and
its underlying relative proper intrinsic metric time
dimension ∅cs∅t′ of our (or positive) universe
are actually the relative proper metric Euclidean
3-space IE0′3 and the one-dimensional relative
proper intrinsic metric space ∅ρ0′ of the positive
time-universe. And the relative proper metric
Euclidean 3-space IE′3 and the relative proper
intrinsic metric space ∅ρ′ of our universe are the
relative proper metric time dimension cst

0′ and
its underlying relative proper intrinsic metric time
dimension ∅cs∅t0′ of the positive time-universe.
There exist perfect symmetry of state and perfect
symmetry of natural laws between the positive (or
our) universe and the positive time-universe and,
indeed among the four symmetrical universes
isolated in [3–6], as demonstrated in section 2
of [5], section 2 of [3] and section 2 of [6].

Perfect symmetry of state among the four
universes implies that, corresponding to the half-
geometry of Fig. 2 that evolves at the first stage
of evolutions of spacetime/intrinsic spacetime
within a long-range metric force field in our
universe, there is an identical half-geometry
that evolves simultaneously at the first stage of
evolution of spacetime/intrinsic spacetime within
the identical symmetry-partner long-range metric
force field in each of the other three universes.
The identical half-geometry in the positive time-
universe, depicted in Fig. 3, which is valid with
respect to 3-observers0 in the relative proper
metric Euclidean 3-space IE0′3 of the positive
time-universe, coexists with the half-geometry
of Fig. 2 in our universe, which is valid with
respect to 3-observers in the relative proper
metric Euclidean 3-space IE′3 of our (or positive)
universe.

cs t

cst

abab

P

d

ab
d

Fig. 3. A curved ‘one-dimensional’ absolute intrinsic metric space ∅ρ̂0, curving toward the
absolute metric time/absolute intrinsic metric time ‘dimensions’ along the horizontal,

projects a straight line one-dimensional isotropic absolute proper intrinsic metric space
∅ρ0′ab underneath the relative proper metric Euclidean 3-space IE0′3 along the vertical, with

respect to 3-observers in IE0′3 in the positive time-universe
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The absolute intrinsic line element is given at
point P 0 on the curved absolute intrinsic metric
space ∅ρ̂0, with respect to 3-observers in the
relative proper metric Euclidean 3-space IE0′3 in
Fig. 3 (like Eq. (1) at the symmetry-partner point
P on the curved absolute intrinsic metric space
∅ρ̂, with respect to 3-observers in IE′3 in Fig. 2)
as

(d∅ŝ0)2 = (d∅x̂1)2 −∅ĝ00(d∅ρ̂0)2, (3)

where

∅ĝ00 = sec2 ∅ψ̂P 0 = (1−∅k̂2P 0)
−1 ; (4)

∅ψ̂P 0 is the absolute intrinsic angle of inclination
of the curved absolute intrinsic metric space ∅ρ̂0

to its projection ∅ρ0′ab along the vertical, at point
P 0 along ∅ρ̂0; ∅k̂P 0 is the absolute intrinsic

curvature parameter of the curved ∅ρ̂0 at point
P 0 along ∅ρ̂0 and ∅k̂P 0 = sin∅ψ̂P 0 .

Fig. 3 in the positive time-universe is half-
geometry, just as Fig. 2 in our universe is half-
geometry. These half-geometries co-exist and
must be united into the singular full geometry
depicted in Fig. 4. The absolute metric time
‘dimension’ ĉst̂ and absolute intrinsic metric
time ‘dimension’ ∅ĉs∅t̂ along the vertical in
Fig. 2 do not appear in Fig. 4, having been
supplanted by ∅ρ0′ab and ∅ρ0′

ab respectively, and
the absolute metric time ‘dimension’ ĉs t̂ 0 and
absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂ 0
along the horizontal in Fig. 3 do not appear in
Fig. 4, having been supplanted by ρ′ab and ∅ρ′ab
respectively.

ab

ab

ab

ab

ab

ab

Fig. 4. Curved ‘two-dimensional’ absolute intrinsic metric space (∅ρ̂,∅ρ̂0) and its projective
flat ‘two-dimensional’ absolute proper intrinsic metric space (∅ρ′ab,∅ρ0′ab) underlying flat

six-dimensional relative proper physical space (IE′3, IE0′) with respect to 3-observers in IE′3 in
our universe and 3-observers in IE0′ in the positive time-universe obtained by uniting Fig. 2

and Fig. 3

The projection of the elementary absolute intrinsic metric space coordinate interval d∅ρ̂ about point
P along ∅ρ̂ into the horizontal and the projection of the corresponding elementary intrinsic metric
space coordinate interval d∅ρ̂0 about point P 0 along the curved ∅ρ̂0 into the vertical in Fig. 4 are
given respectively as

d∅ρ ′
ab = d∅ρ̂ cos∅ψ̂P ; (w.r.t. 3− observers in IE′3) (5a)

and
d∅ρ0′ab = d∅ρ̂0 cos∅ψ̂P 0 ; (w.r.t. 3− observers in IE0′3) (5b)
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The ‘non-metric’ component, δ∅ρ̂ = d∅ρ̂ sin∅ψ̂P , projected into ∅ĉs∅t̂ along the vertical by interval
d∅ρ̂ about point P of curved ∅ρ̂ in Fig. 2, is now projected into the absolute proper intrinsic metric
space ∅ρ0′

ab along the vertical in Fig. 4, and the ‘non-metric’ component, δ∅ρ̂0 = d∅ρ̂0 sin∅ψ̂P 0 ,
projected into ∅ĉs∅t̂ 0 along the horizontal by interval d∅ρ̂0 about point P 0 along the curved ∅ρ̂0 in
Fig. 3, is now projected into the absolute proper intrinsic metric space ∅ρ′

ab along the horizontal in
Fig. 4.

Although the ‘non-metric’ components δ∅ρ̂ and δ∅ρ̂0 actually exist as shown in Fig. 4, they cannot
appear in the intrinsic metric coordinate interval projection expressions (5a) and (5b). They cannot be
considered at equal pedestal with the projective absolute proper intrinsic metric coordinate intervals
with the prime label.

However let us temporarily take into account the projective ‘non-metric’ components in the intrinsic
coordinate projections that can be derived from Fig. 4 to have the following

(d∅ρ ′
ab) = (d∅ρ̂) cos∅ψ̂P ; and δ∅ρ̂0 = d∅ρ̂0 sin∅ψ̂P 0 ;

(w.r.t. 3− observers in IE′3) ; (6a)

d∅ρ0′ab = d∅ρ̂0 cos2 ∅ψ̂P 0 ; and δ∅ρ̂ = d∅ρ̂ sin∅ψ̂P ;

(w.r.t. 3− observers in IE0′3) . (6b)

Now there is equality of the square of intrinsic coordinate interval d∅ρ̂2 along the curved absolute
intrinsic metric space ∅ρ̂ and the sum of squares of the intrinsic metric coordinate intervals, d∅ρ ′

ab

and δ∅ρ̂0, along the straight line absolute proper intrinsic metric space ∅ρ′ab, which are projected
along the horizontal by d∅ρ̂ and d∅ρ̂0 respectively in Fig. 4, expressed as follows

(d∅ρ̂)2 = (d∅ρ ′
ab)

2 + (δ∅ρ̂0)2 ,

or
(d∅ρ ′

ab)
2 = (d∅ρ̂)2 − (δ∅ρ̂0)2 .

This can be seen as invariance of partial intrinsic ‘line element’ between the curved ∅ρ̂ and its
projective straight line ∅ρ′ab along the horizontal with respect to 3-observers in IE′3 in Fig. 4.

Using system (6a) in the last displayed equation gives,

(d∅ρ′ab)2=(d∅ρ ′
ab)

2 sec2 ∅ψ̂P − (d∅ρ̂0)2 sin2 ∅ψ̂P 0 .

This simplifies further as follows by virtue of Eq. (5b),

(d∅ρ′ab)2 = (d∅ρ′ab)2 sec2 ∅ψ̂P − (d∅ρ0′ab)2 tan2 ∅ψ̂P 0 ;

(w.r.t. 3− observers in IE′3) . (7a)

There is likewise invariance of partial intrinsic line element between the the curved absolute intrinsic
metric space ∅ρ̂0 and its projective straight line absolute proper intrinsic metric space ∅ρ0′ab along
the vertical in Fig. 4, expressed as follows

(d∅ρ̂0)2 = (d∅ρ0′ab)2 + (δ∅ρ̂)2 ,

or
(d∅ρ0′ab)2 = (d∅ρ̂0)2 − (δ∅ρ̂)2 ,

which upon using system (6b) gives

(d∅ρ0′ab)2=(d∅ρ0′ab)2 sec2 ∅ψ̂P 0 − (d∅ρ̂)2 sin2 ∅ψ̂P .
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This simplifies further as follows by virtue of Eq. (5a)

(d∅ρ0′ab)2 = (d∅ρ0′ab)2 sec2 ∅ψ̂P 0 − (d∅ρ ′
ab)

2 tan2 ∅ψ̂P ; (7b)

(w.r.t. 3− observers in IE0′3) .

Point P along the curved ∅ρ̂ and point P0 along the curved ∅ρ̂0 are symmetry-partner points. Conse-
quently the absolute intrinsic angles, ∅ψ̂P and ∅ψ̂P 0 , are equal. We can therefore let, ∅ψ̂P =
∅ψ̂P 0 ≡ ∅ψ̂. By using this fact and adding Eqs. (7a) and (7b) we have

(d∅ρ0′ab)2 + (d∅ρ ′
ab)

2 = (d∅ρ0′ab)2
(
sec2 ∅ψ̂ − tan2 ∅ψ̂

)
+(d∅ρ ′

ab)
2
(
sec2 ∅ψ̂ − tan2 ∅ψ̂

)
(8)

Equation (8) expresses absolute intrinsic local Euclidean invariance (A∅LEI) in terms of absolute
proper intrinsic metric coordinate intervals, partially with respect to 3-observers in IE′3 and partially
with respect to 3-observers0 in IE0′3, by virtue of the expression, sec2 ∅ψ̂ − tan2 ∅ψ̂ = 1 .

The full invariance of intrinsic line element (8) between the curved ‘two-dimensional’ absolute intrinsic
metric space (∅ρ̂,∅ρ̂0) and the flat two-dimensional absolute proper intrinsic metric space (∅ρ0′ab ,∅ρ′ab),
with respect to 3-observers in IE′3 and 3-observers0 in IE0′3, has been written partially as invariance
of intrinsic line element (7a) between the curved ∅ρ̂ and its projective straight line ∅ρ′ab with respect
to 3-observers in IE′3 and partially as invariance of intrinsic line element (7b) between the curved ∅ρ̂0
and its projective straight line ∅ρ0′ab with respect to 3-observers0 in IE0′3 in Fig. 4 earlier.

Now the invariance of intrinsic line element between the curved ‘two-dimensional’ absolute intrinsic
metric space (∅ρ̂,∅ρ̂0) and its projective flat ‘two-dimensional’ absolute proper intrinsic metric space
(∅ρ′ab ,∅ρ0′ab) in Fig. 4 can be expressed as

(d∅ŝ∗)2 = (d∅s′∗)2 ,

or
(d∅ρ̂0)2 + (d∅ρ̂)2 = (d∅ρ0′ab)2 + (d∅ρ ′

ab)
2 . (9)

It then follows that the absolute proper intrinsic metric space intervals d∅ρ0′ab and d∅ρ ′
ab can be

replaced with the absolute intrinsic metric space intervals d∅ρ̂0 and d∅ρ̂ respectively in Eq. (8) to
have

(d∅ρ̂0)2 + (d∅ρ̂)2 = (d∅ρ̂0)2(sec2 ∅ψ̂ − tan2 ∅ψ̂)
+(d∅ρ̂)2(sec2 ∅ψ̂ − tan2 ∅ψ̂) (10)

Equation (10) expresses intrinsic local Euclidean invariance on the curved ‘two-dimensional’ absolute
intrinsic metric space (∅ρ̂,∅ρ̂0) in terms of absolute intrinsic coordinate intervals, partially with
respect to 3-observers in IE′3 and partially with respect to 3-observers in IE0′3, by virtue of relation,
sec2∅ψ̂−tan2 ∅ψ̂ = 1. Let us replace (d∅ρ̂0)2+(d∅ρ̂)2 by the square of the starred absolute intrinsic
Euclidean line element (d∅ŝ∗)2 at the left-hand side of Eq. (10) to have

(d∅ŝ∗)2 = (d∅ρ̂0)2(sec2 ∅ψ̂−tan2 ∅ψ̂) + (d∅ρ̂)2(sec2 ∅ψ̂ − tan2 ∅ψ̂) , (11)

or
(d∅ŝ∗)2 = (d∅ρ̂0)2 + (d∅ρ̂)2 . (12)

The need for the star label on the absolute intrinsic line element d∅ŝ∗ shall be seen later in this article.
The absolute intrinsic Euclidean line element (11) or (12) obtains at every point along the curved ∅ρ̂
and at the symmetry-partner point along the curved ∅ρ̂0, partially with respect to 3-observers in IE′3
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and partially with respect to 3-observers in IE0′ in Fig. 4, in so far as both the metric and ‘non-metric’
intrinsic coordinate interval projections are taken into account in deriving intrinsic coordinate interval
projection relations from Fig. 4, as done in systems (6a) and (6b) and Eqs. (7a) and (7b).

Now let us as done on ‘two-dimensional’ and ‘three-dimensional’ absolute intrinsic metric spaces
∅IM̂2 and ∅IM̂3 in sub-section 1.1 of [2], separate the absolute intrinsic Euclidean line element
(d∅ŝ∗)2 of Eq. (11) into the metric and non-metric components, (d∅ŝ∗m)2 and (d∅ŝ∗nm)2, as follows

(d∅ŝ∗)2 = (d∅ŝ∗m)2 + (d∅ŝ∗nm)2

=

1∑
i,j=0

∅ĝ∗ij d∅x̂id∅x̂j −
1∑

i,j=0

∅R̂∗
ij d∅x̂id∅x̂j (13)

(d∅ŝ∗)2 =
(
sec2 ∅ψ̂(d∅ρ̂0)2 + sec2 ∅ψ̂(d∅ρ̂)2

)
−
(
tan2 ∅ψ̂(d∅ρ̂0)2 + tan2 ∅ψ̂(d∅ρ̂)2

)
. (14)

The absolute intrinsic metric line element on the curved ‘two-dimensional’ absolute intrinsic metric
space (∅ρ̂,∅ρ̂0), which is valid partially with respect to 3-observers in IE′3 and partially with respect
to 3-observers in IE0′3 in Fig. 4, which follows from Eqs. (13) and (14) is the following

(d∅ŝ∗m)2 =

1∑
i,j=0

∅ĝ∗ij d∅x̂id∅x̂j

= ∅ĝ∗00(d∅ρ̂0)2 +∅ĝ∗11(d∅ρ̂)2 ; (15)

= sec2 ∅ψ̂(d∅ρ̂0)2 + sec2 ∅ψ̂(d∅ρ̂)2 ; (16)

=
(d∅ρ̂0)2

1−∅k̂2
+

(d∅ρ̂)2

1−∅k̂2
. (17)

The implied absolute intrinsic metric tensor is

∅ĝ∗ij =

(
sec2 ∅ψ̂ 0

0 sec2 ∅ψ̂

)
=


1

1−∅k̂2
0

0
1

1−∅k̂2

 . (18)

The derived circular absolute intrinsic metric line element (16) or (17) is the absolute intrinsic line
element on the curved ‘two-dimensional’ absolute intrinsic metric space (∅ρ̂,∅ρ̂0) in Fig. 4. It
is effectively the union of the partial absolute intrinsic line element (1) derived with respect to 3-
observers in the relative proper metric Euclidean 3-space IE′3 from Fig. 2 and partial absolute intrinsic
line element (3) derived with respect to 3-observers0 in the relative proper metric Euclidean 3-space
IE0′3 from Fig. 3, just as Fig. 3 from which (16) or (17) has been derived is the union of Figs. 2 and 3.

It is to be noted, as explicitly stated by Eqs. (1) and (3) that, the term, ∅ĝ∗00(d∅ρ̂0)2 = (d∅ρ̂0)2/(1 −
∅k̂2), of the absolute intrinsic line element (17) has been derived by and is hence valid with respect to
3-observers0 in the relative proper metric Euclidean 3-space IE0′3 of the positive time-universe, while
the term, ∅ĝ∗11(d∅ρ̂0)2 = (d∅ρ̂)2/(1 − ∅k̂2), has been derived by and is hence valid with respect
to 3-observers in the relative proper physical Euclidean 3-space IE′3 of our (or positive) universe in
Fig. 4. Thus the components, ∅ĝ∗00 and ∅ĝ∗11, of the derived circular absolute intrinsic metric tensor
∅ĝ∗ij of Eq. (18) are valid with respect to 3-observers in IE0′3 and IE′3 respectively.

In effect, the curved ‘two-dimensional’ absolute intrinsic metric space (∅ρ̂,∅ρ̂0) is an absolute intrinsic
Riemannian metric manifold without curved absolute intrinsic metric time ‘dimension’ (i.e. it is of the
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class ∅M̂p ; p = 2), which is underlay by its projective flat ‘two-dimensional’ absolute proper intrinsic
metric space (∅ρ′ab ,∅ρ0′ab) and the flat six-dimensional relative proper metric space (IE′3, IE0′3) in
which the observers are located. This is so, since curved absolute intrinsic metric time ‘dimension’
does not exist with respect to either the 3-observers in IE′3 or 3-observers0 in IE0′3 in Fig. 4, who
jointly construct the absolute intrinsic line element (16) or (17).

One important consequence of the perfect symmetry of state between our (or positive) universe and
the positive time-universe is that, the absolute intrinsic metric line element (1), written at point P on
the curved ‘one-dimensional’ absolute intrinsic metric space ∅ρ̂, by 3-observers in the relative proper
Euclidean 3-space IE′3 of our universe, in the half-geometry of Fig. 2, is perfectly identical to the
absolute intrinsic metric line element (3), written at the symmetry-partner point P0 on the curved ∅ρ̂0,
by 3-observers0 in the relative proper Euclidean 3-space IE0′3 of the positive time-universe, in the
half-geometry of Fig. 3. In other words, the component ∅ĝ∗11 of the absolute intrinsic metric tensor in
Eq. (1) is identical to the component ∅ĝ∗00 in Eq. (3).

Having derived Fig. 4 and the absolute intrinsic line element (16) or (17) on the curved ‘two-dimensional’
absolute intrinsic metric space (∅ρ̂,∅ρ̂0), partially with respect to 3-observers in IE′3 and partially
with respect to 3-observers0 in IE0′3 in that figure, let us now modify both the figure and the absolute
intrinsic line element to the forms in which they are valid for absolute intrinsic Riemann geometry
in our universe solely. This shall be done in two steps. At the first step, we recognize that the
dimensions, x0′1, x0′2 and x0′3, of the relative proper metric Euclidean 3-space IE0′3, the absolute
proper intrinsic metric space ∅ρ0′ab and absolute intrinsic metric space ∅ρ̂0 of the positive time-
universe in Fig. 4, are elusive to 3-observers in the relative proper metric Euclidean 3-space IE′3 of
our universe, hence they cannot appear in physics in our universe.

As developed in sub-section 1.3 of [3], the relative proper metric Euclidean 3-space IE0′3 of the
positive time-universe induces the relative proper metric time dimension cst

′ of our universe, with
respect to all 3-observers in the relative proper Euclidean 3-space IE′3 of our universe. Thus in
converting Fig. 4 to the form it will be useful in our universe, we must first of all let IE0′3 → cst

′,
∅ρ0′ → ∅cs∅t′ and ∅ρ̂0 → ∅ĉs∅t̂ (as done in a similar situation with system (15) of [6]), in the upper
half of Fig. 4 to have Fig. 5.

c ts

c ts

c ts

c ts

c ts

3

c tsab ab

c tsab ab

c tsab ab

ab
ab

ab

Fig. 5. Curved ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂ ), its
projective flat two-dimensional absolute proper intrinsic metric spacetime (∅ρ′ab,∅cs∅t′ab)
underlying flat four-dimensional relative proper metric spacetime (IE′3, cst

′), valid partially
with respect to 3-observers in the relative proper metric Euclidean 3-space and partially with

respect to 1-observers in in the relative proper metric time dimension of our universe
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Since Fig. 5 contains the metric spacetime and intrinsic metric spacetime dimensions of our universe
solely, it can be used to construct absolute intrinsic metric line element, absolute intrinsic metric
tensor and absolute intrinsic Ricci tensor (or absolute intrinsic Riemann geometry), on the curved
(∅ρ̂,∅ĉs∅t̂) in our universe, jointly by 3-observers in the relative proper Euclidean 3-space IE′3 and
1-observers in the relative proper time dimension cst′ of our universe in it. It is to be recalled from [3]
that the 3-observers0 in the relative proper Euclidean 3-space IE0′3 of the positive time-universe
in Fig. 4 are the ones that appear as 1-observers in the relative proper time dimension cst

′ of our
universe, with respect to 3-observers in IE′3 of our universe in Fig. 5.

On the other hand, by letting, IE′3 → cst
0′, ∅ρ′ → ∅cs∅t0′ and ∅ρ̂ → ∅ĉs∅t̂ 0, in the lower half of

Fig. 4, one obtains the diagram in the positive time-universe that corresponds to that of Fig. 5 in the
positive (or our) universe. That diagram shall not be drawn here however, since it has no usefulness
in our universe.

The projection of the elementary absolute intrinsic metric time coordinate interval ∅ĉsd∅t̂ about point
P0 along the curved ∅ĉs∅t̂ into the vertical and the projection of the elementary absolute intrinsic
metric space interval d∅ρ̂ about the symmetry-partner point P along the curved ∅ρ̂ into the horizontal
in Fig. 5, are given respectively as

∅csabd∅t′ab = ∅ĉsd∅t̂ cos∅ψ̂P 0 ; (w.r.t. 1− observers in cst
′) (19a)

∅ρ ′
ab = d∅ρ̂ cos∅ψ̂P =d∅ρ̂ cos∅ψ̂ ; (w.r.t. 3− observers in IE′3) (19b)

The intrinsic metric coordinate interval projection relations (19a) and (19b) derived from Fig. 5 are the
modified forms of relations (5a) and (5b) derived from Fig. 4. The expressions (19a) and (19b) can be
obtained by simply letting, d∅ρ0′ab → ∅csab∅t′ab and d∅ρ̂0 → ∅ĉsd∅t̂, in relation (5b), while retaining
relation (5a).

Again the ‘non-metric’ component ∅ĉsδ∅t̂ projected into ∅ρ′ab along the horizontal by interval ∅ĉsd∅t̂
about point P0 along the curved ∅ĉs∅t̂ and the ‘non-metric’ component δ∅ρ̂ projected into ∅cs∅t′ab
along the vertical by interval d∅ρ̂ about the symmetry-partner point P along the curved ∅ρ̂ in Fig. 5,
have not been taken into consideration in the intrinsic metric coordinate interval projection relations
(19a) and (19b), since our interest in Eqs. (19a) and (19b) is in deriving the absolute intrinsic metric
line element and the implied absolute intrinsic metric tensor, or to construct absolute intrinsic Riemann
geometry on the curved ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) in Fig. 5,
partially with respect to 3-observers in IE′3 and partially with respect to 1-observers in cst

′ in that
figure. The projective ‘non-metric’ absolute intrinsic coordinate intervals, δ∅ρ̂ and ∅ĉsδ∅t̂, cannot
appear in an absolute intrinsic metric line element.

However let us temporarily take into account the projective ‘non-metric’ components in the intrinsic
coordinate projection expressions that can be derived from Fig. 5 to have

∅csabd∅t′ab = ∅ĉsd∅t̂ cos∅ψ̂P 0 and δ∅ρ̂ = d∅ρ̂ sin∅ψ̂P ;

(w.r.t. 1− observers in cst
′) ; (20a)

d∅ρ ′
ab = d∅ρ̂ cos∅ψ̂P and ∅ĉsδ∅t̂ = ∅ĉsd∅t̂ sin∅ψ̂P 0 ;

(w.r.t. 3− observers in IE′3) . (20b)

There is invariance of partial intrinsic line element between the curved absolute intrinsic space ∅ρ̂
and its projective straight line absolute proper intrinsic space ∅ρ ′

ab along the horizontal, with respect
to 3-observers in IE′3 in Fig. 5, expressed as follows

(d∅ρ̂)2 = (d∅ρ ′
ab)

2 +∅ĉ2s(δ∅t̂)2 ,
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or
(d∅ρ ′

ab)
2 = (d∅ρ̂)2 −∅ĉ2s(δ∅t̂)2,

which upon using system (20b) gives

(d∅ρ ′
ab)

2 = (d∅ρ ′
ab)

2 sec2 ∅ψ̂P −∅ĉ2s(d∅t̂)2 sin2 ∅ψ̂P 0 .

This simplifies further as follows by virtue of Eq. (19a),

(d∅ρ ′
ab)

2 = (d∅ρ ′
ab)

2 sec2 ∅ψ̂P −∅c2sab(d∅t′ab)2 tan2 ∅ψ̂P 0 ;

(w.r.t. 3− observers in IE′3) (21a)

There is likewise invariance of partial intrinsic line element between the curved absolute intrinsic time
‘dimension’ ∅ĉs∅t̂ and its projective straight line absolute proper intrinsic time dimension ∅csab∅t′ab
along the vertical, with respect to 1-observers in cst′ in Fig. 5, expressed as follows

∅ĉ2s(d∅t̂)2 = ∅c2sab(d∅t′ab)2 + (δ∅ρ̂)2 ,

or
∅c2sab(d∅t′ab)2 = (∅ĉ2s(d∅t̂)2 − (δ∅ρ̂)2 ,

which upon using system (20a) gives

∅c2sab(d∅t′ab)2 = ∅c2sab(d∅t′ab)2 sec2 ∅ψ̂P 0 − (d∅ρ̂)2 sin2 ∅ψ̂P .

This simplifies further as follows by virtue of Eq. (19b),

∅c2sab(d∅t′ab)2 = ∅c2sab(d∅t′ab)2 sec2 ∅ψ̂P 0 − (d∅ρ̂)2 tan2 ∅ψ̂P ; (w.r.t. 1− observers in cst
′) .
(21b)

Now the point P along the curved ∅ρ̂ and the point P0 along the curved ∅ĉs∅t̂ in Fig. 5, are symmetry-
partner points. Consequently the absolute intrinsic angles, ∅ψ̂P and ∅ψ̂P 0 , are equal. Thus we shall
let, ∅ψ̂P = ∅ψ̂P 0 ≡ ∅ψ̂. By using this fact and adding Eqs. (21a) and (21b) we have

∅c2sab(d∅t′ab)2(d∅ρ ′
ab)

2 = ∅c2sab(d∅t′ab)2(sec2 ∅ψ̂ − tan2 ∅ψ̂)
+(d∅ρ ′

ab)
2(sec2 ∅ψ̂ − tan2 ∅ψ̂) . (22)

Equation (22) expresses intrinsic local Euclidean invariance (∅LEI) in terms of absolute proper intrinsic
coordinate intervals, partially with respect to 3-observers in IE′3 and partially with respect to 1-
observers in cst′ in Fig. 5, by virtue of the expression, sec2 ∅ψ̂ − tan∅ψ̂2 = 1. The full invariance
of intrinsic Euclidean line element (22) has been written partially as Eq. (21a) with respect to 3-
observers in IE′3 from the lower half of Fig. 5, and partially as Eq. (21b) with respect to 1-observers
in cst′ from the upper half of Fig. 5.

The invariance of intrinsic line element between the curved absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂)
and its projective flat absolute proper intrinsic metric spacetime (∅ρ ′

ab,∅csab∅t′ab) in Fig. 5 is expressed
formally as

(d∅ŝ∗)2 = (d∅s′∗)2

∅ĉ2s(d∅t̂)2 + (d∅ρ̂)2 = ∅c2s(d∅t′ab)2 + (d∅ρ ′
ab)

2 (23)

This is simply Eq. (9) with d∅ρ̂0 replaced by ∅ĉs∅t̂ and ∅ρ0′
ab replaced by ∅csabd∅t′ab.

It follows from Eq. (23) that the absolute proper intrinsic metric space interval d∅ρ ′
ab and the absolute

proper intrinsic metric time dimension interval ∅csabd∅t′ab can be replaced with the absolute intrinsic
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metric space interval d∅ρ̂ and the absolute intrinsic metric time ‘dimension’ interval ∅ĉsd∅t̂ respectively
in Eq. (22) to have

∅ĉ2s(d∅t̂)2(d∅ρ̂)2 = ∅ĉ2s(d∅t̂)2
(
sec2 ∅ψ̂ − tan2 ∅ψ̂

)
+(d∅ρ̂)2

(
sec2 ∅ψ̂ − tan2 ∅ψ̂

)
. (24)

Equation (24) expresses absolute intrinsic local Euclidean invariance (A∅LEI) in terms of absolute
intrinsic coordinate intervals, partially with respect to 3-observers in IE′3 and partially with respect to
1-observers in cst′ in Fig. 5. Let us replace the left-hand side of Eq. (24) by the square of absolute
intrinsic line element to still be denoted by (d∅ŝ∗)2 to have

(d∅ŝ∗)2 = ∅ĉ2s(d∅t̂)2(sec2 ∅ψ̂ − tan2 ∅ψ̂) +
(d∅ρ̂)2(sec2 ∅ψ̂ − tan2 ∅ψ̂) (25)

or
(d∅ŝ∗)2 = ∅ĉ2s(d∅t̂)2 + (d∅ρ̂)2 . (26)

The star label introduced on the absolute intrinsic line element on the curved ‘two-dimensional’
absolute intrinsic metric space (∅ρ̂,∅ρ̂0) in Fig. 4, is retained on the curved absolute intrinsic metric
spacetime (∅ρ̂,∅ĉs∅t̂ ) in Fig. 5, because Fig. 5 is the same as Fig. 4. Figure 5 has been obtained
by simply transforming the space coordinates and intrinsic space coordinates of the positive time-
universe into the time and intrinsic time coordinates of our universe in the upper half of Fig. 4. The
absolute intrinsic line element and absolute intrinsic metric tensor derived partially with respect to
3-observers in IE′3 and partially with respect to 3-observers in IE0′3 in Fig. 4, remain unchanged
partially with respect to 3-observers in IE′3 and partially with respect to 1-observers in cst′ in Fig. 5.

The absolute intrinsic Euclidean line element (25) or (26) obtains at every point along the curved ∅ρ̂
and the symmetry-partner point along the curved ∅ĉs∅t̂, with respect to 3-observers in IE′3 and 1-
observers in cst′ in Fig. 5. This is so in so far as both the metric and ‘non-metric’ intrinsic coordinate
interval projections are taken into account in deriving intrinsic coordinate projection relations from
Fig. 5, as done in systems (20a) and (20b) and in Eqs. (21a) and (21b).

As done with (d∅ŝ∗)2 in Eq. (11) earlier, let us separate the absolute intrinsic Euclidean line element
in Eq. (25) into the metric and ‘non-metric’ components (d∅ŝ∗m)2 and (d∅ŝ∗nm)2 as

(d∅ŝ∗)2 = (d∅ŝ∗m)2 + (d∅ŝ∗nm)2

=

1∑
i,j=0

∅ĝ∗ij d∅x̂id∅x̂j =

1∑
i,j=0

∅R̂∗
ij d∅x̂id∅x̂j (27)

or

(d∅ŝ∗)2 =
(
∅ĉs2d∅t̂2 sec2 ∅ψ̂ + d∅ρ̂2 sec2 ∅ψ̂

)
−
(
∅ĉs2d∅t̂2 tan2 ∅ψ̂ + tan2 ∅ψ̂d∅ρ̂2

)
. (28)

The absolute intrinsic metric line element on the curved ‘two-dimensional’ absolute intrinsic metric
spacetime (∅ρ̂,∅ĉs∅t̂), which is valid partially with respect to 3-observers in IE′3 and partially with
respect to 1-observers in cst′ in Fig. 5 that follows from Eqs. (27) and (28), is the following
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(d∅ŝ∗m)2 =

1∑
i,j=0

∅ĝ∗ij d∅x̂id∅x̂j ;

= ∅ĝ∗00∅ĉs2d∅t̂2 +∅ĝ∗11d∅ρ̂2 ; (29)

= sec2 ∅ψ̂∅ĉs2d∅t̂2 + sec2 ∅ψ̂d∅ρ̂2 ; (30)

=
∅ĉ2sd∅t̂2

1−∅k̂2
+

d∅ρ̂2

1−∅k̂2
. (31)

where the relation, ∅k̂ = sin∅ψ̂, derived in sub-section 1.1 of [2] and presented as Eq. (13) of that
article has been used.

The absolute intrinsic metric tensor implied by the absolute intrinsic line element (30) or (31) is

∅ĝ∗ij =

(
sec2 ∅ψ̂ 0

0 sec2 ∅ψ̂

)
(32)

or

∅ĝ∗ij =


1

1−∅k̂2
0

0
1

1−∅k̂2

 . (33)

Again, the component,
∅ĝ∗00∅ĉs2d∅t̂2 = ∅ĉs2d∅t̂2/(1−∅k̂2) ,

in the absolute intrinsic line element (29), (30) or (31) has been derived by and is hence valid with
respect to 1-observers in the relative proper time dimension cst′, while the component,

∅ĝ∗11d∅ρ̂2 = d∅ρ̂2 sec2 ∅ψ̂ = d∅ρ̂2/(1−∅k̂2) ,

has been derived by, and is hence valid with respect to 3-observers in the relative proper Euclidean
3-space IE′3 in Fig. 5.

Now the absolute intrinsic line element (16) or (17) on the curved ‘two-dimensional’ absolute intrinsic
metric space (∅ρ̂ ,∅ρ̂0) in Fig. 4, obtained by uniting Fig. 2 (with respect to 3-observers in IE′3) and
Fig. 3 (with respect to 3-observers0 in IE0′3), possesses the circular structure like the absolute intrinsic
line element on the curved ‘two-dimensional’ and ‘three-dimensional’ absolute intrinsic metric spaces
∅IM̂2 or ∅IM̂3 encountered in part two of this paper [2]; compare the absolute intrinsic line element
(16) or (17) on the curved (∅ρ̂,∅ρ̂0) in Fig. 4 above with the absolute intrinsic line elements (2d)
and (3) on ∅IM̂2 and ∅IM̂3 in [2]. The absolute intrinsic line element (30) or (31) on the curved
‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) in Fig. 5, which is valid partially
with respect to 3-observers in IE′3 and partially with respect to 1-observers in cst

′ in that figure,
likewise possesses the circular structure like the absolute intrinsic line element (2d) on curved ‘two-
dimensional’ absolute intrinsic metric space ∅IM̂2 in [2].

It follows from the preceding paragraph that the pair of absolute intrinsic tensor equations derived for
curved ‘two-dimensional’ and ‘three-dimensional’ absolute intrinsic metric spaces ∅IM̂2 and ∅IM̂3

in [2] and presented as Eqs. (33) and (45) of that article, are equally valid for the curved ‘two-
dimensional’ absolute intrinsic metric space (∅ρ̂,∅ρ̂0) in Fig. 4 and the curved ‘two-dimensional’
absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) in Fig. 5. Let us then write those absolute intrinsic
tensor equations in terms of starred absolute intrinsic metric tensor and starred absolute intrinsic
Ricci tensor on the curved ‘two-dimensional’ absolute intrinsic spacetime (∅ρ̂,∅ĉs∅t̂) in Fig. 5 as
follows

∅ĝ∗ij −∅R̂∗
ij = δij (A∅LEI) . (34)
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For the second absolute intrinsic tensor equation, let us start with the intermediate equation (42) of [2]
in the process of derivation of that equation in that article namely,

∅R̂∗
ij −

Tr ∅R̂∗i
i

n
∅ĝ∗ij = 0 . (35)

where n is the dimensionality of the absolute intrinsic metric space and of the matrix ∅R̂∗i
i. For the

curved (∅ρ̂,∅ρ̂0) in Fig. 4, which is replaced by the curved (∅ρ̂,∅ĉs∅t̂) in Fig. 4, being considered
here, n = 2, thereby simplifying (35) as

∅R̂∗
ij −

1

2
∅R̂∗∅ĝ∗ij = 0 , (36)

where the absolute intrinsic Riemann scalar ∅R̂∗ is the trace of the 2× 2 diagonal matrix ∅R̂∗i
i.

Interestingly Eq. (36) in absolute intrinsic Riemann geometry on curved ‘two-dimensional’ absolute
intrinsic metric spacetimes (∅ρ̂,∅ĉs∅t̂) in Fig. 5, takes on its form in the context of conventional
Riemann geometry namely,

Rµν − 1

2
Rgµν = 0 . (37)

However the factor 1
2

in the term − 1
2
∅R̂∗∅ĝ∗ij in (36) restricts absolute intrinsic metric spaces to

curved ‘two-dimensional’ absolute intrinsic metric spaces of the type (∅ρ̂,∅ρ̂0) in Fig. 4, which must
be replaced by the curved ‘two-dimensional’ absolute intrinsic metric spacetme (∅ρ̂,∅ĉs∅t̂) in Fig. 5,
while the factor 1

2
in the term − 1

2
Rgµν in (37) in conventional Riemann geometry is not known to

restrict the dimensionality of a conventional Riemann space, or conventional Riemann spacetime to
2. A conventional Riemann space Mp can be of any dimension p and a conventional Riemannian
spacetime Mp+q can be of any dimension p+ q; for instance, p = 3, q = 1, in the case of the curved
four-dimensional spacetime of the general theory of relativity. Equation (37) is known to apply to all
conventional Riemann spaces and conventional Riemannian spacetimes without restriction on their
dimensionality.

As derived and presented as Eq. (45) in [2], Eq. (36) admits of further simplification as

∅R̂∗
ij −∅k̂2∅ĝ∗ij = 0 , (38)

where ∅k̂ is the equal absolute intrinsic curvature parameter of an arbitrary point along the curved
∅ρ̂ and its symmetry-partner point along the curved ∅ρ̂0 in Fig. 4, which become an arbitrary point
along the curved ∅ρ̂ and its symmetry-partner point along the curved ∅ĉs∅t̂ in Fig. 5.

The perfect symmetry of state between our (or positive) universe and the positive time-universe
makes absolute intrinsic curvature parameters, ∅k̂P and ∅k̂P 0 , at every pair of symmetry-partner
points along the curved ∅ρ̂ and ∅ĉs∅t̂ respectively in Fig. 5 to be identical; that is, ∅k̂P = ∅k̂P 0 ≡
∅k̂. It is the square of the identical absolute intrinsic curvature parameters ∅k̂2 that appears as
the diagonal entries of the 2 × 2 diagonal matrix ∅R̂ i∗

i in Eq. (35), for which n = 2. Hence,
Tr ∅R̂ i∗

i = ∅R̂∗ = 2∅k̂2 and 1
2
∅R̂∗ = ∅k̂2, which makes Eq. (38) the same as Eq. (36).

It is the pair of absolute intrinsic tensor equations (34) and (38), written as Eqs. (33) and (45) of [2]
(and not (34) and (36) above), that shall be found directly applicable in absolute intrinsic Riemann
geometry on curved ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂), partially with
respect to 3-observers in IE′3 and partially with respect to 1-observers in cst′ in Fig. 5. For instance,
the (algebraic) solution to Eqs. (34) and (38) are the starred absolute intrinsic metric tensor (33) and
the following starred absolute intrinsic Ricci tensor,

∅R̂ ∗
ij =

 ∅k̂2
1−∅k̂2

0

0 ∅k̂2
1−∅k̂2

 . (39)
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Now let us consider the superposition of a pair of ‘2-dimensional’ absolute intrinsic metric spacetimes
(a pair of ‘2-dimensional’ absolute intrinsic Riemannian metric spacetimes) (∅ρ̂,∅ĉs∅t̂ ) and (∅ρ̂ ′,∅ĉs∅t̂ ′),
such that (∅ρ̂,∅ĉs∅t̂ ) lies over (or is curved relative to) (∅ρ̂ ′,∅ĉs∅t̂ ′), as illustrated in Fig. 6.

c ts

c ts

c ts c ts

c ts
c tsab ab

c tsab ab

ab

Fig. 6. A pair of co-existing ‘two-dimensional’ absolute intrinsic metric spacetimes and their
underlying flat two-dimensional absolute proper intrinsic metric spacetime underlying the
flat four-dimensional relative proper metric spacetime; the lower half of this figure is valid
with respect to 3-observers in the relative proper Euclidean 3-space and the upper half is

valid with respect to 1-observers in the relative proper time dimension

The pair of absolute intrinsic tensor equations (34) and (38) must be written in terms of resultant
starred absolute intrinsic metric tensor and resultant starred absolute intrinsic Ricci tensor as

∅ĝ ∗
ij −∅R̂∗

ij = δij ; (40)

∅R̂∗
ij −∅k̂ 2∅ĝ ∗

ij = 0 , (41)

where the resultant absolute intrinsic curvature parameter ∅k̂ for the purpose of writing the resultant
absolute intrinsic line element and resultant absolute intrinsic metric tensor at an arbitrary point of
the upper curved absolute intrinsic metric space ∅ρ̂ relative to ∅ρ′ab along the horizontal, or at
the symmetry-partner point of the upper curved absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂
relative to ∅csab∅t′ab along the vertical, is given in terms of the individual absolute intrinsic curvature
parameters ∅k̂′ at point P′ of the lower curved absolute intrinsic metric space ∅ρ̂′ and ∅k̂ at point
P of the upper curved absolute intrinsic metric space ∅ρ̂, prior to their superposition as follows, as
derived in sub-section 1.6 of part one of this paper [2]

∅k̂ 2 = (∅k̂′)2 +∅k̂2 . (42)

The resultant starred absolute intrinsic tensors ∅ĝ ∗
ij and ∅R̂∗

ij that satisfy equations (40) and (41)
are the following

∅ĝ ∗
ij =


1

1−∅k̂ 2
0

0
1

1−∅k̂ 2

 ;

=


1

1− (∅k̂′)2 −∅k̂2
0

0
1

1− (∅k̂′)2 −∅k̂2


(43)

93



Joseph; PSIJ, 25(10): 78-112, 2021; Article no.PSIJ.80880

and

∅R̂∗
ij =


∅k̂ 2

1−∅k̂ 2
0

0 ∅k̂ 2

1−∅k̂ 2

 ;

=


(∅k̂′)2 +∅k̂2

1− (∅k̂′)2 −∅k̂2
0

0
(∅k̂′)2 +∅k̂2

1− (∅k̂′)2 −∅k̂2

 .

(44)

The resultant absolute intrinsic line element on the upper curved ‘two-dimensional’ absolute intrinsic
spacetime with curved absolute intrinsic ‘dimensions’ ∅ρ̂ and ∅ĉs∅t̂ in Fig. 6, is then given partially
with respect to 3-observers in IE′3 and partially with respect to 1-observers in cst′ (or with respect to
(3+1)-observers in (IE′3, cst

′)) as

(d∅ŝ ∗)2 = ∅ĝ ∗
00∅ĉ2sd∅t̂2 +∅ĝ ∗

11d∅ρ̂2

=
∅ĉ2sd∅t̂2

1− (∅k̂′)2 −∅k̂2
+

d∅ρ̂2

1− (∅k̂′)2 −∅k̂2
. (45)

On the other hand, the projection of the elementary coordinate interval d∅ρ̂ about point P of the upper
curved absolute intrinsic space ∅ρ̂ into absolute proper intrinsic space ∅ρ′ab along the horizontal and
of interval ∅ĉsd∅t̂ about point P0 of the upper curved absolute intrinsic time ‘dimension’ ∅ĉs∅t̂ into
the absolute proper intrinsic time dimension ∅csab∅t′ab along the vertical, are given in terms of the
resultant absolute intrinsic angle, ∅ψ̂res = ∅ψ̂+∅ψ̂′, as follows, as derived in sub-sub-section 1.6.2
of part one of this paper [2],

d∅ρ ′
ab = d∅ρ̂ cos∅ψ̂res

= d∅ρ̂ cos(∅ψ̂ +∅ψ̂′)

= d∅ρ̂ cos∅ψ̂′ cos∅ψ̂
= d∅ρ̂(1−∅k̂′2)1/2(1−∅k̂2)1/2 ;

(w.r.t. 3− observers in IE′3) ; (46)

∅csabd∅t′ab = ∅ĉsd∅t̂ cos∅ψ̂res
= d∅ρ̂ cos(∅ψ̂ +∅ψ̂′)

= ∅ĉsd∅t̂ cos∅ψ̂′ cos∅ψ̂
= ∅ĉsd∅t̂(1−∅k̂′2)1/2(1−∅k̂2)1/2 ;

(w.r.t. 1− observers in cst
′) . (47)

Extension of relations (42) through Eq. (47) to a situation of the superposition of three and larger
number of curved ‘two-dimensional’ absolute intrinsic metric spacetimes is easy and straight forward.

It is at the first step of the modification of Fig. 4 to
the form in which it is valid for absolute intrinsic
Riemann geometry in our universe, when Fig. 4
is converted to Fig. 5, that the starred absolute
intrinsic tensor equations (34) and (38) must be

solved to obtain the starred absolute intrinsic
metric tensor (33) and starred absolute intrinsic
Ricci tensor (39). The starred absolute intrinsic
metric tensor (33), the starred absolute intrinsic
Ricci tensor (39) and Fig. 5 they are associated
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with, all of which are valid partially with respect
to 3-observers in the proper metric Euclidean
3-space IE′3 and partially with respect to 1-
observers in the proper metric time dimension
cst

′ in Fig. 5, shall now be modified to the forms in
which they are valid with respect to 3-observers
in the proper Euclidean 3-space IE′3 solely. This
will be at the second (and final) step of converting
Fig. 4 and the associated absolute intrinsic line
element (30) or (31), the implied absolute intrinsic
metric tensor (33) and absolute intrinsic Ricci
tensor (39), to the forms in which they are valid
with respect to 3-observers in the relative proper
Euclidean 3-space IE′3 solely. The modified
form of Fig. 5 to be derived is the valid diagram
and the associated modified absolute intrinsic
line element, absolute intrinsic metric tensor and
absolute intrinsic Ricci tensor, are the valid forms
in the context of absolute intrinsic Riemannian
spacetime geometry in our universe.

2.1 The Form of Spacetime/Intrin-
sic Spacetime Diagram
of Absolute Intrinsic
Riemannian Metric Spacetime
Geometry that is Valid with
Respect to 3-observers in the
Relative Proper Euclidean 3-
space Solely

Now the starred absolute intrinsic line element
(30) or (31) and the implied starred absolute
intrinsic metric tensor (32) or (33), although have
been derived on the curved ‘two-dimensional’
absolute intrinsic metric spacetime (or ‘two-
dimensional’ absolute metric nospace-notime)
(∅ρ̂,∅ĉs∅t̂) in Fig. 5, do not possess the
hyperbolic structure of the metric tensors on
Riemannian metric spacetime manifolds of the
type, Mp+q; p = 3, q = 1. Rather they have
the circular/elliptical structure of the metric
tensors of Riemannian metric spaces without
time dimension of the class Mp. The fact that the
proper time dimension cst

′, the absolute proper
intrinsic time dimension ∅csab∅t′ab and the
curved absolute intrinsic time ‘dimension’ ∅ĉs∅t̂,
appear in Fig. 5 (to replace IE0′3, ∅ρ0′ab and ∅ρ̂0
respectively in Fig. 4), has not shown up in the
structure of the absolute intrinsic line element

(30) or (31) and the implied absolute intrinsic
metric tensor (32) or (33) on the curved ‘two-
dimensional’ absolute intrinsic metric spacetime
(∅ρ̂,∅ĉs∅t̂) in Fig. 5.

The circular structure of the absolute intrinsic line
element (30) or (31) and of the absolute intrinsic
metric tensor (32) or (33) arises, because they
have been derived partially from the upper half
of Fig. 5 by or with respect to 1-observers in
the relative proper time dimension cst′ along the
vertical and partially from the lower half of that
figure by or with respect to 3-observers in the
relative proper Euclidean 3-space IE′3 along the
horizontal. The existence of the curved absolute
intrinsic time ‘dimension’ ∅ĉs∅t̂ does not appear
in physics formulated in the lower half by 3-
observers in IE′3, just as the curved absolute
intrinsic space ∅ρ̂ does not appear in physics
formulated in the upper half by 1-observers in
cst

′ in Fig. 5. Consequently the absolute intrinsic
line element (30) or (31) obtained by uniting the
partial absolute intrinsic line element (3) or (4)
derived on the curved ∅ĉs∅t̂ by 1-observers
in cst

′ and the partial absolute intrinsic line
element (1) or (2) derived on the curved ∅ρ̂ by
3-observers in IE′3 in Fig. 5, has not assumed
the hyperbolic structure expected on a curved
‘two-dimensional’ absolute intrinsic spacetime.

The purpose of this sub-section is to derive
the form of Fig. 5 that is valid with respect
to 3-observers in the relative proper physical
Euclidean 3-space IE′3 solely in that figure and
to derive the corresponding modified forms of
the starred absolute intrinsic line element (30) or
(31), the starred absolute intrinsic metric tensor
(32) or (33) and the starred absolute intrinsic
Ricci tensor (39) from the modified diagram.
It is the modified diagram and the associated
modified forms of the absolute intrinsic line
element and absolute intrinsic metric tensor and
modified absolute intrinsic Ricci tensor that are
valid for absolute intrinsic Riemann geometry in
our universe, as shall be justified.

Now let us present the reference geometry to the
geometry of Fig. 5 as Fig. 7. Figure 7 will exist
in the absence of absolute intrinsic Riemann
geometry, thereby making the curved absolute
intrinsic metric space ∅ρ̂ and curved absolute
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intrinsic metric time ‘dimension’ ∅ĉs∅t̂ in Fig. 5
to become the extended straight line absolute
intrinsic metric space ∅ρ̂ along the horizontal
and the extended straight line absolute intrinsic
metric time ‘dimension’ ∅ĉs∅t̂ along the vertical
respectively as in Fig. 7.

The reference geometry to absolute intrinsic
Riemannian spacetime geometry of Fig. 7 will
persist in the absence of a long-range metric
force field. However let us introduce the source of
a long-range absolute metric force field at a point
S on the flat absolute metric space ÎE3. Then its
underlying source of long-range absolute intrinsic
metric force field will appear automatically in the
underlying straight line absolute intrinsic metric
space ∅ρ̂ directly underneath the source of
absolute metric force field introduced at point S
in ÎE3. When we particularize to gravitational
field, as shall be done fully elsewhere, this
means that the absolute rest mass M̂0 of a
gravitational field source is introduced at point
S in ÎE3 and the absolute intrinsic rest mass
∅M̂0 of the gravitational field source appears
automatically in ∅ρ̂ underneath M̂0 in ÎE3. As
shall be explained to some extent in the last
section of this article and completely elsewhere
with further development, this action will cause
Fig. 6 to evolve into Fig. 5.

Now the absolute metric time ‘dimension’ ĉs t̂
and the absolute intrinsic metric time ‘dimension’
∅ĉs∅t̂ remain unchanged, that is, do not
transform into absolute proper metric time
dimension csabt

′
ab and absolute proper intrinsic

metric time dimension ∅csab∅t′ab respectively
in absolute physics/absolute intrinsic physics,
with respect to 3-observers in the relative proper
Euclidean 3-space IE′3, such as associated with
the presence of absolute metric force field in
absolute spacetime and absolute intrinsic metric
force field in absolute intrinsic spacetime, which
causes Fig. 7 to transform into Fig. 5 discussed
above. Graphically, this means that ĉst̂ and
∅ĉs∅t̂ along the vertical in Fig. 7 will remain
along the vertical, with respect to 3-observers
in the relative proper Euclidean 3-space IE′3, as
happens in Fig. 2, which is valid with respect
to 3-observers in IE′3 solely, in the context of
absolute physics/absolute intrinsic physics. The
absolute time ‘dimension’ ĉst̂ and the absolute
intrinsic time ‘dimension’ ∅ĉs∅t̂ must likewise

remain along the vertical in the modified form of
Fig. 5 being sought, which is valid with respect
to 3-observers in the relative proper Euclidean
3-space IE′3 solely, in the context of absolute
physics/absolute intrinsic physics.

Thus for the purposes of deriving absolute
intrinsic line element and its implied absolute
intrinsic metric tensor on the curved ‘two-
dimensional’ absolute intrinsic metric spacetime
(∅ρ̂,∅ĉs∅t̂) and formulating the non-detectable
absolute metric theories of physics as 3-
geometry theories in the relative proper
Euclidean 3-space - absolute time parameter
(IE′3; t̂) and absolute intrinsic metric theories
of physics as intrinsic 1-geometry theories in
the underlying relative proper intrinsic space
- absolute intrinsic time parameter (∅ρ′;∅t̂),
with respect to 3-observers in IE′3 solely, the
preceding paragraph makes it mandatory for us
to modify Fig. 5 in such a way that the absolute
time ‘dimension’ ĉst̂ and the absolute intrinsic
time ‘dimension’ ∅ĉs∅t̂ remain along the vertical
in the modified diagram.

Now the anti-clockwise sense of rotation by
positive absolute intrinsic angle ∅ψ̂P of the
absolute intrinsic space interval d∅ρ̂ relative
to its projective absolute proper intrinsic space
interval d∅ρ′

ab along the horizontal, is valid with
respect to 3-observers in the relative proper
physical Euclidean 3-space 3-space IE′3 in
Fig. 5. This is so because anti-clockwise rotation
is positive with respect to these observers.
Likewise the clockwise rotation by positive
absolute intrinsic angle ∅ψ̂P 0 of the absolute
intrinsic time coordinate interval ∅ĉsd∅t̂ relative
to its projective absolute proper intrinsic time
coordinate interval ∅csabd∅t′ab along the vertical,
is valid with respect to 1-observers in the relative
proper metric time dimension cst

′ in Fig. 5.
This is so because clockwise rotation is positive
with respect to these observers (as explained
in detail in section 4 of [3]). On the other
hand, the clockwise rotation by positive absolute
intrinsic angle ∅ψ̂P 0 of the absolute intrinsic time
coordinate interval ∅ĉsd∅t̂ relative to ∅csabd∅t′ab
along the vertical is not valid with respect to 3-
observers in 3-space IE′3. Consequently the
upper half of Fig. 5 is valid with respect to 1-
observers in cst′, while the lower half is valid with
respect to 3-observers in IE′3.
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c ts
c ts

c ts

‘3-observers’

Fig. 7. Flat ‘four-dimensional’ absolute metric spacetime and its underlying flat
‘two-dimensional’ absolute intrinsic metric spacetime with the assumed absence of a
long-range metric force field (or absence of absolute intrinsic Riemannian spacetime

geometry)

In order to make Fig. 5 valid with respect to
3-observers in 3-space IE′3 solely, as required
in the 3-geometry/intrinsic 1-geometry absolute
intrinsic Riemann geometry, we must change the
positive sign of the absolute intrinsic angle ∅ψ̂P 0

of inclination of ∅ĉsd∅t̂ to ∅csabd∅t′ab without
changing its clockwise sense. However we can
do this only if we also interchange the interval
∅ĉsd∅t̂ along the curved ∅ĉs∅t̂ and its projection
∅csabd∅t′ab along the vertical. Doing this about
every point along the curved ∅ĉs∅t̂ implies

interchanging the curved ∅ĉs∅t̂ and the straight
line absolute proper intrinsic time dimension
∅csab∅t′ab. By implementing these in Fig. 4 we
have Fig. 8. The entire Fig. 8 is valid with respect
to 3-observers in the relative physical proper
Euclidean 3-space IE′3 solely. This is so because
negative angle of clockwise rotation of the curved
∅csab∅t′ab relative to the straight line ∅ĉs∅t̂ in
Fig. 8 is equivalent to anticlockwise rotation by
positive angle, which is valid with respect to 3-
observers in IE′3.

c ts

c ts

c ts

c ts

c ts
c ts

ab ab

c tsab ab
ab

ab

ab

c tsab ab

3

Fig. 8. The form of Fig. 5 that is valid with respect to 3-observers in the relative proper
physical Euclidean 3-space solely; the correct diagram for absolute intrinsic Riemannian

spacetime geometry in our universe.
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It is to be observed that the straight line absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂ and its
outward manifestation namely, the absolute metric time ‘dimension’ ĉs t̂, exist as straight line ‘dimensions’
along the vertical with respect to 3-observers in the relative proper metric Euclidean 3-space IE′3 in
the correct absolute intrinsic Rimennian metric spacetime geometry of Fig. 8. The relative proper
intrinsic metric time dimension ∅cs∅t′ and its outward manifestation namely, the relative proper metric
time dimension cst′ also appear along the vertical in Fig. 8. This is possible because ∅cs∅t′ and cst′

are not intrinsic dimensions and dimension of absolute intrinsic Riemannian spacetime geometry and
since they actually appear automatically with the projections of ∅ρ′ab and ∅csab∅t′ab by the curved ∅ρ̂
and ∅ĉs∅t̂) in Fig. 5.

Figure 8 contains the curved absolute intrinsic metric space ∅ρ̂ and straight line absolute intrinsic
metric time ‘dimension’ ∅ĉs∅t̂ in the context of absolute intrinsic Riemannian metric spacetime
geometry, with respect to 3-observers in the relative proper physical Euclidean 3-space IE′3. The
intrinsic metric coordinate interval projection relations derivable from Fig. 8, from which absolute
intrinsic metric line element must be derived on (∅ρ̂,∅csab∅t′ab), with respect to 3-observers in IE′3

solely in that figure are

∅ĉsd∅t̂ = ∅csabd∅t′ab cos(−∅ψ̂P 0) and d∅ρ ′
ab = d∅ρ̂ cos∅ψ̂P ,

or
∅csabd∅t′ab = ∅ĉsd∅t̂ sec ψ̂ ; (48a)

d∅ρ ′
ab = d∅ρ̂ cos∅ψ̂ . (48b)

Equation (48a) derived by 3-observers in IE′3 in Fig. 8 replaces Eq. (19a) derived by 1-observers in
the proper time dimension cst′ in Fig. 5. Equations (48a) and (48b) are absolute intrinsic time dilation
and absolute intrinsic length contraction formulae with respect to 3-observers in the proper physical
3-space IE′3, encompassed by the absolute intrinsic Riemannian spacetime geometry of Fig. 8.

The projective absolute proper intrinsic metric coordinate intervals d∅ρ ′
ab and ∅csabd∅t′ab in Fig. 8

have been put into consideration in relations (48a) and (48b), while the projective ‘non-metric’ intrinsic
coordinate intervals δ∅ρ̂ and ∅csabδ∅t′ab have been disregarded. Indeed the absolute intrinsic metric
line element on the curved absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂), which is valid with respect
to 3-observers in the relative proper Euclidean 3-space IE′3 solely in Fig. 5, must be synthesized
from the intrinsic metric coordinate interval projection relations (48a) and (48b) derived from Fig. 8.
However the appropriate structure (or signature) of that absolute intrinsic line element to adopt is yet
unknown and cannot be determined from Eqs. (48a) and (48b).

In order to determine the structure (or signature) of the absolute intrinsic line element and, consequently,
of the absolute intrinsic metric tensor, on the curved ‘two-dimensional’ absolute intrinsic metric spacetime
(∅ρ̂,∅ĉs∅t̂) in Fig. 5, which is valid with respect to 3-observers in IE′3 solely, we must first determine
which of absolute intrinsic local Euclidean invariance (A∅LEI) and absolute intrinsic local Lorentz
invariance (A∅LLI) on (∅ρ̂,∅csab∅t′ab) is valid with respect to 3-observers in IE′3 solely in Fig. 8. Thus
let us take into account the projective ‘non-metric’ components in the intrinsic coordinate projection
relations that can be derived from Fig. 8 to have

∅ĉsd∅t̂ = ∅csabd∅t′ab cos(−∅ψ̂P 0); δ∅ρ̂ = d∅ρ̂ sin∅ψ̂P ,

or
∅csabd∅t′ab = ∅ĉsd∅t̂ sec∅ψ̂P 0 ; δ∅ρ̂ = d∅ρ̂ sin∅ψ̂P , (49a)

along the vertical and

d∅ρ ′
ab = d∅ρ̂ cos∅ψ̂P ; ∅csabδ∅t′ab = ∅csabd∅t′ab sin(−∅ψ̂P 0) ,
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or
d∅ρ ′

ab = d∅ρ̂ cos∅ψ̂P ; ∅csabδ∅t′ab = −∅csabd∅t′ab sin∅ψ̂P 0 , (49b)

or
d∅ρ ′

ab = d∅ρ̂ cos∅ψ̂P ; ∅csabδ∅t′ab = −∅ĉsd∅t̂ tan∅ψ̂P 0 , (49c)

along the horizontal, where Eq. (49a) has been used in the second equation between systems (49b)
and (49c).

The intrinsic coordinate projection relations of systems (49a) and (49c) derived from Fig. 8 are valid
with respect to 3-observers in the relative proper physical Euclidean 3-space IE′3 solely in that figure.
They correspond to systems (20a) and (20b) derived from Fig. 5, which are valid with respect to 1-
observers in cst′ and 3-observers in IE′3 respectively.

Now the only absolute intrinsic space coordinate interval d∅ρ̂ about point P along the absolute
intrinsic space ∅ρ̂, when ∅ρ̂ was a straight line along the horizontal in Fig. 7, becomes replaced
by components d∅ρ ′

ab and ∅cδ∅t′ab projected along the horizontal in Fig. 8, upon the evolution of
the geometry of Fig. 8 from Fig. 7. There is invariance of the squares of intrinsic coordinate intervals
along the horizontal between Fig. 7 and Fig. 8, expressed as follows,

(d∅ρ ′
ab)

2 +∅c2sab(δ∅t′ab)2 = d∅ρ̂2 ,

or

(d∅ρ ′
ab)

2 = d∅ρ̂2 −∅c2sab(δ∅t′ab)2

= (d∅ρ ′
ab)

2 sec2 ∅ψ̂P −∅c2sab(d∅t′ab)2 sin2 ∅ψ̂P 0 , (50)

where the second equation of system (49b) has been used. In effect, this equation expresses
invariance of partial intrinsic line element between the curved ‘one-dimensional’ absolute intrinsic
metric space ∅ρ̂ and its projective straight line absolute proper intrinsic metric space ∅ρ′ab in Fig. 8.

The following relation likewise obtains between the absolute proper intrinsic coordinate interval ∅csabd∅t′ab
along the curved absolute proper intrinsic metric time dimension ∅csab∅t′ab and the absolute intrinsic
coordinate intervals, ∅ĉsd∅t̂ and δ∅ρ̂, projected into the straight line absolute intrinsic metric time
‘dimension’ ∅ĉs∅t̂ along the vertical in the upper half of Fig. 8

∅c2sab(d∅t′ab)2 = ∅ĉ2sd∅t̂2 + δ∅ρ̂2 ;

= ∅c2sab(d∅t′ab)2 cos2 ∅ψ̂P 0 + d∅ρ̂2 sin2 ∅ψ̂P ;

= ∅c2sab(d∅t′ab)2 cos2 ∅ψ̂P 0 + (d∅ρ ′
ab)

2 tan2 ∅ψ̂P , (51)

where the first equation of system (49b) has been used between the last two lines of equations.

Again Eq. (51) expresses invariance of partial intrinsic line element between the curved one-dimensional
absolute proper intrinsic time dimension ∅csab∅t′ab and the straight line absolute intrinsic time ‘dimension’
∅ĉs∅t̂ along the vertical in Fig. 7. Both relations (50) and (51) have been derived by or with respect
to 3-observers in the relative proper Euclidean 3-space IE′3 solely in Fig. 8, with respect to whom
Fig. 8 is valid.

Now the addition of Eqs. (50) and (51) does not lead to absolute intrinsic local Euclidean invariance
(A∅LEI), as can be easily verified. It may be recalled that the addition of the corresponding Eqs. (21a)
and (21b) derived from Fig. 5, leads to absolute intrinsic local Euclidean invariance expressed by
Eq. (22).
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On the other hand, let us subtract Eq. (50) from Eq. (51) to have as follows

∅c2sab(d∅t′ab)2 − (d∅ρ′ab)2 = ∅c2sab(d∅t′ab)2 cos2 ∅ψ̂ + (d∅ρ ′
ab)

2 tan2 ∅ψ̂
−(d∅ρ ′

ab)
2 sec2 ∅ψ̂ −∅c2sab(d∅t′ab)2 sin2 ∅ψ̂ , (52)

where the fact that, ∅ψ̂P = ∅ψ̂P 0 ≡ ∅ψ̂, has been used. Equation (52) is given as follows by
associating like terms at the right-hand side

∅c2sab(d∅t′ab)2 − (d∅ρ′ab)2 = ∅c2sab(d∅t′ab)2(cos2 ∅ψ̂ + sin2 ∅ψ̂)
−(d∅ρ′ab)2(sec2 ∅ψ̂ − tan2 ∅ψ̂) . (53)

Equation (53) expresses absolute intrinsic local Lorentz invariance (A∅LLI) in terms of absolute
proper intrinsic metric coordinate intervals by virtue of the expressions, cos2 ∅ψ̂ + sin2 ∅ψ̂ = 1 and
sec2 ∅ψ̂ − tan2 ∅ψ̂ = 1.

Now the invariance of intrinsic line element between the absolute intrinsic spacetime (∅ρ̂,∅ĉs∅t̂) and
the absolute proper intrinsic spacetime (∅ρ ′

ab ,∅csab∅t′ab) in Fig. 8 allows us to write the following

d∅ŝ2 = (d∅s′ab)2

or
∅ĉ2sd∅t̂ 2 − d∅ρ̂2 = ∅c2(d∅t′ab)2 − (d∅ρ ′

ab)
2 , (54)

where d∅ŝ pertains to the ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) bounded
by curved ∅ρ̂ and straight line ∅ĉs∅t̂, while d∅s′ab pertains to (∅ρ′ab,∅cs∅t′ab) in Fig. 8. Equation (54)
is still a statement of absolute intrinsic local Lorentz invariance (A∅LLI) on the curved (∅ρ̂,∅ĉs∅t̂)
with respect to 3-observers in IE′3 solely in Fig. 5, where Fig. 8 must be used to derive it.

It follows from Eq. (54) that the absolute proper intrinsic coordinate intervals, d∅ρ ′
ab and ∅csabd∅t′ab,

can be replaced with absolute intrinsic coordinate intervals, d∅ρ̂ and ∅ĉsd∅t̂, respectively in Eq. (52)
to have

∅ĉ2sd∅t̂ 2 − d∅ρ̂2 = ∅ĉ2sd∅t̂ 2(cos2 ∅ψ̂ + sin2 ∅ψ̂)
−d∅ρ̂2(sec2 ∅ψ̂ − tan2 ∅ψ̂) . (55)

Again Eq. (55) expresses absolute intrinsic local Lorentz invariance (A∅LLI) on (∅ρ̂,∅ĉs∅t̂) with
respect to 3-observer in IE′3 solely in Fig. 8, in terms of absolute intrinsic coordinate intervals of
(∅ρ̂,∅ĉs∅t̂), which is the appropriate thing to do. Let us replace ∅ĉ2sd∅t̂ 2 − d∅ρ̂2 by d∅ŝ2 at the
left-hand side of (55) to have

d∅ŝ2 = ∅ĉ2sd∅t̂ 2(cos2 ∅ψ̂ + sin2 ∅ψ̂)
−d∅ρ̂2(sec2 ∅ψ̂ − tan2 ∅ψ̂) (56)

or
d∅ŝ2 = ∅ĉ2sd∅t̂ 2 − d∅ρ̂2 . (57)

The absolute intrinsic Lorentzian line element (56) or (57) obtains at every point along the curved ∅ρ̂
and the symmetry-partner point along the straight line absolute intrinsic time ‘dimension’ ∅ĉs∅t̂, with
respect to 3-observers in IE′3 in Fig. 8, in so far as both the metric and ‘non-metric’ intrinsic coordinate
interval projections are taken into account in deriving intrinsic coordinate projection relations from
Fig. 8, as done in systems (49a-c) and in Eqs. (50) and (51).

In brief, it is absolute intrinsic local Lorentz invariance (A∅LLI) (and not absolute intrinsic local
Euclidean invariance (A∅LEI)) that obtains on the ‘two-dimensional’ absolute intrinsic spacetime
bounded by curved ∅ρ̂ and straight line ∅ĉs∅t̂, with respect to 3-observers in in the proper metric
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Euclidean 3-space IE′3 in Fig. 8, in so far as both the metric and the ‘non-metric’ intrinsic coordinate
interval projections are taken into account in deriving intrinsic coordinate projection relations from
Fig. 8. It can also be said that A∅LLI obtains on the curved ‘two-dimensional’ absolute intrinsic
metric spacetime (∅ρ̂,∅ĉs∅t̂ ) with respect to 3-observers in IE′3 solely in Fig. 5, since Fig. 8 is Fig. 5
made valid with respect to 3-observers in IE′3 solely.

Apart from deriving absolute intrinsic local Lorentz invariance (A∅LLI) on the curved ‘two-dimensional’
absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂ ) with respect to 3-observers in IE′3 solely by making
use of both the metric and non-metric intrinsic coordinate projections, as done above, the A∅LLI on
(∅ρ̂,∅ĉs∅t̂ ) with respect to these observers is required in order to be able to re-write the absolute
intrinsic line element (54) in the appropriate form of Eq. (55).

We have thus shown that the natural absolute intrinsic local Euclidean invariance (A∅LEI) on the
curved ‘two-dimensional’ absolute intrinsic spacetime (∅ρ̂,∅ĉs∅t̂ ), which is valid partially with respect
to 3-observers in the proper Euclidean 3-space IE′3 and partially with respect to 1-observers in the
proper time dimension cst

′ in Fig. 5, becomes required absolute intrinsic local Lorentz invariance
(A∅LLI) on the curved (∅ρ̂,∅ĉs∅t̂ ), with respect to 3-observers in IE′3 solely, with respect to whom
the diagram of Fig. 8 must be drawn. It shall be shown with further development elsewhere thatA∅LLI
is trivially satisfied, apart from the consideration of both the projective metric and non-metric intrinsic
coordinate intervals as done above, because of the natural absolutism of intrinsic coordinates namely,
∅x ′k

ab = ∅x̂k ; k = 0, 1, in the absolute intrinsic Riemanian metric spacetime geometry.

Now let us separate d∅ŝ2 in Eq. (56) into the metric and ‘non-metric’ components as

d∅ŝ2 = d∅ŝ2m + d∅ŝ2nm

=

1∑
i,j=0

∅ĝijd∅x̂id∅x̂j −
1∑

i,j=0

∅R̂ijd∅x̂id∅x̂j (58)

or

d∅ŝ2 =
(
∅ĉ2s(d∅t̂)2 cos2 ∅ψ̂ − (d∅ρ̂)2 sec2 ∅ψ̂

)
−
(
−∅ĉ2s(d∅t̂)2 sin2 ∅ψ̂−(d∅ρ̂)2 tan2 ∅ψ̂

)
. (59)

The absolute intrinsic line element without star label on the curved ‘two-dimensional’ absolute intrinsic
metric spacetime (∅ρ̂,∅cs∅t̂) that is valid with respect to 3-observers in IE′3 solely in Fig. 5 (which
is the same as the absolute intrinsic line element on (∅ρ̂,∅ĉsab∅t′ab) in Fig. 8), which follows from
Eqs. (58) and (59) is the following

d∅ŝ2m =

1∑
i,j=0

∅ĝijd∅x̂id∅x̂j

= ∅ĝ00∅ĉ2sd∅t̂ 2 +∅ĝ11d∅ρ̂2 (60)

= cos2 ∅ψ̂∅ĉ2sd∅t̂ 2 − sec2 ∅ψ̂d∅ρ̂2 (61)

= (1−∅k̂2)∅ĉ2sd∅t̂ 2 −
d∅ρ̂2

1−∅k̂2
(62)

The derived hyperbolic absolute intrinsic line element of Eq. (61) or (62) on the curved ‘two-dimensional’
absolute intrinsic metric spacetime (∅ρ̂,∅csab∅t′ab) in Fig. 8, which is valid with respect to 3-observers
in the relative proper metric Euclidean 3-space IE′3 solely (or on the curved (∅ρ̂,∅ĉs∅t̂) with respect
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to 3-observers in IE′3 in Fig. 5), implies the following hyperbolic absolute intrinsic metric tensor with
respect to 3-observers in IE′3

∅ĝij =

(
cos2 ∅ψ̂ 0

0 − sec2 ∅ψ̂

)
, (63)

or

∅ĝij =

 1−∅k̂2 0

0 − 1

1−∅k̂2

 . (64)

The absolute intrinsic line element (61) or (62) and the absolute intrinsic metric tensor (63) or (64), on
the curved absolute intrinsic space - straight line absolute intrinsic time ‘dimension’ (∅ρ̂,∅ĉs∅t̂) in
Fig. 8, which are valid with respect to 3-observers in the proper physical Euclidean 3-space IE′3 solely
in that figure, are now hyperbolic as known for spacetime metrics. It can also be said that Eqs. (61)
– (64) are valid on the curved ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) in
Fig. 5, with respect to 3-observers in the proper physical Euclidean 3-space IE′3 solely in that figure.

Equation (60) or (61) and Eq. (63) or (64) give the final forms of the absolute intrinsic line element
and absolute intrinsic metric tensor in the context of ‘two-dimensional’ absolute intrinsic Riemannian
spacetime geometry (or absolute Riemannian nospace-notime geometry) in our universe. The absolute
intrinsic curvature parameter ∅k̂ that appears in them shall be related to the absolute intrinsic para-
meters of the metric force field that gives rise to absolute intrinsic Riemannian spacetime geometry
within a region of the universal spacetime elsewhere.

The absolute intrinsic metric tensor (without star label) ∅ĝij of Eq. (63) or (64) (on a manifold of the
type IMp+q, which is ∅IM̂1+1 in the present case), is the modified form of the starred absolute intrinsic
metric tensor ∅ĝ∗ij of Eq. (32) or (33) (on a manifold of the type IMp, which is ∅IM̂2 in the present
case). The components of ∅ĝ∗ij and ∅ĝij are related by comparing Eqs. (33) and (64) as follows

∅ĝ00=
1

∅ĝ∗00
; ∅ĝ11=−∅ĝ∗11; ∅ĝij=∅ĝ∗ij = 0; i ̸= j . (65a)

The following relations also follow among the components of ∅ĝ∗ij in Eq. (33) and among the compo-
nents of ∅ĝij in Eq. (63)

∅ĝ∗11 = ∅ĝ∗00; ∅ĝ11 = − 1

∅ĝ00
. (65b)

The validity of systems (65a) and (65b) in all situations is guaranteed by the fact that there is a
perfect symmetry of state between the positive time-universe and our universe and, indeed, among
the four universes isolated in [3–6], as mentioned earlier. This fact guarantees that the curvature
of the absolute intrinsic space ∅ρ̂ relative to the absolute proper intrinsic space ∅ρ′ab at every point
along ∅ρ̂ is identical to the curvature of the absolute intrinsic time ‘dimension’ ∅ĉs∅t̂ relative to the
absolute proper intrinsic time dimension ∅csab∅t′ab at the symmetry-partner point along ∅ĉs∅t̂ in
Fig. 5. Hence the absolute intrinsic curvature parameter ∅k̂P at point P on curved ∅ρ̂ is identical
to the absolute intrinsic curvature parameter ∅k̂P 0 at the symmetry-partner point P0 of the curved
∅ĉs∅t̂. That is, ∅ψ̂P = ∅ψ̂P 0 ≡ ∅ψ̂, hence, ∅k̂P = ∅k̂P 0 ≡ ∅k̂, in Fig. 5, as mentioned earlier, and
this is true in all situations and implies that systems (65a) and (65b) are true in all situations.

In obtaining the final absolute intrinsic metric tensor ∅ĝij without star label of Eq. (63) or (64)
tensorially, one must solve the pair of starred absolute intrinsic tensor equations (34) and (38) simulta-
neously to obtain the starred absolute intrinsic metric tensor ∅ĝ∗ij of Eq. (33) and the starred absolute
intrinsic Ricci tensor ∅R̂∗

ij of Eq. (39).
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One must then apply relations (65a) and (65b) to obtain the absolute intrinsic metric tensor without
star label ∅ĝij from the starred absolute intrinsic metric tensor ∅ĝ∗ij so obtained.

In order to obtain the absolute intrinsic Ricci tensor without star label ∅R̂ij , which is compatible with
the absolute intrinsic metric tensor without star label ∅ĝij , obtained from the program in the preceding
paragraph, we shall make use of the validity of absolute intrinsic local Lorentz invariance (A∅LLI) on
(∅ρ̂,∅ĉs∅t̂ ), with respect to 3-observers in the proper physical Euclidean 3-space IE′3 in Fig. 8,
demonstrated above. This implies that Eq. (34) must now be written in terms of absolute intrinsic
tensors without star label ∅ĝij and ∅R̂ij and with the Euclidean metric tensor δij in that equation
replaced with the Lorentzian metric tensor ηij . In other words, the following absolute intrinsic tensorial
statement of absolute intrinsic local Lorentz invariance on the curved (∅ρ̂,∅ĉs∅t̂ ) with respect to 3-
observers in IE′3 solely must be satisfied,

∅ĝij −∅R̂ij = ηij (A∅LLI) . (66)

With ∅ĝij given by Eq. (63) or (64), the absolute intrinsic Ricci tensor without star label ∅R̂ij that
satisfies Eq. (66) is the following

∅R̂ij =

(
− sin2 ∅ψ̂ 0

0 − tan2 ∅ψ̂

)
; (67)

=

 −∅k̂2 0

0 − ∅k̂2

1−∅k̂2

 . (68)

Equation (67) and, hence, Eq. (68), can also be written from the second terms at the right-hand sides
of Eqs. (58) and (59).

Now let us consider a situation where a pair of ‘two-dimensional’ absolute intrinsic metric spacetimes
coexist. One will naturally be curved relative to the other as illustrated in Fig. 6. The lower half of Fig. 6
is valid with respect to 3-observers in IE′3, while the upper half is valid with respect to 1-observers in
cst

′. In order to make Fig. 6 valid with respect to 3-observers in IE′3 solely, it must be modified as
Fig. 9, which follows from the explanation for drawing Fig. 8 from Fig. 5.

c ts

c ts

c ts

c tsab

c tsab ab

ab

c

c

t

t

sab

sab

ab

ab

ab

ab

Fig. 9. Deriving resultant absolute intrinsic coordinate projections with respect to
3-observers in the underlying relative proper metric Euclidean 3-space solely, when two

curved absolute intrinsic metric spacetimes (or absolute intrinsic Riemannian metric
spacetimes) co-exist
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The resultant absolute intrinsic metric coordinate interval projection relations, or the resultant absolute
intrinsic length contraction and resultant absolute intrinsic time dilation formulae, which are valid with
respect to 3-observers in IE′3 solely in Fig. 9 are the following

d∅ρ ′
ab = d∅ρ̂ cos∅ψ̂res

= d∅ρ̂ cos∅ψ̂′ cos∅ψ̂
= d∅ρ̂(1−∅k̂′2)1/2(1−∅k̂2)1/2 (69)

and

∅csabd∅t′ab = ∅ĉsd∅t̂ sec∅ψ̂res
= ∅ĉsd∅t̂ sec∅ψ̂′ sec∅ψ̂
= ∅ĉsd∅t̂(1−∅k̂′2)−1/2 ×

(1−∅k̂2)−1/2 . (70)

The resultant absolute intrinsic metric tensor without star label ∅ĝij and the resultant absolute intrinsic

Ricci tensor without star label ∅R̂ij , which are valid with respect to 3-observers in IE′3 solely in
Fig. 8, are given by writing Eqs.(63) and (64) in terms of the resultant absolute intrinsic angle ∅ψ̂ and
resultant absolute intrinsic curvature parameter ∅k̂ as follows

∅ĝij =

 1− sin2 ∅ψ̂ 0

0 − 1

1− sin2 ∅ψ̂

 (71)

where, sin2 ∅ψ̂ = sin2 ∅ψ̂′ + sin2 ∅ψ̂, as follows from the derived relation (90) of [2]. Equation (71)
corresponds to the following in terms of resultant absolute intrinsic curvature parameter,

∅ĝij =

 1− (∅k̂)2 0

0 − 1

1− (∅k̂)2

 ; (72)

=

 1− (∅k̂′)2 −∅k̂2 0

0 − 1

1− (∅k̂′)2 −∅k̂2

 , (73)

where, (∅k̂)2 = (∅k̂ ′)2 +∅k̂2, as derived in [2] and presented as Eq. (91) of that paper.

And by writing equations (67) and (68) in terms of the resultant absolute intrinsic angle ∅ψ̂ and
resultant absolute intrinsic curvature parameter ∅k̂ we have

∅R̂ij =

 − sin2 ∅ψ̂ 0

0 − sin2 ∅ψ̂

1− sin2 ∅ψ̂

 (74)

or

∅R̂ij =

 −(∅k̂)2 0

0 − (∅k̂)2

1− (∅k̂)2

 (75)

=

−(∅k̂′)2 −∅k̂2 0

0 − (∅k̂′)2 +∅k̂2

1− (∅k̂′)2 −∅k̂2

 . (76)
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Thus the resultant absolute intrinsic line element on the upper curved ‘two-dimensional’ absolute
intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) in Fig. 6, which is valid with respect to 3-observers in IE′3

solely in that figure, derived via Fig. 9 is the following

d∅ŝ 2 = ∅ĝ00∅ĉ
2
sd∅t̂2 −∅ĝ11d∅ρ̂

2

= (1− sin2 ∅ψ̂′−sin2 ∅ψ̂)∅ĉ2sd∅t̂2

− d∅ρ̂2

1− sin2 ∅ψ̂′ − sin2 ∅ψ̂
, (77)

or

d∅ŝ 2 = (1− (∅k̂′)2 −∅k̂2)∅ĉ2sd∅t̂2

− d∅ρ̂2

1− (∅k̂′)2 −∅k̂2
. (78)

The extension of relations (69) through (78) to the situation where three and a larger number of
curved ‘two-dimensional’ absolute intrinsic metric spacetimes (or absolute intrinsic Riemannian metric
spacetimes) co-exist is straight forward.

3 ISOLATING NON UNI-
FORM ABSOLUTE INTRI-
NSIC ‘STATIC FLOW’
SPEED ALONG THE
CURVED ABSOLUTE
INTRINSIC METRIC
SPACE AND CURVED
ABSOLUTE INTRINSIC
METRIC TIME ‘DIMEN-
SION’ IN A LONG-RANGE
METRIC FORCE FIELD

Figs. 10a and 10b are valid with respect to 1-
observers in the static relative proper metric time
dimension cst′ of our universe and 1-observers0

in the static relative proper metric time dimension
cst

0′ of the positive time-universe respectively,
as indicated. The cst′ and cst0′ are referred to as
static because, although they possess constant
static geodetic flow speed cs at every point along
their lengths, they are not in geodetic flow, as
explained in sub-section 1.4 of [3].

The elementary interval ∅ĉsd∅t̂ of the curved

static absolute intrinsic metric time ‘dimension’
∅ĉs∅t̂ at point P0 along ∅ĉs∅t̂, spans interval
∅csabd∅t′ab of ∅csab∅t′ab along the vertical
and interval d∅ρ̂ of ∅ρ̂ along the horizontal
in Fig. 10a. The curved ‘dimension’ ∅ĉs∅t̂
possesses absolute intrinsic static geodetic flow
speed ∅ĉs at every point along its ‘length, which
is not made manifested in its absolute intrinsic
geodetic flow. Hence ∅ĉs∅t̂ is a static absolute
intrinsic metric time ‘dimension’.

The trigonometric sine ratio of the absolute
intrinsic angle ∅ψ̂P 0 of inclination of the curved
∅ĉs∅t̂ to ∅csab∅t′ab along the vertical at point P0

along ∅ĉs∅t̂ is given as

sin∅ψ̂P 0 =
d∅ρ̂

∅ĉsd∅t̂
=

∅V̂m,P 0

∅ĉs
, (79)

where, d∅ρ̂/d∅t̂ = ∅V̂m,P 0 , shall be referred
to as absolute intrinsic ‘static flow’ speed. The
metric force field establishes non-uniform ‘static
flow’ speed ∅V̂m along the curved absolute
intrinsic metric time ‘dimension’ ∅ĉs∅t̂ with the
value ∅V̂m,P 0 at point P0 along ∅ĉs∅t̂, with
respect to all 1-observers in the static relative
proper metric time dimension cst′ of our universe
along the vertical in Fig. 10a.

The trigonometric sine ratio of the absolute
intrinsic angle ∅ψ̂P of inclination of the static
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curved ∅ĉs∅t̂ 0 relative to ∅csab∅t0′ab along the
horizontal at point P along ∅ĉs∅t̂ 0 in Fig. 10b, is
likewise given as

sin∅ψ̂P =
d∅ρ̂0

∅ĉsd∅t̂ 0
=

∅V̂m,P

∅ĉs
, (80)

where, again, d∅ρ̂0/d∅t̂ 0 = ∅V̂m,P , is the
absolute intrinsic ‘static flow’ speed of the curved
absolute intrinsic static metric time ‘dimension’
∅ĉs∅t̂ 0 at point P along ∅ĉs∅t̂ 0, with respect to
1-observers0 in the relative proper static metric
time dimension cst0′ of the positive time-universe
along the horizontal in Fig. 10b.

The absolute intrinsic ‘static flow’ speeds, ∅V̂m,P

and ∅V̂m,P0 , are established by the sources of
the metric force fields located at the origins S
and S0 of the curved ∅ĉs∅t̂ and ∅ĉs∅t̂0. Further
difference between the non-uniform ∅V̂m, with
maximum value ∅ĉm and the absolute intrinsic
static geodesic flow speed ∅V̂0 (or ∅V̂s) with
maximum value ∅ĉs (not established by the
sources of the metric force field), where ∅ĉm and
∅ĉs have the same magnitude of 3 × 103 m s−1,
shall be discussed shortly below.

Although the point P0 of the curved static
absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂
possesses absolute intrinsic ‘static flow speed’
∅V̂m,P 0 relative to 1-observers in cst′ in Fig.10a,
and the point P of the curved static absolute

intrinsic time dimension ∅ĉs∅t̂ 0 possesses
absolute intrinsic ‘static flow speed’ ∅V̂m,P

relative to 1-observers in cst
0′ in Fig. 10b, the

points P0 of ∅ĉs∅t̂ and P of ∅ĉs∅t̂ 0 are not
in absolute intrinsic flow. This is so because
∅V̂m,P 0 and ∅V̂m,P are static ‘speeds’ not
made manifested in flow. This is in order, since
∅ĉs∅t̂ and ∅ĉs∅t̂ 0 are static absolute intrinsic
‘dimensions’.

Although ∅V̂m,P 0 and ∅V̂m,P are intrinsic ‘static
flow’ speeds, they are different from the absolute
intrinsic static geodesic flow speed, ∅V̂0 (or ∅V̂s)
with constant maximum value ∅ĉs, as discussed
above. The divisor ∅ĉs in ∅V̂m,P 0/∅ĉs and
∅V̂m,P /∅ĉs in Eqs. (79) and (80), should be the
maximum ∅ĉm over all possible values of the
absolute intrinsic ‘static flow’ speed ∅V̂m,P 0 or
∅V̂m,P .

The maximum absolute intrinsic ‘static flow’
speed ∅ĉm that must replace ∅ĉs in Eqs. (79)
and (80) is not the maximum absolute intrinsic
dynamical ∅ĉd or the maximum absolute intrinsic
light speed ∅ĉγ or the maximum absolute
intrinsic static geodetic flow speed ∅ĉs. It is
nevertheless a static (or non-dynamical) absolute
intrinsic speed, with a magnitude of 3×108 m s−1

(not made manifested in absolute intrinsic flow
of ∅ĉs∅t̂ and ∅ĉs∅t̂ 0), like its reduced values,
∅V̂m,P 0 and ∅V̂m,P . The appropriate names
and notations for ∅V̂m,P 0 , ∅V̂m,P and ∅ĉm, in
the gravitational field, as a particular metric force
field), shall be introduced elsewhere.

Equations (79) and (80) shall be corrected as follows by virtue of the foregoing discussions

sin∅ψ̂m,P 0 =
d∅ρ̂

∅ĉsd∅t̂
=

∅V̂m,P 0

∅ĉm
(81)

and

sin∅ψ̂P =
d∅ρ̂0

∅ĉsd∅t̂ 0
=

∅V̂m,P

∅ĉm
. (82)

The full explanation of the appropriate equations (81) and (82) shall be given elsewhere. There will
be found a new curved (active) static absolute intrinsic metric spacetime (∅ρ̂a,∅ĉm∅t̂a), which is
embedded in the curved (passive) static absolute intrinsic metric metric spacetimes (∅ρ̂,∅ĉs∅t̂ ) in
Fig. 10a and its counterpart Fig. 10b. Equation (79) will actually be, d∅ρ̂a/∅ĉmd∅t̂a = ∅V̂m,P /∅ĉm
in the more complete diagram.

The pair of points P0 along the curved ∅ĉs∅t̂ in Fig. 10a and point P along the curved ∅ĉs∅t̂ 0 in
Fig. 10b are symmetry-partner points. Another pair of symmetry-partner points Q0 along the curved
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∅ĉs∅t̂ in Fig. 10a and Q along the curved ∅ĉs∅t̂ 0 in Fig. 10b, likewise possesses absolute intrinsic
speeds ∅V̂m,Q0 relative to 1-observers in cst′ in Fig. 10a and ∅V̂m,Q relative to 1-observers in cst0′

in Fig. 10b respectively. The absolute intrinsic speeds, ∅V̂m,P 0 and ∅ ˆm,V m,Q0 , along the curved
∅ĉs∅t̂ are illustrated in Fig. 11a, and the corresponding absolute intrinsic speeds, ∅V̂m,P and ∅V̂m,Q,
along the curved ∅ĉs∅t̂ 0 are illustrated in Fig. 11b.
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Fig. 10. Deriving non-uniform absolute intrinsic ‘static flow’ speeds established by the metric
force field along the curved absolute intrinsic metric time ‘dimensions’ with respect to
1-observers in the relative proper static metric time dimensions of our universe and the

positive time-universe
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Fig. 11. Non-uniform absolute intrinsic ‘static flow’ speeds along curved absolute intrinsic
metric time dimensions with respect to 1-observers in the relative proper metric time
dimensions of our universe and positive time-universe, established by the sources of

symmetry-partner long-range absolute intrinsic metric force fields located at
symmetry-partner positions S and S0 on the curved absolute intrinsic time dimensions.

The half-geometry of Fig. 10a with respect to 1-observers in the relative proper time dimension cst′ of
our universe and the half-geometry of Fig. 11b with respect to 1-observers in the relative proper time
dimension cst

0′ of the positive time-universe, co-exist and must be united into a singular diagram.
In doing this and making the resulting diagram to contain the spacetime and intrinsic spacetime
dimensions of our (or positive) universe solely, we must, as done in [3] let, cst0 → IE′3; ∅csab∅t0′ab →
∅ρ ′

ab and ∅ĉs∅t̂ 0 → ∅ρ̂, in Fig. 11b and unite the lower half of the resulting diagram with the upper
half of Fig. 11a to have the more detailed Fig. 12.

Fig. 12 is again the 4-geometry/intrinsic 2-geometry diagram of Fig. 5, in which the ‘one-dimensional’
absolute intrinsic metric space ∅ρ̂ is curved relative to its projective straight line absolute proper
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intrinsic metric space ∅ρ′ab along the horizontal and the absolute intrinsics metric time ‘dimension’
∅ĉs∅t̂ is curved relative to its projective straight line absolute proper intrinsic metric time dimension
∅csab∅t′ab along the vertical. The new addition to Fig. 5 in Fig. 12 are the non-uniform absolute
intrinsic ‘static flow’ speeds at every point along the curved absolute intrinsic metric space ∅ρ̂ and
along the curved absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂, where absolute intrinsic ‘static flow’
speeds at only two points P and Q along ∅ρ̂ and at the symmetry-partner points P0 and Q0 along
∅ĉs∅t̂ are shown. The lower half of Fig. 12 is valid with respect to 3-observers in IE′3, while the upper
half is valid with respect to 1-observers in cst′.
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Fig. 12. Non-uniform absolute intrinsic ‘static flow’ speeds ∅V̂m along the ‘dimensions’ of the
curved absolute intrinsic static metric spacetime (∅ρ̂,∅ĉs∅t̂) established by the

symmetry-partner sources of a long-range absolute intrinsic metric force fields at positions S
on and S0 are projected invariantly as non-uniform absolute proper intrinsic ‘static flow’

speeds ∅V ′
mab (= ∅V̂ ) along the ‘dimensions’ of the projective flat absolute proper intrinsic

metric spacetime (∅ρ′ab,∅cs ab∅t′ab) and are made manifested outwardly in non-uniform
absolute proper static speeds V ′

mab along the ‘dimensions’ of flat absolute proper metric
spacetime (ρ′ab, cs abt

′
ab) in our universe

The non-uniform absolute intrinsic ‘static flow’ speeds, ∅V̂m,P and ∅V̂m,P 0 , of the curved absolute
intrinsic metric spacetime dimensions, ∅ĉs∅t̂ and ∅ρ̂, derived geometrically above, but which are
actually established along the curved ∅ρ̂ and ∅ĉs∅t̂ by the source of an absolute intrinsic metric
force field located at the origin (S , S0) of the curved (∅ρ̂,∅ĉs∅t̂) in Figs. 12, with maximum value
∅ĉm, is different from absolute intrinsic static geodesic flow speed ∅V̂0 (or ∅V̂s) with maximum value
∅ĉs, which appears in the notation of the absolute intrinsic static metric time dimension ∅ĉs∅t̂. The
absolute intrinsic static geodesic flow speed ∅V̂0 (or ∅V̂s) has constant maximum value ∅ĉs at every
point of the curved ∅ĉs∅t̂, while ∅V̂m established by the source of the metric force field has varying
values less that the maximum value ∅ĉm along the curved ∅ρ̂ and ∅ĉs∅t̂ in Fig. 12.

As illustrated in Fig. 12, the absolute intrinsic ‘static flow speeds, ’ ∅V̂m,Q and ∅V̂m,P , along the
curved absolute intrinsic metric space ∅ρ̂ are invariantly projected as absolute proper intrinsic ‘static
flow’ speeds, ∅V ′

mab,Q and ∅V ′
mab,P , into the straight line absolute proper intrinsic metric space

∅ρ′ab along the horizontal, with respect to 3-observers in IE′3. The absolute intrinsic ‘static flow’
speeds, ∅V̂m,Q0 and ∅V̂m,P 0 , along the curved absolute intrinsic time dimension ∅ĉs∅t̂ are likewise
invariantly projected as absolute proper intrinsic ‘static flow’ speeds, ∅V ′

mab,Q0 and ∅V ′
mab,P 0 , into

the absolute proper intrinsic metric time dimension ∅csab∅t′ab along the vertical, with respect to all 1-
observers in cst′. The projective absolute proper intrinsic ‘static flow’ speeds, ∅V ′

mab,Q and ∅V ′
mab,P ,

along ∅ρ′
ab are then made manifested in absolute proper ‘static flow’ speeds, V ′

mab,Q and V ′
mab,P , in

the relative proper Euclidean 3-space IE′3, just as the projective absolute proper intrinsic ‘static flow’
speeds, ∅V ′

mab,Q0 and ∅V ′
mab,P 0 , along ∅csab∅t′ab are made manifested in absolute proper ‘static
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flow’ speeds, V ′
mab,Q0 and V ′

mab,P 0 , along the relative proper time dimension cst
′, as illustrated in

Fig. 12.

The prime label on the absolute proper intrinsic ‘static flow’ speeds, ∅V ′
mab,Q , ∅V ′

mab,P , ∅V ′
mab,Q0

and ∅V ′
mab,P 0 , makes them proper intrinsic speeds, while the subscript “ab” label makes them

absolute intrinsic speeds. The absolute proper intrinsic ‘static flow’ speeds, ∅V ′
mab,Q and ∅V ′

mab,P ,
are projected into the projective absolute proper intrinsic metric space dimension ∅ρ ′

ab that is impercep-
tibly embedded in the relative proper intrinsic metric space ∅ρ ′ along the horizontal. The absolute
proper intrinsic ‘static flow’ speeds, ∅V ′

mabQ0 and ∅V ′
mab,P 0 , are likewise projected into the projective

absolute proper intrinsic metric time dimension ∅csab∅t′ab that is imperceptibly embedded in the
relative proper intrinsic metric time dimension ∅cs∅t′ along the vertical in Fig. 12.

The projective absolute proper intrinsic ‘static flow’ speeds, ∅V ′
mab,Q and ∅V ′

mab,P , and their maximum
value ∅cmab, in the projective straight line, ∅ρ ′

ab and ∅csab∅t′ab, are static (or non-dynamical) like,
∅V̂m,Q, ∅V̂m,P and ∅ĉm, along the curved ∅ρ̂ and ∅ĉs∅t̂ that project them.

The fact that absolute intrinsic ‘static flow’ speeds along the curved absolute intrinsic space ∅ρ̂ and
curved absolute intrinsic time dimension ∅ĉs∅t̂, are invariantly projected into the absolute proper
intrinsic metric space ∅ρ′ab and absolute proper intrinsic metric time dimension ∅csab∅t′ab, as absolute
proper intrinsic ‘static flow’ speeds, ∅V ′

mab,Q , ∅V ′
mab,P , ∅V ′

mab,Q0 ; ∅V ′
mab,P 0 and ∅cmab, in Fig. 12,

in the context of absolute intrinsic Riemannian spacetime geometry (or in the context of the absolute
intrinsic metric phenomena associated with absolute intrinsic Riemannian spacetime geometry), shall
be stated as the following invariance

∅V ′
mab = ∅V̂m , (83a)

hence
V ′
mab = V̂m , (83b)

where Eq. (83a) has been written at an arbitrary point along the curved ∅ρ̂ and its symmetry-partner
point along the curved ∅ĉs∅t̂ and Eq. (83b) has been written at the corresponding point in IE′3 and
its symmetry-partner point along cst′.

Let us re-write Eqs. (79) and (80), while letting, ∅ψ̂P 0 = ∅ψ̂P ≡ ∅ψ̂, and ∅V̂m,P 0 = ∅V̂m,P ≡ ∅V̂m

in those equations as the following singular equation, which is valid at arbitrary symmetry-partner
points along both ∅ρ̂ and ∅ĉs∅t̂

sin∅ψ̂ = ∅V̂m/∅ĉm . (84a)

The relation for the identical absolute intrinsic curvature parameters ∅k̂ at the arbitrary point P along
the curved absolute intrinsic space ∅ρ̂ with respect to 3-observers in IE′3 and at the symmetry-partner
point along the curved absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂ with respect to 1-observers in
cst

′, has been related to the absolute intrinsic angle ∅ψ̂ in sub-section 1.1 of [2] as

sin∅ψ̂ = ∅k̂ . (84b)

The absolute intrinsic curvature parameter at an arbitrary point P along the curved ∅ρ̂ and at the
symmetry-partner point P0 along the curved ∅ĉs∅t̂ is therefore related to the absolute intrinsic ‘static
flow’ speed at those points from Eqs. (84a) and (84b) as

∅k̂ = ∅V̂m/∅ĉm . (84c)

The absolute intrinsic metric tensor and absolute intrinsic Ricci tensor without star label, given in
terms of absolute intrinsic curvature parameter as Eqs. (64) and (68), in the case of one absolute
intrinsic Riemannian metric spacetime, that is, in the case of a singular curved absolute intrinsic
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metric spacetime, can then be written in terms of the absolute intrinsic ‘static flow’ speeds, ∅V̂m and
∅ĉm, respectively as

∅ĝij =

 1−∅V̂ 2
m/∅ĉ2m 0

0 − 1

1−∅V̂ 2
m/∅ĉ2m

 (85)

and

∅R̂ij =

 −∅V̂ 2
m/∅ĉ2m 0

0 − ∅V̂ 2
m/∅ĉ2m

1−∅V̂ 2
m/∅ĉ2m

.

 . (86)

The absolute intrinsic line element (62) likewise becomes the following in terms of the absolute
intrinsic ‘static flow’ speeds ∅V̂m and ∅ĉm

d∅ŝ2 = (1−∅V̂ 2
m/∅ĉ2m)∅ĉ2sd∅t̂2 −

d∅ρ̂2

1−∅V̂ 2
m/∅ĉ2m

. (87)

The resultant absolute intrinsic metric tensor, resultant absolute intrinsic Ricci tensor and resultant
absolute intrinsic line element (73), (76) and (78), in a situation where two absolute intrinsic Riemannian
metric spacetimes co-exist, become the following in terms of the absolute intrinsic ‘static flow’ speeds
∅V̂m, ∅V̂ ′

m and ∅ĉm

∅ĝij =


1− ∅V̂ ′2

m

∅ĉ2m
− ∅V̂ 2

m

∅ĉ2m
0

0 − 1

1− ∅V̂ ′2
m

∅ĉ2m
− ∅V̂ 2

m

∅ĉ2m

 (88)

∅R̂ij =


−∅V̂ ′2

m

∅ĉ2m
− ∅V̂ 2

m

∅ĉ2m
0

0 −

∅V̂ ′2
m

∅ĉ2m
+

∅V̂ 2
m

∅ĉ2m

1− ∅V̂ ′2
m

∅ĉ2m
− ∅V̂ 2

m

∅ĉ2m

 (89)

and

(d∅ŝ)2 =

(
1− ∅V̂ ′2

m

∅ĉ2m
− ∅V̂ 2

m

∅ĉ2m

)
∅ĉ2sd∅t̂2 −

d∅ρ̂2

1− ∅V̂ ′2
m

∅ĉ2m
− ∅V̂ 2

m

∅ĉ2m

. (90)

Extension of Eqs. (88) - (90) to situations where
a larger number of absolute intrinsic Riemannian
metric spacetimes (or curved ‘two-dimensional’
absolute intrinsic metric spacetimes) co-exist (or
are superposed) is straight forward.

The absolute intrinsic curvature parameter ∅k̂
is a geometrical parameter, as follows from
its derivation in sub-section 1.1 of part two of
this paper [2]. The non-uniform static absolute
intrinsic ‘static flow’ speed S∅V̂m along the
curved absolute intrinsic space ∅ρ̂ and curved
absolute intrinsic time ‘dimension’ ∅ĉs∅t̂ in

Fig. 12, which is related to the non-uniform
absolute intrinsic curvature parameters ∅k̂ of
the curved ∅ρ̂ and curved ∅ĉs∅t̂, by Eq. (84c),
is likewise an absolute intrinsic geometrical
parameter. This is so, because the definition,
∅V̂m = d∅ρ̂/d∅t̂, in Eqs. (79) and (80), follows
from the geometry of Figs. 10a and 10b, without
relation to the absolute intrinsic parameters
of the absolute intrinsic metric force field that
establishes absolute intrinsic Riemann geometry.
The absolute intrinsic geometrical parameters,
∅V̂m and ∅ĉm, or ∅k̂, which appear in the
absolute intrinsic metric tensor, absolute intrinsic
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Ricci tensor and absolute intrinsic line element,
in absolute intrinsic Riemannian spacetime
geometry, shall be related to the absolute intrinsic
parameters of the absolute intrinsic metric force
field that give rise to curved ‘two-dimensional’
absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂)
elsewhere.

The explanation of the evolution of the curved
absolute intrinsic metric space ∅ρ̂ and curved
absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂
in Fig. 12 or Fig. 5, from the reference geometry
of Fig. 7, which follows from the validity of
Eqs. (81) and (82) at every point along the curved
∅ρ̂ and ∅ĉs∅t̂ in Fig. 12 is that non-uniform
absolute intrinsic ‘static flow’ speeds ∅V̂m are
identically established along the straight line
absolute intrinsic metric space ∅ρ̂ and straight
line absolute intrinsic metric time ‘dimension’
∅ĉs∅t̂ from a point (S, S0) on the flat ‘four-
dimensional’ absolute spacetime (ÎE3, ĉst̂) in
Fig. 7. Then the geometry of Fig. 12 evolves as
a consequence, since (84a) must be satisfied at
every point along ∅ρ̂ and ∅ĉs∅t̂. The mechanism
by which this is achieved in nature requires
explanation to be given elsewhere.

The geometry of Fig. 12 will evolve from Fig. 7, for
instance, if the spherical source of a long-range
absolute metric force field (such as the source of
an absolute gravitational field) located at a point
S in the absolute space ÎE3 of our universe in
Fig. 7, establishes non-uniform absolute ‘static
flow’ speeds V̂m along every radial direction from
its center in all its finite neighborhood in ÎE3 and
the source of absolute intrinsic metric force field
in the absolute intrinsic space ∅ρ̂, underlying
the source of absolute metric force field in
ÎE3, establishes non-uniform absolute intrinsic
‘static flow’ speeds ∅V̂m along the straight line
absolute intrinsic metric space ∅ρ̂ in all its finite
neighborhood in Fig. 7. This will give rise to
the curved ∅ρ̂ and its projective straight line
absolute proper intrinsic metric space ∅ρ′ab along
the horizontal in our universe as illustrated in
Fig. 12.

The identical symmetry-partner source of long-
range absolute metric force field in the flat
absolute space ÎE03 and identical source of
long-range absolute intrinsic metric force field

in straight line absolute intrinsic space ∅ρ̂0,
in the geometry in the positive time-universe
corresponds to that of Fig. 7 in our universe,
will give rise to curved absolute intrinsic metric
space ∅ρ̂0 that projects straight line absolute
proper intrinsic metric space ∅ρ0′ab along the
vertical (as illustrated in Fig. 3) in the positive
time-universe. This corresponds to curved
absolute intrinsic time ‘dimension’ ∅ĉs∅t̂ and
its projective absolute proper intrinsic time
dimension ∅csab∅t′ab of our universe along the
vertical in Fig. 4 or Fig. 12.

4 CONCLUSION
This third part of this paper is the conclusion
of the first stage of evolutions of metric
spacetime and intrinsic metric spacetimes in
long-range metric force fields and the derivation
of the associated absolute intrinsic Riemannian
spacetime geometry, started in the first two
parts. The first stage can be described as
numerical evolution, because the entries of
the absolute intrinsic metric tensor ∅ĝik and
absolute intrinsic Ricci tensor ∅R̂ik involved are
numbers for discretized elementary segments of
the curved ‘two-dimensional’ absolute intrinsic
metric spacetime (∅ρ̂,∅ĉs∅t̂ ). Moreover the two
absolute intrinsic metric tensor equations derived
for ∅ĝik and ∅R̂ik are possible of algebraic
solution. The final fourth part shall be devoted
to the second (and final) stage of evolutions of
relative metric spacetime and relative intrinsic
metric spacetimes in long-range metric force
fields and the development of the associated
local Lorentzian metric spacetime/intrinsic local
Lorentzian metric spacetime geometry.
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