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Abstract: To reduce the communication and computation overhead of neural networks, a novel
pinning event-triggered scheme (PETS) is developed in this paper, which enables pinning syn-
chronization of uncertain coupled memristive neural networks (CMNNs) under limited resources.
Time-varying delays, uncertainties, and mismatched parameters are all considered, which makes
the system more interpretable. In addition, from the low energy cost point of view, an algorithm for
pinned node selection is designed to further investigate the newly event-triggered function under
limited communication resources. Meanwhile, based on the PETS and following the Lyapunov
functional method, sufficient conditions for the pinning exponential stability of the proposed coupled
error system are formulated, and the analysis of the self-triggered method shows that our method
can efficiently avoid Zeno behavior under the newly determined triggered conditions, which con-
tribute to better PETS performance. Extensive experiments demonstrate that the PETS significantly
outperforms the existing schemes in terms of solution quality.

Keywords: event-triggered mechanism; memristor; Zeno behavior; synchronization; pinning control

MSC: 93C10

1. Introduction

In the past decades, the control and synchronization of coupled memristive neural
networks (CMNNs) have attracted attention from research science and engineering fields [1].
This is partly because the memristor can simulate the synapses of biological neurons better
than the resistance. From the biological point of view, CMNNs can better describe the
function of the human brain and the process of information transmission than traditional
neural networks [2]. Because of this, the synchronization of CMNNs can be applied to
secure communication [3], social networks [4], image protection [5], multiplex networks [6],
etc. For many biological and artificial intelligence systems, the dynamical behaviors of
CMNNs are significant. Meanwhile, investigating the synchronization and control of
CMNNs can help to reveal the structure of the human brain nervous system and extend it
to the field of artificial intelligence [7].
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It should be noted that network synchronization is usually achieved by controlling
all nodes of the network. However, CMNNs are often required to realize synchronization
with a limited resource. In this case, it is costly and difficult to control all nodes in practical
applications. Therefore, pinning control in CMNNs has become a hotspot in theoretical
studies and practical applications [8–10].

Recently, various pinning control mechanisms have been proposed for different neural
networks [11–13]. Wang et al. [11] designed an adaptive pinning controller for complex-
valued time-varying bidirectional associative memory neural networks (BAMNNs).
Yu et al. [12] investigated the pinning synchronization of inertial neural networks with
complex-valued time-varying characteristics under a fixed-time interval. In addition,
Zhou et al. [13] designed the event-triggered pinning control scheme, which realizes the
cluster synchronization for specific coupled neural networks under Lévy noises. However,
most of these control methods are based on the application of the pinning controller with
continuous feedback input as time changes.

Moreover, such a pinning scheme cannot meet the requirements of practical applica-
tions under a limited network bandwidth, especially for mechanisms mimicking the human
brain. In practice, many nonidentical characteristics cannot be avoided, e.g., mismatched pa-
rameters and structural instability caused by random perturbation of internal faults [14,15].
Currently, the time-varying delays and uncertain factors in chaotic neural networks are
rarely discussed in the pinning synchronization of CMNNs. Therefore, it is significant to
investigate these issues for CMNNs [16]. Further, the continuous communication among
the nodes is an essential condition for synchronization in the above-mentioned literature,
i.e., scholars usually employ a continuous feedback control method. The event-triggered
mechanism is different from the traditional time-triggered mechanism in that the controller
sends data only when the trigger condition is satisfied, which can save resources and reduce
the update frequency of the controller. As a result, such a control method avoids unneces-
sary use of communication resources and network bandwidth [17]. Current instantaneous
CMNN states are taken as triggering conditions by many previous event-triggered schemes,
but they do not consider the uncertain factors in the information exchange process; that is,
the triggered condition is not related to any uncertain factors and coupling conditions. In
addition, in the existing schemes, much event-triggered control uses the fixed parameters
and the time-varying delays of the system. Zhou et al. [18] established a new self-triggered
control scheme to tackle pinning synchronization in the case of delayed complex networks.
Zhang et al. [19] established an efficient event-triggered sampling control scheme for syn-
chronization of T–S fuzzy complex systems. Wang et al. [20] developed a fuzzy pinning
adaptive event-triggered control scheme for complex neural networks.

However, it has been proven that uncertain factors and mismatched parameters that
are destructive in dynamic behaviors [21,22], often lead to desynchronization, oscillatory
behaviors, or even instability. To handle such negative factors, new practical pinning
control mechanisms have been designed for event-triggered schemes to improve the syn-
chronization or stability of CMNNs. Furthermore, the new appropriate triggered condition
and the Lyapunov function of the pinning schemes should be considered. In this regard,
it is imperative and significant to study the exponential synchronization issue with the
pinning event-triggered scheme (PETS) for CMNNs under time-varying uncertain factors.
The contributions of our work are summarized below.

(1) Different from general CMNNs, the proposed model considers the time-varying un-
certain factors and belongs to an uncertain switching system, which is conducive to
studying the dynamic behavior of the system under different communication situa-
tions. Taking the superiority of both event-triggered control and pinning schemes, a
fresh pinning event-triggered scheme is proposed, which contains the characteristics of
pinning and impulsive control simultaneously to decrease the control cost-effectively.

(2) To clarify the issue of the pinning synchronization for the event-triggered scheme, an
algorithm (Algorithm 1) is designed to identify the number of nodes that need to be
pinned in the CMNNs. Considering the essentials of the PETS, the designed triggered
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function shows the relationship between the degree of nodes, coupling matrix, and
triggered instants.

(3) By designing a fresh Lyapunov functionality and adopting some inequality techniques,
sufficient criteria for pinning event/self-triggered synchronization of CMNNs are
obtained. It is evidenced that a higher connection degree of the pinned nodes can
contribute to better performance under the PETS for the more complex coupled system.
Meanwhile, the controller updates of each pinned node are driven by properly defined
events, and they only depend on the combinational triggered condition. Thus, the
proposed model achieves more practical results than some advanced works.

As for the rest of this paper, Section 2 introduces the model of CMNNs and the involved
definitions and assumptions, as well as lemmas. Then, in Section 3, the theoretical analysis
results of this paper are presented, including a theorem and two corollaries. Numerical
examples are given in Section 4 to validate the main results. Section 5 draws together the
main conclusions of this paper.

Notations: C
(
[−r, 0],Rn

)
(r > 0) in this paper denotes the Banach space of all con-

tinuous functions mapping from [−r, 0] to Rn with q-norm or ∞-norm, Rn denotes an
Euclidean space of n dimensions, and the superscript T denotes a vector transposition or
matrix transposition. In this paper, the vector norm is defined as ∥xi∥, which means the
2-norm of a vector xi; ∥xi∥ = (∑n

i=1 x2
i )

1
2 , co[a, b] refers to the closure (convex hull) of {a, b};

and λmax(P) represents the maximum eigenvalue of matrix P.

Algorithm 1 Algorithm for self-triggered scheme
Require: t = t0,k ∈ N+,tk−1 = t0
Ensure: λmax(D+),λmax(A+),λmax(B+),Υ1,Υ2

1: for i, j to n, and p to N do
2: // Determine λmax(D+),λmax(A+),λmax(B+) by (2) concerning initial values x(t0)

and y(t0);
3: end for
4: // Denote ϵ(t) = ϵ(tk−1)
5: while t < T, // T is the complete time of the whole system. do
6: for i, j to n, and p to N do
7: // Determine λmax(D+),λmax(A+),λmax(B+) by (2) concerning x(tk−1) and

y(tk−1);
8: end for
9: // Compute Υ1,Υ2,

10: // t̃k = t̃k−1 +
1

Υ2
ln
(

1 + Υ2
Υ1

√
h̄(ϵ(t))

)
11: if t = t̃k // which means the system is triggered. then
12: // Update k = k + 1; tk−1 = t; ϵ(t) = ϵ(tk−1)
13: end if
14: end while

2. Preliminaries of the Neural Network Model

Here, the neural network model is first elaborated, and then the error systems and the
lemmas involved in the model are provided.

2.1. The Dynamic Model of CMNNs

According to Kirchhoff’s current law, the model of MNNs can be derived from the
circuit implementation of MNNs shown in Figure 1. Therefore, the model of delayed
MNNs is described as follows:
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Ck
dxk(t)

dt
= −

[ n

∑
l=1

(
D f kl +H f kl

)
+

1
Rk

]
+

n

∑
l=1

D f kl fl(xl(t))

+
n

∑
l=1

H f klsgnkl fl(xl(t − τl(t)) + Ik(t),
(1)

where fl(xl(t − τl(t))) and fl(xl(t)) are neural feedback functions used in the MNNs; xk(t)
is the voltage of the capacitor Ck; and D f kl and H f kl represent the memristance of the
memristor M f kl and N f kl , respectively. Rk denotes the resistance; τl(t) represents the
transmission delay; and 0 ≤ τl(t) ≤ τ̄l and τ̇l(t) ≤ τl < 1. Here, τl is a constant, and it has
a positive value. sgnkl is a two-valued function determined by k and l; that is, sgnkl = 1 for
k ≥ l and sgnkl = −1 for k = l.

… … 

… … 

… … 

… … 

… … 

… … 
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… … …
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Figure 1. Circuit implementation of delayed MNNs.

To simplify the mathematical model of the memristor on the premise of obtaining the
pinched hysteresis feature as shown in Figure 2, we select a surrogate model of MNNs
defined by the following equation:

dxk(t)
dt

= −dk(xk(t))xk(t) +
n

∑
l=1

akl(xk(t)) fl(xl(t)) +
n

∑
l=1

bkl(xk(t − τl(t))) fl(xl(t − τl(t))) + Ik(t), (2)

where dk(xk(t)) represents the self-inhibition of the k-th neuron in the MNNs; akl(xk(t)) in-
dicates the memristor’s synaptic connection weight; and bkl(xk(t − τl(t))) is the memristor-

based weight. Then, dk(xk(t)) = 1
Ck

[
∑n

l=1
(
M f kl and N f kl

)
+ 1

Rk

]
, akl(xk(t)) =

M f kl
Ck

× sgnkl ,

bkl(xk(t − τl(t)) =
N f kl
Ck

× sgnkl .
Assume that x(t) = (x1(t), x2(t), . . . , xk(t))T is a solution to MNNs (2) in the initial

conditions of x(s) = ϕ(s) = (ϕ1(t), ϕ2(t), . . . , ϕk(t))T ∈ C([−τl , 0],RT). In particular, the
solution can be further extended to [0,+∞] in Filippov’s sense, and MNNs (2) could be
taken to be the differential inclusion in this case. A category of MNNs having time-varying
uncertainties, i.e., ∆akl(t) and ∆bkl(t − τl(t)), is acquired in Equation (3).

dxk(t)
dt

∈ −co[dk(xk(t))]xk(t) +
n

∑
l=1

[
co[akl(xk(t))] + ∆akl(t)

]
fl(xl(t))

+
n

∑
l=1

[
co[bkl(xk(t − τl(t)))] + ∆bkl(t − τl(t)))

]
fl(xl(t − τl(t))) + Ik(t),

(3)
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Figure 2. The current and voltage characteristic of the memristor. (a) With a sinusoidal current.
(b) The surrogate memristor model

According to the characteristics of a memristor, the state parameters in Equation (3)
satisfy the following conditions:

co[dk(xk(t))] =


d́k, |xk(t)| < κk,

co{d́, d̀}, |xk(t)| = κk,
d̀k, |xk(t)| > κk,

co[akl(xk(t))] =


ákl , |xk(t)| < κk,

co{ákl , àkl}, |xk(t)| = κk,
àkl , |xk(t)| > κk,

co[bk(xk(t − τl(t)))] =


b́kl , |xk(t − τl(t))| < κk,

co{b́kl , b̀kl}, |xk(t − τl(t))| = κk,
b̀kl , |xk(t − τl(t))| > κk.

(4)

According to the differential inclusion theory and set-valued map theory, Equation (3)
could be considered a drive system. Considering the state-dependent and measurable
functions d∗k (t) ∈ co[dk(xk(t))], a∗kl(t) ∈ co[akl(xk(t))], b∗kl(t − τl(t)) ∈ co[bkl(xk(t − τl(t)))],
we obtain

dxk(t)
dt

= −d∗k (t)xk(t) +
n

∑
l=1

[
a∗kl(t) + ∆akl(t)

]
fl(xl(t))

+
n

∑
l=1

[
b∗kl(t − τl(t)) + ∆bkl(t − τl(t)))

]
fl(xl(t − τl(t))) + Ik(t).

(5)

Other parameters are defined in a similar way, and the introduction of the response
system is shown in Equation (6).

dyk(t)
dt

= −d∗∗k (t)yk(t) +
n

∑
l=1

[
a∗∗kl (t) + ∆akl(t)

]
fl(yl(t))

+
n

∑
l=1

[
b∗∗kl (t − τl(t)) + ∆bkl(t − τl(t)))

]
fl(yl(t − τl(t))) + Ik(t) + Uk(t),

(6)

where yk(t) indicates a state variable of the k − th neuron in the MNNs (k, l = 1, 2, . . . , n),
and t is not less than zero.

Suppose that in the initial conditions of y(s) = φ(s) = (φ1(t), φ2(t), . . . ,
φk(t))T ∈ C([−τl , 0],RT), the solution to MNNs (6) is y(t) = (y1(t), y2(t), . . . , yk(t))T.
In particular, Uk(t) is a controller that can achieve exponential synchronization of the
MNNs shown in Equations (5) and (6).
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In Equations (5) and (6), ∆akl(t), ∆bkl(t − τ(t)), ∆akl(t), and ∆bkl(t − τ(t)) indicate
time-varying uncertainties. Then, we have |∆akl(·)| ≤ akl , |∆bkl(·)| ≤ bkl , |∆akl(·)| ≤ akl ,
and ∆bkl(·)| ≤ bkl . Consider N coupled MNNs (5) as follows

dxi(t)
dt

= −D∗(t)xi(t) +
[

A∗(t) + ∆A(t)
]

f (xi(t)) + σ
N

∑
j=1

wijΓxj(t)

+
[

B∗(t) + ∆B(t)
]

f (xi(t − τ(t))) + Ii(t), i = 1, 2, . . . , N.

(7)

Then, the CMNNs could be a drive system containing N identical MNNs, and it can
be described as Equation (7). In this expression, xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn

are the state variables of dynamical node i; the D∗(t) = diag(d∗1(t), d∗2(t), . . . , d∗N(t))
T,

A∗(t) = (a∗kl(t))n×n, B∗(t) = (b∗kl(t))n×n, ∆A(t) = (∆akl(t))n×n, ∆B(t − τ(t)) = (∆bkl(t −
τ(t)))n×n; the constant σ > 0 refers to the coupling strength; the matrix Γ = (rij) ∈ Rn×n is
a nondelayed inner connecting matrix; and the coupled matrix W = (wij)N×N represents
the whole network’s topology, and it satisfies the following conditions: (H1): diffusive
coupling conditions are satisfied, i.e., wii = −∑N

j=1,j ̸=i wij for i = 1, 2, . . . , N; (H2): for a
directed edge that points from node j to node i, wij = 1; otherwise, wij = 0.

Remark 1. In recent scientific developments, MNNs have been widely applied in various fields, in-
cluding knowledge acquisition, static image processing, secure communication, associative memory,
motion tracking, and so on. These uncertainties refer to the unpredictable variations in the environ-
mental conditions that affect signal transmission. These variations can be thought of as random
fluctuations or disturbances that impact the accuracy of the synchronization made by the proposed
method. Many problems in practice can be modeled using MNNs with random uncertainties.
However, the mathematical formulation of these problems is difficult and needs more data-driven
knowledge to clarify uncertainty bounds [23,24], which we will study in the near future.

Then, the response system is shown in Equation (8):

dyi(t)
dt

= −D∗∗(t)yi(t) +
[

A∗∗(t) + ∆A(t)
]

f (yi(t)) +
[

B∗∗(t − τ(t)) + ∆B(t − τ(t))
]

f (yi(t − τ(t)))

+ σ
N

∑
j=1

wijΓyj(t) + Ii(t) + Ui(t), i = 1, 2, . . . , p,

dyi(t)
dt

= −D∗∗(t)yi(t) +
[

A∗∗(t) + ∆A(t)
]

f (yi(t)) +
[

B∗∗(t − τ(t)) + ∆B(t − τ(t))
]

f (yi(t − τ(t)))

+ σ
N

∑
j=1

wijΓyj(t) + Ii(t), i = p + 1, p + 2, . . . , N,

(8)

where Ui(t), i = 1, 2, . . . , p represents a nonlinear pinning controller. In Equation (8),
yi(t) = (yi1(t), yi2(t), . . . , yin(t))T ∈ Rn are scalars corresponding to the response state.
Here, make the first p nodes in control and rearrange the nodes’ order in the networks.
Additionally, D∗∗(t) = diag(d∗∗1 (t), d∗∗2 (t), . . . , d∗∗N (t))T, A∗∗(t) = (a∗∗kl (t))n×n, B∗∗(t −
τ(t)) = (b∗∗kl (t − τ(t)))n×n, ∆A(t) = (∆akl(t))n×n, ∆B(t − τ(t)) = (∆bkl(t − τ(t)))n×n.

2.2. Error Systems of CMNNs

The synchronization error is formulated as ϵi(t) =
(
(yi1(t)− xi1(t)), (yi2(t)− xi2(t)),

. . . , (yin(t)− xin(t))
)T ∈ (ϵi1(t), ϵi2(t), . . . , ϵin(t))T with the initial condition ϵ(s) = φ(s)−

ϕ(s) = ψ(s) ∈ C([−τl , 0],RT). The design of the nonlinear hybrid controller Ui(t) is:Ui(t) = Kiϵi(tk−1) +
∞

∑
k=1

[µkϵi(t)− ϵi(t)]δ(t − tk−1), i = 1, 2, . . . , p,

Ui(t) = 0, i = p + 1, p + 2, . . . , N,

(9)
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where t ∈ [tk−1, tk), k ∈ N, µk ≥ 0,tk represents the impulsive time instants that conform to
0 = t0 < t1 < t2 < . . . < tk−1 < tk < . . . ; limk→+∞ tk = +∞; Ki ∈ R represents the gain of
state feedback control; and δ(·) refers to the Dirac impulsive function, and its definition is
shown below

δ(t − tk) =

{
+∞, t = tk, k ∈ N,

0, t ≥ tk.
(10)

Here, t0 = 0 is the initial time, and {t1, t2, t3, . . . } represents time instants that are
determined by a series of subsequence events. It is assumed ϵ(t) shows right continuity
at the time t = tk, i.e., ϵi(tk) = ϵi(tk+1). Thus, the solution to the error system exhibits
jumping discontinuity under impulse at t = tk. In particular, the state information in
Equation (8) is considered a control input and sent to Equation (7). This will cause the state
variables in the error system to change immediately at t = tk.

Remark 2. The pinning event-triggered scheme (PETS) for the proposed CMNNs is demonstrated
in Figure 3. It can be seen that only the local information has been utilized by the PETS, which
differs from some existing results in [25,26]. Moreover, “pinning” does not mean the fractional of
nodes is controlled but implies that such local information of the pinned nodes is taken advantage
of by the triggered instants tk determined. Then, the information ϵi(tk) can be exchanged from
CMNNs to actuators at each instant tk. Meanwhile, the sample has arisen in event generators and
the PETS is activated for the whole system until the new loop relays on the updated event.

Figure 3. A block diagram of PETS.

Based on this, the event-triggered impulsive hybrid controller error system with state
feedback can be designed as

dϵi(t)
dt

= −
(

D∗∗(t)yi(t)− D∗(t)xi(t)
)
+ FA(t) + F∆A(t) + FB(t − τ(t)) + F∆B(t − τ(t))

+ σ
N

∑
j=1

wijΓϵj(t) + Kiϵi(tk−1), t ∈ [tk−1, tk), k ∈ N, i = 1, 2, . . . , p,

dϵi(t+k )
dt

= µkϵi(t−k ), µk ̸= 0, t = tk, i = 1, 2, .., p,

dϵi(t)
dt

= −
(

D∗∗(t)yi(t)− D∗(t)xi(t)
)
+ FA(t) + F∆A(t) + FB(t − τ(t)) + F∆B(t − τ(t))

+ σ
N

∑
j=1

wijΓϵj(t), i = p + 1, p + 2, . . . , N,

(11)

where FA(t) = A∗∗(t) f (yi(t))− A∗(t) f (xi(t)), F∆A(t) = ∆A(t) f (yi(t))− ∆A(t) f (xi(t)),
FB(t − τ(t)) = B∗∗(t − τ(t)) f (yi(t − τ(t)))− B∗(t − τ(t)) f (xi(t − τ(t))), F∆B(t − τ(t)) =
∆B(t − τ(t)) f (yi(t − τ(t)))− ∆B(t − τ(t)) f (yi(t − τ(t))). Kiϵi(tk−1) is the control input
with state feedback. In addition, the impulsive control can only work at time tk.
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Then, for i = 1, 2, . . . , N, the measurement error of Equation (11) is:

ei(t) = ϵi(tk−1)− ϵi(t), t ∈ [tk−1, tk), k ∈ N. (12)

and e(t) satisfies e(t) = (e1(t), e2(t), . . . , eN(t))T.

2.3. Some Useful Definitions and Assumptions

Before investigating the exponential synchronization of Systems (7) and (8), some
related assumptions, definitions, and lemmas are given.

Assumption 1 ([27]). The activation function fi(·) is Lipschitz continuous. In this case, positive
scalars L f exist such that

| f j(κ1)− f j(κ2)| ≤ L f |κ1 − κ2|, (13)

for all κ1 ∈ R, i ∈ N.

Assumption 2 ([28]). For any i ∈ N, fi(·) is a bounded activation function, i.e., it satisfies the
positive constant Mi > 0:

| fi(s)| ≤ Mi, ∀s ∈ R. (14)

Assumption 3 ([29]). The matrix W is irreducible if matrix Γ is positive definite, which means
that there is no isolated node.

Lemma 1 ([30]). Supposing that real matrices X and Y have appropriate dimensions, a positive
number α exists such that

XTY + YTX ≤ αXTX + α−1YTY (15)

Lemma 2 ([27]). Let

0 ≤ τi(t) ≤ τ̄, F(t, u, ū1, . . . , ūm) : R+ × R × R︸ ︷︷ ︸
m+1

→ R
(16)

and do not decrease in ūi for a fixed (t, u, ū1, . . . , ūm), where i = 1, 2, . . . , m. Additionally, let
Ik(u) : R → R and do not decrease in u. Assume that ut, v(t) satisfy{

D+u(t) ≤ F(t, u(t), u(t − τ1(t)), . . . , u(t − τm(t))), t ≥ 0,

u(tk) ≤ Ik(u(t−)k)), k ∈ N+,
(17)

and {
D+u(t) > F(t, v(t), v(t − τ1(t)), . . . , v(t − τm(t))), t ≥ 0,

v(tk) ≤ Ik(v(t−)k)), k ∈ N+,
(18)

where D+y(t) represents the upper right Dini derivative, and D+y(t) = lim
h→0+

y(t+h)−y(t)
h ; and

h → 0+ indicates that h is approximated to 0 from the right-hand side. For −τ ≤ t ≤ 0,
u(t) ≤ v(t) indicates that u(t) ≤ v(t) (t ≥ 0).

Lemma 3 ([29]). It is supposed that the continuous function V(t) corresponds to a nonnegative
value if t ∈ (a − τ,+∞) conforms to the following:

V̇(t) ≤ −k1V(t) + k2 max
t−τ≤s≤a

V(s)exp{−r(t − a)}, t ≥ a. (19)
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and r is a unique and positive solution to

r − k1 + k2exp{rτ} = 0. (20)

Lemma 4 ([31]). Based on Assumptions 1 and 2, the following expression is formulated

|d∗∗k yk(t)− d∗k xk(t)| ≤ d+k |yk(t)− xk(t)|,
|a∗∗kl f (yk(t))− a∗kl f (xk(t))| ≤ a+kl L f |yk(t)− xk(t)|,
|b∗∗kl f (yk(t − τ(t)))− b∗kl f (xk(t − τ(t))| ≤ b+kl L f |yk(t − τ(t))− xk(t − τ(t))|,
|∆akl f (yk(t))− ∆akl f (xk(t))| ≤ ã+kl L f |yk(t)− xk(t)|,
|∆bkl f (yk(t − τ(t)))− ∆bkl f (xk(t − τ(t)))| ≤ b̃+kl L f |yk(t − τ(t))− xk(t − τ(t))|,

(21)

where D = diag{d+1 , d+2 , . . . , d+N}, A+ = L f (a+kl)n×n, B+ = L f (b+kl )n×n, Ã+ = L f (ã+kl)n×n,
B̃+ = L f (b̃+kl )n×n, d+k = max{|d́k|, |d̀k|}, a+kl = max{|ákl |, |àkl |}, b+kl = max{|b́kl |, |b̀kl |},
ã+kl = max{|akl |, |akl |}, b̃+kl = max{|bkl |, |bkl |}.

Definition 1 ([28]). The drive system, Equation (7), and the response system, Equation (8), are
said to be exponentially synchronized according to the control strategy, Equation (43). Constants
µ > 0, M ≥ 1 exist such that for t ≥ 0,

||e(t)|| ≤ Mexp{−µt} max
t−τ≤s≤0

||ψ(s)||, (22)

then, e(t) = (eT
1 (t), eT

2 (t), . . . , eT
N(t))

T, ψ(s) = (ψT
1 (s), ψT

2 (s), . . . , ψT
N(s))

T.

Definition 2 ([32]). The error system (11) does not have Zeno behaviors if constant ρ > 0 exists
such that

inf
k∈N+

{tk − tk−1} ≥ ρ > 0. (23)

Remark 3. Zeno behavior is the phenomenon where events are triggered an infinite number of times
within a finite time. The event-triggered strategy with Zeno behavior is equivalent to continuous
communication. If Zeno behavior is not excluded, the event-triggered strategy is ineffective. This
not only fails to reduce the utilization of communication resources but also adversely affects the
stability of the system.

3. Main Results
3.1. Synchronization of CMNNs

This section presents the solution to the exponential synchronization of delayed
uncertain CMNNs under the proposed PETS strategy.

To present results, this paper gives the denotations as follows, R̄ = diag{r, r, r,︸ ︷︷ ︸
p

. . . , 0, 0, 0︸ ︷︷ ︸
N−p

},

ŵij = wij(i ̸= j), λ̃ = λmax(Ŵs − R̄), Ŵ = (ŵij)N×N, ŵii =
λmin(Γs)
||Γ|| , ||W|| = (λmax(WTW))

1
2 ,

Ws = 1
2 (W + WT).

Theorem 1. Based on Assumptions 1 and 2, Systems (7) and (8) demonstrate pinning exponential
synchronization with the control law (9) if there exist constants ρ2 ≥ ρ1 > 0, εq > 0 (q = 1, 2, 3),
such that

µ2
k ≥ 1, (24)

−
( lnµ̃

ρ1
+ ϖ1

)
> µ̃β1 > 0, (25)
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Λ = ϖ2 + β1 < 0, (26)

α̃ − (
1
2

ε−1
1 )λmax||B+||2 + (

1
2

ε−1
2 )λmax||B̃+||2 − 1

2
ε3K2

i > 0, i = 1, 2, ..., p, (27)

η(t) < 0, t ∈ [tk−1, tk), (28)

where k ∈ N+, ϖ1 = −λmin(D+) + λmax(A+) + λmax(Ã+) + Ki + α̃ + σ(r + λ̃)||Γ||,
β = β1 = β2 = 1

2 (ε1 + ε2), µ̃ = max
k

{µ2
k}, µk ̸= 0, ϖ2 = −λmin(D+) + λmax(A+) +

λmax(Ã+) + 1
2 ε−1

1 λmax(||B+||2) + 1
2 ε−1

2 λmax(||B̃+||2) + σλ̃||Γ||.

This paper designs the triggered function as

ηi(t) = ||ei(t)||2 − ε3|ϵi(t)|
[
α̃ − 1

2
ε−1

1 λmax(||B+||2) + 1
2

ε−1
2 λmax(||B̃+||2)− 1

2
ε3K2

i
]
|ϵi(t)|. (29)

The triggered instant tk depends on the event-triggered condition shown in Equation (30)

tk = inf
t
{t ∈ (tk−1, ∞)|η(t) ≥ 0}. (30)

Systems (7) and (8) can achieve pinning exponential synchronization.
In addition, if Equations (26)–(28) and (30) hold, Equations (24) and (2) can be rewritten

as the following inequalities

0 < µ2
k < 1, (31)

−
( lnµ̃

ρ2
+ ϖ1

)
> µ̃−1β1 > 0. (32)

Proof. For System (11), consider the nonnegative function as

V(t) =
1
2

N

∑
i=1

ϵT
i (t)ϵi(t). (33)

Let

V1(t) =
p

∑
i=1

ϵT
i (t)ϵi(t), V2(t) =

N

∑
i=p+1

ϵT
i (t)ϵi(t). (34)

When V(t) and the solution to (11) are differentiated for the [tk−1, tk),k ∈ N+, there is

D+V(t) =
N

∑
i=1

ϵT
i (t)ϵ̇i(t) +

p

∑
i=1

ϵT
i (t)Ui(t). (35)

Let D+Va(t) = ∑N
i=1 ϵT

i (t)ϵ̇i(t) and D+Vb(t) = ∑
p
i=1 ϵT

i (t)Ui(t). For V̇a(t), we have

D+Va(t) =
N

∑
i=1

ϵT
i (t)

[
−

(
D∗∗(t)yi(t)− D∗(t)xi(t)

)
+ FA(t) + F∆A(t) + FB(t − τ(t))

+ F∆B(t − τ(t)) + σ
N

∑
j=1

wijΓϵj(t)
]

≤
N

∑
i=1

[
− ϵT

i (t)|D∗∗(t)yi(t)− D∗(t)xi(t)|+ ϵT
i (t)|FA(t)|+ ϵT

i (t)|FB(t − τ(t))|

+ ϵT
i (t)|F∆A(t)|+ ϵT

i (t)|F∆B(t − τ(t))|+ ϵT
i (t)σ

N

∑
j=1

wijΓϵj(t)
]
.

(36)
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Combining with Lemma 1 and Lemma 4, we have

− ϵT
i (t)|D∗∗(t)yi(t)− D∗(t)xi(t)| ≤ −ϵT

i (t)λmin(D+)ϵi(t),

ϵT
i (t)|FA(t)| ≤ ϵT

i (t)λmax(A+)ϵi(t),

ϵT
i (t)|F∆A(t)| ≤ ϵT

i (t)λmax(Ã+)ϵi(t),

ϵT
i (t)|FB(t − τ(t))| ≤ ϵT

i (t)λmax(B+)ϵi(t − τ(t)),

ϵT
i (t)|F∆B(t − τ(t))| ≤ ϵT

i (t)λmax(B̃+)ϵi(t − τ(t)).

(37)

Then, there is

ϵT
i (t)λmax(B+)ϵi(t − τ(t)) ≤ 1

2
ε−1

1 ϵT
i (t)λmax(B+)λmax(B+)Tϵi(t) +

1
2

ε1ϵT
i (t − τ(t))ϵi(t − τ(t))

≤ 1
2

ε−1
2 ||λmax(B̃+)||2ϵT

i (t)ϵi(t) +
1
2

ε2ϵT
i (t − τ(t))ϵi(t − τ(t)).

(38)

Considering that wii < 0, i = 1, 2, . . . , N, in this condition, we have the inequality
shown in Equation (39)

ϵT
i (t)σ

N

∑
j=1

wijΓϵj(t) ≤ σ||Γ||
N

∑
i=1

N

∑
j=1,j ̸=i

wij||ϵT
i (t)||2||ϵj(t)||2 + σλmin(Γs)

N

∑
i=1

wiiϵ
T
i (t)ϵi(t)

= σ||Γ||ϵ̃T(t)Ŵs ϵ̃(t)

= σ
p

∑
i=1

(r + λ̃)||Γ||ϵT
i (t)ϵi(t) + σ

N

∑
i=p+1

||Γ||λ̃ϵT
i (t)ϵi(t)

(39)

In Equation (39), ϵ̃(t) =
(
||ϵ1(t)||2, ||ϵ2(t)||2, . . . , ||ϵN(t)||2

)T. According to Assump-
tion 3, W is irreducible, so Ŵs is also irreducible. According to the discussion in [29],
λ̃ = λmax(Ŵs − R̄) < 0 holds for any positive constant.

Then, there is

D+Va(t) ≤
N

∑
i=1

ϵT
i (t)

[
ϵ−T

i (t)λmin(D+)ϵi(t) + ϵT
i (t)λmax(A+)ϵi(t)

+ ϵT
i (t)λmax(Ã+)ϵi(t) +

1
2ε1

ϵT
i (t)||λmax(B+)||2ϵi(t) +

ε1

2
ϵT

i (t − τ(t))ϵi(t − τ(t))

+
1

2ε2
ϵT

i (t)||λmax(B̃+)||2ϵi(t) +
ε2

2
ϵT

i (t − τ(t))ϵi(t − τ(t))
]

+ σ
p

∑
i=1

(r + λ̃)||Γ||ϵT
i (t)ϵi(t) + σ

N

∑
i=p+1

||Γ||λ̃ϵT
i (t)ϵi(t).

(40)

For

D+Vb(t) =
p

∑
i=1

ϵT
i (t)Ui(t), (41)

the measurement error introduced to Equation (11) is expressed as

ei(t) = ϵi(tk−1)− ϵi(t), t ∈ [tk−1, tk), k ∈ N+, i = 1, 2, . . . , p. (42)

Here, the controller (9) can be transformed into

Ui(t) = Kiϵi(tk−1). (43)

Next, the event-triggered function ηi(t) shown in Equation (29) is designed, and it
should satisfy ηi(t) < 0, t ∈ [tk−1, tk).

After combining with the mentioned condition, consider D+Vb(t) such that
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D+Vb(t) =
p

∑
i=1

ϵT
i (t)Ki(ϵi(t) + ei(t))

≤
p

∑
i=1

ϵT
i (t)Kiϵi(t) +

ε3

2

p

∑
i=1

ϵT
i (t)K

2
i ϵi(t) +

1
2ε3

p

∑
i=1

eT
i (t)ei(t)

=
p

∑
i=1

[
ϵT

i (t)
(
Ki +

1
2

K2
i
)
ϵi(t) +

1
2ε3

eT
i (t)ei(t)

]
(44)

Combining with D+Va(t) and D+Vb(t), there is

D+V(t) ≤
N

∑
i=1

[
− λmin(D+) + λmax(A+) + λmax(Ã+) +

1
2ε1

λmax(B+)||2 + 1
2ε2

λmax(B̃+)||2
]

+
N

∑
i=1

ε1 + ε2

2
ϵT

i (t − τ(t))ϵi(t − τ(t)) +
p

∑
i=1

ϵT
i (t)

[
Ki +

ε3

2
K2

i + σ(r + λ̃)||Γ||
]

+
p

∑
i=1

1
2ε3

eT
i (t)ei(t) + σ

N

∑
i=p+1

||Γ||λ̃ϵT
i (t)ϵi(t)

(45)

Taking ηi(t) < 0 into consideration, we have

D+V(t) ≤
p

∑
i=1

ϵT
i (t)

[
− λmin(D+) + λmax(A+) + λmax(Ã+) + Ki + α̃ + σ(r + λ̃)||Γ||

]
ϵi(t)

+
N

∑
i=p+1

ϵT
i (t)

[
− λmin(D+) + λmax(A+) + λmax(Ã+)

+
1

2ε1
λmax(B+)||2 + 1

2ε2
λmax(B̃+)||2 + σ||Γ||λ̃

]
ϵi(t)

+
p

∑
i=1

ε1 + ε2

2
ϵT

i (t − τ(t))ϵi(t − τ(t)) +
N

∑
i=p+1

ε1 + ε2

2
ϵT

i (t − τ(t))ϵi(t − τ(t)).

(46)

According to Equation (34), we have

D+V1(t) ≤ ϖ1(t) + β1V1(t − τ(t)). (47)

D+V2(t) ≤ ϖ2(t) + β2V2(t − τ(t)). (48)

That is,

D+V(t) ≤ ϖ1(t) + β1V1(t − τ(t)) + ϖ2(t) + β2V2(t − τ(t)), (49)

for t ∈ [tk−1, tk), k ∈ N+.
Here, the stability of Equations (47) and (48) is discussed, respectively. When t = tk,

i = 1, 2, . . . , p, k ∈ N+, according to Equation (11), we have

V1(t+k ) = (µkϵ(t−k ))
T(µkϵ(t−k )) = µ2

kV1(t−k ). (50)

When δ > 0, for the delayed impulsive system shown in Equation (51) and Lemma 2,
suppose υ(t) is a unique solution:

D+υ(t) = ϖ1υ(t) + β1υ(t − τ(t)) + δ, t ̸= tk, t ≥ 0,

υ(t+k ) = µ2
kυ(t−k ), k ∈ N+,

υ(t) = ||ϵ(t)||2,−τl ≤ t ≤ 0.

(51)
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With the variable parameter formula,

V1(t) ≤ υ(t), t ≥ 0. (52)

The expression of υ(t) is written as

υ(t) = W(t) +
∫ t

0
W(t)(β1υ(s − τ(s)) + δ)ds, t ≥ 0. (53)

In Equation (53), W(t) means the Cauchy matrix for Equation (54){
D+υ(t) = ϖ1υ(t), t ̸= tk, t ≥ 0.

υ(t+k ) = µ2
kυ(t−k ), k ∈ N+.

(54)

We have W(t) = eϖ1(t−s) Π
s≤tk≤t

µ2
k .

Remark 4. For the calculation of triggered constants tk, taking the definition of the Lyapunov
function V(t) and the relationship between measurement error ei(t) and synchronization error ϵi(t)
into account, triggered function ηi(t) is designed as Equation (29) to convert Equation (45) to the
form that Lemma 2 needs as shown in Equation (46). Notably, the triggered function is derived from
Equation (41), which means the proposed triggered function contains more information about the
pinning scheme for the event-triggered control method.

Case 1: For µ2
k ≥ 1.

As will be proved in Theorem 1, inf
k∈N+

{tk − tk−1} > 0, and a constant ρ1 exists and

satisfies inf
k∈N+

{tk − tk−1} ≥ ρ1 > 0. Then,

W(t) ≤ eϖ1(t−s)µ̃
( t−s

ρ1
+1) ≤ µ̃e(

lnµ̃
ρ1

+ϖ1)(t−s), (55)

and µ̃ = max
k

{µ2
k}.

Substituting Equation (55) into Equation (51) yields

υ(t) ≤ µ̃e(
lnµ̃
ρ1

+ϖ1)t||ϵ(0)||2 +
∫ t

0
µ̃e(

lnµ̃
ρ1

+ϖ1)(t−s)
[

β1υ(s − τ(s)) + δ
]
ds, (56)

that is,

υ(t) ≤ ζe(
lnµ̃
ρ1

+ϖ1)t +
∫ t

0
e(

lnµ̃
ρ1

+ϖ1)(t−s)
[
µ̃β1υ(s − τ(s)) + µ̃δ

]
ds, (57)

where ζ = µ̃ sup
τl≤t≤0

{||ϵ(t)||2}.

Let h̄(ρ) = 2ρ + lnµ̃
ρ1

+ ϖ1 + µ̃β1e2ρτl . For the continuous function h̄(ρ), according to

(2), h̄(0) < 0, h̄(+∞) > 0, and ˙̄h(ρ) = 2 + 2τl µ̃β1e2ρτl > 0. Moreover, a unique solution
ρ > 0 to ˙̄h(ρ) = 0 exists.

For −τl ≤ t ≤ 0, ρ > 0 and δ > 0 hold, and we have r > 0 and µ̃ ≤ 1. Thus,

ζe(
lnµ̃
ρ1

+ϖ1)t ≤ µ̃||ϵ(t)||2e(
lnµ̃
ρ1

+ϖ1)t ≤ µ̃||ϵ(t)||2e−2ρt = ζe−2ρt, (58)

and∫ t

0
e(

lnµ̃
ρ1

+ϖ1)(t−s)
[
µ̃β1υ(s − τ(s)) + µ̃δ

]
ds ≤

∫ t

0
e(

lnµ̃
ρ1

+ϖ1)(t−s)eµ̃β1(t−s)ds +
∫ t

0
µ̃ζe(

lnµ̃
ρ1

+ϖ1)(t−s)ds

≤ µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
.

(59)



Mathematics 2024, 12, 821 14 of 28

According to Equation (2), and by combining Equations (58) and (59), it will be proven
that, for t > 0, there is the following inequality

υ(t) < ζe−2ρt +
µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
(60)

For t > 0, Equation (60) will be proved. Thus, if Equation (60) does not hold, t∗ > 0
exists such that

υ(t∗) ≥ ζe−2ρt∗ +
µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
, (61)

and

υ(t) < ζe−2ρt +
µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
, t < t∗. (62)

According to Equations (58) and (62),

υ(t∗) ≤ ζe(
lnµ̃
ρ1

+ϖ1)t∗ +
∫ t∗

0
e(

lnµ̃
ρ1

+ϖ1)(t∗−s)[
µ̃β1υ(s − τ(s)) + µ̃δ

]
ds,

< e(
lnµ̃
ρ1

+ϖ1)t∗
{

ζ +
µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
+

∫ t∗

0
e−(

lnµ̃
ρ1

+ϖ1)s[µ̃β1υ(s − τ(s)) + µ̃δ
]
ds

}
.

(63)

When t < t∗,

υ(t) < ζe−2ρt +
µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
, (64)

then

υ(s − τ(s)) < ζe−2ρ(s−τ(s)) +
µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
, (65)

and we have

υ(t∗) ≤ ζe(
lnµ̃
ρ1

+ϖ1)t∗
{

ζ +
µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1

+
∫ t∗

0
e−(

lnµ̃
ρ1

+ϖ1)s
[
µ̃β

(
ζe−2ρ(s−τ(s)) +

µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1

)
+ µ̃δ

]
ds

}

≤ υ(t∗)ζe(
lnµ̃
ρ1

+ϖ1)t∗
{

ζ +
µ̃ζ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1

+
µ̃ζβ1

−( lnµ̃
ρ1

+ ϖ1 + 2ρ
e2ρτl

[
e−(

lnµ̃
ρ1

+ϖ1+2ρ)t∗ − 1
]
+

µ̃δ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1

[
e−(

lnµ̃
ρ1

+ϖ1)t∗ − 1
]}

= ζe−2ρt∗ +
µ̃δ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
.

(66)

Obviously, Equation (66) contradicts Equation (61). Then, when t > 0, Equation (60)
holds. Meanwhile, when δ > 0, according to Equation (52), we have

V1(t) ≤ υ(t) ≤ ζe−2ρt∗ +
µ̃δ

−( lnµ̃
ρ1

+ ϖ1)− µ̃β1
, t > 0. (67)
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Letting δ → 0, according to (66), we have

V1(t) ≤ υ(t) ≤ ζe−2ρt = µ̃ max
τl≤s≤0

{||ψ1(t)||2e−2ρt}. (68)

Meanwhile, Equation (11) indicates that V2(t) is continuous for t ≥ 0. Thus, based on
Inequality (48), we have

V̇2(t) ≤ ϖ2V2(t) + β2 max
t−τl≤s≤t

V2(s) (69)

Since β2 > 0, it can be deduced from Inequality (26) that ϖ2 < 0. Thus, the conditions
mentioned in Lemma 3 are met concerning Equation (68). Then, based on Lemma 3, the
initial value in Definition 1, and the Inequalities (49) and (69), we have

V2(t) ≤ max
τl≤s≤0

||ψ2(t)||2e−ηt, t ≥ 0, (70)

where ψ2(t) = (ψ
T
p+1, ψ

T
p+2, . . . , ψ

T
N)

T, and η is the unique solution Equation (78).

η + ϖ2 + β2eητl = 0. (71)

Combining Inequalities (47)–(48), (67), and (70) and Lemma 3 yields

V(t) ≤ µ̃ max
−τl≤s≤0

||ψ1(t)||2e−2ρt + max
−τl≤s≤0

||ψ2(t)||2e−ηt ≤ (µ̃ + 1)e−µ∗t max
−τl≤s≤0

||ψ(t)||2, t ≥ 0, (72)

where µ∗ = min{2ρ, η}. Therefore

||ϵ(t)|| ≤
√

2(µ̃ + 1) max
−τl≤s≤0

||ψ(t)||e−0.5µ∗t, t ≥ 0. (73)

Case 2: For 0 < µ2
k < 1.

When 0 < µ2
k < 1, ∀k ∈ N+, since sup

k∈N+

{tk − tk−1} < +∞, we have constant ρ2

satisfying ρ2 ≥ sup
k∈N+

{tk − tk−1}.

Similarly, according to Equations (55) and (68), we have

W(t) ≤ eϖ1(t−s)µ̃
( t−s

ρ2
+1) ≤ µ̃−1e(

lnµ̃
ρ2

+ϖ1)(t−s), (74)

then

V1(t) ≤ υ(t) ≤ ζ̃e−2ρ2t = µ̃−1 max
τl≤s≤0

||ψ1(t)||2e−2ρ2t, t ≥ 0. (75)

Similarly,

V(t) ≤ µ̃−1 max
−τl≤s≤0

||ψ1(t)||2e−2ρ2t + max
−τl≤s≤0

||ψ2(t)||2e−ηt ≤ (µ̃−1 + 1)e−µ∗t max
−τl≤s≤0

||ψ(t)||2, t ≥ 0, (76)

where µ∗ = min{2ρ2, η}. Therefore

||ϵ(t)|| ≤
√

2(µ̃−1 + 1) max
−τl≤s≤0

||ψ(t)||e−0.5µ∗t, t ≥ 0. (77)

Then, by Definition 1, the coupled memristive neural networks (7) and (8) can achieve
global exponential synchronization via the hybrid event-triggered pinning control law (9).

The completion of the proof is shown above.

Remark 5. The frequency of the PETS update not only relies on the impulsive instants tk but also
the coupled structure of the system. By utilizing the event-triggered conditions x(t) → y(t) in
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exponential synchronization, the communication property of CMNNs is automatically satisfied, i.e.,
one can design distributed triggered conditions for CMNNs so that the information of the PETS can
be exchanged among pinned neurons or networks under limited resources. Therefore, the complete
PETS (9) considers both the impulse effect and nonidentical property of CMNNs, which indicates
that our proposed PETS is more practical than the impulsive controller in [33,34].

Theorem 2. For the pinning control law (9), considering the error system (11), the impulsive
instants, i.e., tk(k ∈ N+), are obtained under the event-triggered condition. Thus, ρ1 > 0 exists
such that inf

k∈N+

{tk − tk−1} > 0. Thus, the error system can eliminate Zeno behaviors here.

Proof. For [tk, tk−1), according to Assumption 2, there is

D+||e(t)|| ≤ ||ė(t)|| = ||ϵ̇(t)||
≤ || −

(
D∗∗(t)yi(t)− D∗(t)xi(t)

)
+ FA(t) + F∆A(t)

+ FB(t − τ(t)) + F∆B(t − τ(t)) + σ
N

∑
j=1

wijΓϵj(t) + K̃ϵ(tk−1)||

≤
[
λmax(D+) + λmax(A+) + λmax(Ã+) + σλmax(W)||Γ||

]
||e(t)||

+
[
λmax(D+) + λmax(A+) + λmax(Ã+) + σλmax(W)||Γ||+ λmax(K̃)

]
||ϵ(tk−1)||+ ||Ξ||,

(78)

where K̃ = diag{|K1|, |K2|, . . . , |Kp|}, and Ξ =
[
2λmax(B+) + 2λmax(B̃+)

]
||M||.

Then, according to e(tk−1) = 0, there is

||e(t)|| ≤ Υ1

Υ2
×

[
exp(Υ2(t − tk−1))− 1

]
, (79)

and Υ1 =
[
λmax(D+) + λmax(A+) + λmax(Ã+) + σλmax(W)||Γ|| + λmax(K̃)

]
ϵ(tk−1)|| +

||Ξ||, Υ2 = λmax(D+) + λmax(A+) + λmax(Ã+) + σλmax(W)||Γ||.
Based on the event-triggered condition (30), there is√

h̄(ϵ(t)) ≤ Υ1

Υ2
×

[
exp(Υ2(t − tk−1))− 1

]
, (80)

and h̄(ϵ(t)) = ε3|ϵT(t)|
[
α̃ − ε1(λmax(B+))2 − ε2(λmax(B̃+))2 − ε3(λmax(K̃))2]|ϵ(t)|.

According to Tk−1 = tk − tk−1, for t ∈ [tk−1,tk
), k ∈ N+, there is

Tk−1 ≥ 1
Υ2

ln
(

1 +
Υ2

Υ1

√
h̄(ϵ(t))

)
. (81)

Thus, it can be derived that the lower bound of the inter-execution time exists, and
Tk−1 = tk − tk−1 > 0. The error system (11) eliminates the Zeno behavior successfully.

The proof is completed as above.

Remark 6. It should be noted that the triggered condition always needs to be detected during the
information exchange between the CMNNs. As a result, the self-triggered scheme is formulated to
solve this issue. The sampling and pinning control instants can be derived from Equation (81), and
the specific process is organized in Algorithm 1 for the self-triggered scheme. It is exhibited that
instants of the PETS will not renew until the triggered condition is more exhaustive than the second
part of Equation (81).

Remark 7. Note that the continuous communication between Systems (7) and (8) is needed for
monitoring of the triggered condition (30). As an alternative to event-triggered control schemes,
a self-triggered scheme is developed to produce triggered sequences so that the triggered condition
shown in (30) does not need to be monitored continuously. Next, based on Theorem 2, the formulation
of the self-triggered scheme makes it unnecessary to obtain the state information continuously.
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Clearly, Tk−1 satisfies Equation (81) all the time. Then, during this inter-execution process, there
will be no trigger. To achieve this goal, the subsequent triggered instant should be:

t̃k = t̃k−1 +
1

Υ2
ln
(

1 +
Υ2

Υ1

√
h̄(ϵ(t))

)
. (82)

This paper denotes the update instants for sampling and control as t̃k, and then this
sampling mechanism is represented with self-triggered instants. With a minimum triggered
interval, Equation (82) illustrates the calculation of the triggered instants. Note that in this
case, there is a possibility that the triggered condition does not hold once the interval in
use is larger than the second item within Equation (82).

Theorem 3. Taking the control law (9) with the error system (11) into consideration, with the
self-triggered method, the triggered sequence produced by Equation (82) ensures that the error
system can achieve pinning exponential synchronization between Systems (7) and (8). Meanwhile,
the error system (11) eliminates Zeno behaviors successfully.

Proof. For [tk−1, tk), because the self-triggered instants meet the condition shown in
Equation (82), according to Equation (81), tk ≥ t̃k. Then, the formulation of the event-
triggered condition (30) is shown in Equation (82), and it holds for k ∈ N+. More-
over, considering that the second term involved in Equation (82) satisfies the condition
1

Υ2
ln
(

1 + Υ2
Υ1

√
h̄(ϵ(t))

)
> 0 all the time, t̃k−1 < t̃k holds.

Thus, with the self-triggered mechanism (82), synchronization is realized between
Systems (7) and (8) following the pinning control law (9). Moreover, the error system (11)
can eliminate the Zeno behavior. The proof is completed.

3.2. Pinned Nodes Selection

According to [35], λ1(LN−p) > α/σ is a common algebraic graph-theoretic criterion
for pinning synchronization under the various control methods. Only undirected CMNNs
are discussed in this paper, and then the minimal number of nodes will be predicted by
analyzing the relationship between λ1(LN−p) and λp+1(LN), to guarantee λ1(LN−p) >
α/σ. The details of the Algorithm 2 are designed as follows:

Algorithm 2 Algorithm for Pinned Nodes’ Selection

(1) Suppose that CMNNs are undirected and connected. Assume that there are no
empty sets of controlled nodes p. Then, the grounded matrix LN−p (the Laplacian matrix
minus the rows and columns of pinned nodes p) is positive definite; that is, the smallest
eigenvalue for such a matrix satisfies λ1(LN−p) > 0 for 1 ≤ p ≤ N − 1.
(2) Check whether there exists at least one node that is pinned to make a sufficiently
large c that can make σλ1(LN−p) > α (α is a constant that is determined by feedback
functions and the inner connecting matrix) to ensure the synchronization of CMNNs. If
such nodes exist, go to step (3); otherwise, go to (1).
(3) The minimal number of pinned nodes is chosen by λ1(LN−p) ≤ λp+1(LN) to ensure
λ1(LN−p) > α/σ by considering the Laplacian spectrum of CMNNs. If satisfied with
such a condition, go to step (4); otherwise, re-perform (3).
(4) Consider the degree distribution and step (3); the nodes with larger degrees are
chosen as pinned nodes.
(5) According to the PETS and step (4), the convergence time of the error system is
calculated. If the convergence time is longer than the previous group, re-perform step
(4); otherwise, stop.
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4. Numerical Simulations
4.1. Pets for Three Nodes

Here, numerical examples are presented to validate our theoretical results.
This example involves three-dimensional CMNNs, (7) and (8), that consist of three

coupled nodes with the edge weights of 1. The system’s topology with three nodes is
demonstrated in Figure 4a.

�

(a) (b)

Figure 4. The topology structure of CMNNs. (a) Topology with 3 nodes. (b) Topology with 10 nodes.

For the coupled system, this paper sets the coupling strength σ = 1. Meanwhile, the
inner connecting matrix Γ and coupled matrix W are set as

Γ =

 1 0 0
0 1 0
0 0 1

, W = WS = (wij)3×3 =

 −2 1 1
1 −1 0
1 0 −1

.

For Systems (7) and (8), the time-varying delay is τ(t) = et/(et + 1), and it satisfies
τ̄l = 0.5, τl = 0.25. f (·) = tanh(·), and it satisfies Assumptions 1 and 2 with L f = 1,
Mi = 1(i = 1, 2, 3). The values of node xi are initialized as follows: ∀s ∈ [τl, 0],
ϕ1(s) = [−1.55, 0.85, 2.12]T, ϕ2(s) = [0.35,−0.98, 0.34]T, and ϕ3(s) = [1.75,−1.15,−2.00]T. The
initial values of node yi are as follows: φ1(s) = [0.82, 2.43, 1.57]T, ϕ2(s) = [0.35,−0.98, 0.34]T,
and ϕ3(s) = [1.75,−1.15,−2.00]T.

Inspired by [36] and Lemma 4, this paper sets D = diag{1.5, 1.3, 1.2}, and the other
parameters of Systems (7) and (8) satisfy the condition in Equation (4). We set κk = 1, and
then we construct the following matrices of parameters.

A+ =

 1.8 2.8 2.9
1.3 1.7 1.6
1.3 1.7 1.6

, Ã+ = 0.1sin(t)

 1 1 1
1 1 1
1 1 1

,

B+ =

 3.8 3.0 0.9
0.4 0.3 0.6
3.4 3.8 1.9

, B̃+ = −0.2cos(t − τ(t))

 1 1 1
1 1 1
1 1 1

.

Within the drive and response system, this paper chooses three different dimensions
as phases for the nodes to depict the dynamic trajectory of CMNNs, and the result is shown
in Figure 5. It can be seen that the dynamics of CMNNs show chaotic behaviors, and the
trajectories of the drive–response systems do not synchronize if the controller is not used.

For the designed pinning event-triggered control scheme (9), this paper chooses node
ν1 as the pinned node, i.e., N = 3 and p = 1. For the controller, when µ2

k = 2.25 > 1,
this paper sets K1 = 30, r = 5, R̄ = diag{5, 0, 0}. Then, α = 0.1, ε1 = ε2 = ε3 = 1, and
ρ1 = 15 are chosen to satisfy Theorem 1 and the triggered conditions. By employing
Equations (2)–(27), the following results can be obtained
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β = β1 = β2 = 1,
( lnµ̃

ρ1
+ ϖ1

)
+ µ̃β1 = −0.2556 < 0,

Λ = ϖ2 + β1 = −8.2255 < 0, α̃ > 450.0536.
(83)

When µ2
k = 0.81 ∈ (0, 1), this paper sets ρ2 = 15, and then we have( lnµ̃

ρ2
+ ϖ1

)
+ µ̃−1β1 = −0.5506 < 0. (84)

Based on the above parameter setting, we choose the first nodes, i.e., ν1 as pinned
nodes to be controlled. Figure 6 demonstrates in detail the state trajectories. In order to
verify the rationality of the proposed theory, we compare different methods and pinned
nodes for the designed system. It can be seen from Figure 7 and Table 1, that the expected
synchronization is achieved by the CMNNs within the proposed event-triggered pinning
control frame (9).
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Figure 5. The state trajectories produced by Systems (7) and (8) without controller. (a) The phase of
systems in a complicated space. (b) The state curves corresponding to the drive system (7). (c) The
state curves corresponding to the response system (8).

Different control methods are taken for comparison, and the result is shown in Figure 7
and Table 1. The following observations can be made from different convergence trajectories
of synchronization error e(t): (1) It follows from Theorem 1 that Systems (7) and (8) under
the control law (9) can achieve synchronization. (2) Under the framework of pinning control,
the event-triggered method achieves better performance then the feedback controller, i.e.,
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faster convergence with lower energy consumption. The change in the controller and the
events of the pinned node are illustrated in Figures 8a and 9.
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Figure 6. The state trajectories produced by Systems (7) and (8) with event triggered pinning control
(9). (a) State curves of the drive system (7). (b) State curves of response system (8).
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Figure 7. Synchronization error trajectories of Systems (7) and (8) with different control methods.
(a) No controller. (b) Feedback controller for all nodes. (c) Pinning feedback control for the first node.
(d) Pinning event triggered control (9) for the first node.
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Figure 8. Change process of PETS (9). (a) For one pinned node {ν1}. (b) For five pinned nodes
{ν1, ν2, ν3, ν6, ν7}.
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Figure 9. Event triggering time instants under PETS (9). (a) µ2
k = 2.25; (b) µ2

k = 0.81.

Table 1. Performance comparison of pinning synchronization for convergence.

Control Approach None Feedback Control in [37] Our Approach

Pinned Nodes 0 All Nodes 1
Event-Triggered Self-Triggered

v1 v1, v2, v3, v6, and v7 v1

Convergence of system(s) ∞ 0.7457 15.867 7.969 1.4687 0.7511

Based on the above parameter setting, it is calculated that Υ1 = 10.9831, Υ2 = 4.3118,
and Tk > 0. The calculation results indicate that Theorems 2 and 3 are reasonable. Moreover,
the error system (11) successfully eliminates the Zeno behavior. Figure 10a shows that
the state trajectories between Systems (7) and (8) converge stably. Figure 10b shows the
performance of the designed self-triggered strategy.

Remark 8. For the self-triggered scheme, Figure 10 and the comparison with Table 2 not only
indicate the effectiveness of Theorem 2, but also demonstrate that the self-triggered pinning scheme
converges faster than the event-triggered one. The self-triggered approach chooses the smaller trig-
gered interval as the update instant, which leads to a smaller sampling interval and a higher update
frequency. Thus, compared with the event-triggered method, the self-triggered synchronization
exhibits better performance in convergence. However, it does not fully utilize the limited network
bandwidth due to much information exchange taking place.
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Figure 10. The state trajectories produced by Systems (7) and (8) with self triggered pinning control.
(a) State curves of error system (11). (b) Self triggering time instants.

Table 2. Performance comparison of self-triggered scheme.

Self-Triggered
Mean Time Interval

Convergence (s)
1 2 3

[38] 0.0546 0.0641 0.0662 8.7435
[5] 0.0746 0.0746 0.0746 2.7184

Theorem 2 0.0158 0.0158 0.0158 0.9032

4.2. PETS for Ten Nodes

Case 1: Pinned Node Selection

Some pinned nodes are selected randomly in some existing approaches on pinning syn-
chronization [39,40]. Nevertheless, when it comes to the event-triggered scheme and uncertain
delayed neural networks, schemes on pinning event-triggered synchronization have so far been
seldom investigated. Therefore, in this section, inspired by [35,41], Algorithm 1 is selected to
choose the nodes that are pinned and to be controlled in Systems (7) and (8).

For Figure 4b, the number of nodes is N = 10 and the Laplacian matrix is LN .
Then, all the eigenvalues of LN are calculated in an increasing order; that is, {λp+1(LN),
p = 1, 2, . . . , 9|7.6561, 7.1368, 6.1810, 5.9315, 1.6720, 1.8704, 4.3112, 3.6205, 3.6205}. Then the
eigenvalues from λ1(LN−p) are derived as max

p=1
λ1(L9) = 1.7544, max

p=2
λ1(L8) = 1.1780,

max
p=3

λ1(L7) = 1.6114, max
p=4

λ1(L6) = 1.6571, max
p=5

λ1(L5) = 1.6571, max
p=6

λ1(L4) = 1.6972,

max
p=7

λ1(L3) = 1.6972, max
p=8

λ1(L2) = 3.000, and max
p=9

λ1(L1) = 5.000.

Considering the CMNNs shown in Figure 4b, this paper sets the coupling strength
σ = 1. Meanwhile, the inner connecting matrix Γ = diag{1, 1, ..., 1}10×10 and the coupled
matrix W is as follows

W =



−5 0 1 0 0 0 1 1 1 1
0 −6 1 0 1 1 1 1 0 1
1 1 −6 1 0 1 1 0 0 1
0 0 1 −3 0 1 1 0 0 0
0 1 0 0 −3 0 1 0 1 0
0 1 1 1 0 −4 0 0 0 1
1 1 1 1 1 0 −5 0 0 0
1 0 0 0 0 0 0 −2 0 1
1 1 0 0 1 0 0 0 −3 0
1 1 1 0 0 1 0 1 0 −5


.
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As pinned nodes increase from 1 to 9, the trends of max
p

λ1(LN−p) and λp+1(LN)

are demonstrated as in Figure 11. According to analysis of Figure 11, it can be seen that
λp+1(LN) stays at greater values than max

p
λ1(LN−p) with the increasing number of pinned

nodes, and it can predict the small fractional nodes to be controlled. The max
p

λ1(LN−p)

remains stable since 2 ≤ p ≤ 7, which means it is cost-effective to select the number of
pinned nodes from 2 to 7.

1 2 3 4 5 6 7 8 9

Number of pinned nodes

1

2

3

4

5

6

7

8

E
ig

e
n
v
a
lu

e
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N
)

1
(L

N-p
)

Figure 11. Evolution of max
p

λ1(LN−p) and λp+1(LN) for the increasing of pinned nodes.

Remark 9. Note that the pinning synchronization of MNNs was adopted in our previous work [37],
but the algorithm for pinned node selection was not designed. Inspired by [35], we noticed that
max

p
λ1(LN−p) remains at 1.6 as p increases from 2 to 7, i.e., the percentage of pinned nodes

increases from 22.2% to 77.8%. It illustrates that that max
p

λ1(LN−p) is stable as the number of

pinned nodes p increases. This means that the lowest number of pinned nodes (2 ≤ p ≤ 7) can be
selected since each max

p
λ1(LN−p) are at the same value. As mentioned above, this paper greatly

improves both the applicability of the model and the innovation of the pinning scheme.

Case 2: Pinning Event-Triggered Synchronization

Taking Algorithm 2 and the Laplace matrix of CMNNs, five nodes are chosen as
pinned nodes to be controllers, which satisfies the sufficient conditions of Theorem 1.
Therefore, the PETS is a cost-effective method to realize pinning synchronization under
uncertain and delayed situations.

For the designed pinning event-triggered control scheme (9), this paper sets
D = diag{5.7, 4.6, 3.5, 4.8, 5.9, 4.2, 3.7, 5.5, 3.9, 4.6}, and other parameters for Systems (7)
and (8) are set as follows

A+ =



1.0 2.2 1.8
1.0 1.0 2.4
0.4 0.6 1.8
1.1 2.3 1.9
1.2 0.9 2.3
0.5 0.7 1.5
1.2 2.2 2.0
1.3 1.0 2.4
0.4 0.8 1.6
1.5 3.1 1.9


, B+ =



3.2 0.4 1.5
0.4 3.6 2.1
2.6 3.2 2.6
3.1 0.9 1.1
0.9 3.1 2.4
2.1 3.4 2.5
3.9 1.2 1.9
0.1 3.4 2.8
2.5 3.3 2.7
3.0 0.7 1.9


.
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Figure 12a illustrates the chaotic dynamic behavior of such CMNNs, and Figure 12b
shows the rationality of the event-triggered pinning scheme.
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Figure 12. State curves of drive and response systems with 10 nodes. (a) States of error system (11)
without control. (b) States of drive system (7) with PETS (9) on 5 pinned nodes. (c) States of drive
system (8) with PETS (9) on 5 pinned nodes. (d) States of error system (11) with approach (9).

For the controller, when µ2
k = 2.25 > 1, this paper sets k11 = 100, k12 = 100, k13 = 20,

k21 = 35, k22 = 20, k23 = 100, k31 = 20, k32 = 38, k33 = 30, k61 = 50, k62 = 80, k63 = 30,
k71 = 50, k72 = 80, k73 = 60, r = 5, and R̄ = diag{5, 5, 5, 5, 5, 0, 0, 0, 0, 0}. Then, α = 30,
ε1 = 0.1, ε2 = 0.005, ε3 = 1, and ρ1 = 15 , by employing (2)–(27), and the obtained results
satisfy Theorem 1 and the triggered conditions. When µ2

k = 0.81 ∈ (0, 1), this paper sets

ρ2 = 15, and we have
(

lnµ̃
ρ2

+ ϖ1

)
+ µ̃−1β1 < 0.

Inspired by [18,35], this paper analyzed the control scheme of pinned node selection
in depth. Considering Algorithm 1 and the degree distribution of CMNNs, we choose
five nodes as pinned nodes; that is, {ν1, ν2, ν3, ν6, ν7}. Table 3 presents the mean time interval
of the triggered instants and the convergence time of the error system (11) when the fresh
PETS (9) is utilized. Table 3 presents the mean time interval of the triggered instants and
the convergence time of the error system (10) when the fresh pinning scheme (43) is used.
Figures 8b and 13 demonstrate the information exchange and resource utilization, which
confirms the advantages of the proposed method in saving energy and control efficiency.

To investigate whether the control performance is affected by the change in the degree
of pinned nodes, this paper replaces the pinned nodes with {ν1, ν2, ν3, ν4}, {ν3, ν6, ν9, ν10},
{ν2, ν4, ν5, ν7}, and {ν5, ν7, ν8, ν9}. Then, Figure 14 presents the mean time interval of the error
system under the pinning control with four nodes. From the numerical analysis, it can be
noticed that when the nodes with less connectivity are pinned, it will make the triggered instants
more frequent and lead to more energy consumption. Therefore, the larger connection degree of
the pinned nodes will contribute to a better performance of the PETS.
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Table 3. Pinned nodes {ν1, ν2, ν3, ν6, ν7} on synchronization.

ν11 ν12 ν13 ν21 ν22

Maximum Time Interval 0.0877 0.0255 0.9139 0.2133 0.1541
Mean Time Interval 0.0149 0.0149 0.0137 0.0149 0.0137

ν23 ν31 ν32 ν33 ν61

Maximum Time Interval 0.0255 1.4954 0.1487 0.1496 0.1301
Mean Time Interval 0.0149 0.0149 0.0149 0.0149 0.0137

ν62 ν63 ν71 ν72 ν73

Maximum Time Interval 0.0255 0.0766 1.4290 0.0350 0.2824
Mean Time Interval 0.0149 0.0149 0.0123 0.0433 0.0147

Figure 13. Event triggering time instants for 5 pinned nodes. Different dimensions of pinned nodes
correspond to different colors.

Node1 Node2 Node3 Node4 

0.7 

Mean-1st 0.75 0.57 
0.6 

0.5 

Mean-2nd 
0.68 0.65 0.53 

0.4 

0.3 

Mean-3rd 
0.45 0.67 

0.2 

(a)

Node3 Node6 Node9 Node10 

0.7 

Mean-1st 0.32 0.35 
0.6 

0.5 

Mean-2nd
0.51 0.34 0.47 0.4 

0.3 

0.2 

Mean-3rd 0.67 0.75 0.38 

0.1 

(b)

Node2 Node4 Node5 Node? 

0.7 

Mean-1st 0.49 D.81 0.71 
0.65 

0.6 

0.55 

0.5 

Mean-2nd
0.75 0.43 0.45 

0.4 

0.35 

0.3 

Mean-3rd 0.40 
0.25 

0.2 

(c)

Node5 Node? Node8 Node9 

0.3 

Mean-1st 
0.27 0.21 

0.25 

0.2 

Mean-2nd
1.11 0.27 0.31 

0.15 

0.1 

Mean-3rd
0.15 0.27 0.19 0.32 

0.05 

(d)

Figure 14. Influence of node selection on convergence. (a) {ν1, ν2, ν3, ν4}; (b) {ν3, ν6, ν9, ν10};
(c) {ν2, ν4, ν5, ν7}; (d) {ν5, ν7, ν8, ν9}.

Comparing with the current literature [5,42–44], it can be seen that the PETS relies on
fewer triggering events from Table 4. Meanwhile, combined with the algorithm of pinned
node selection and Theorem 1, it can be seen from Table 2, that our method consumes re-
markably less energy for data calculation and detection than other methods. Our proposed
method is compared with other advanced works to verify its superiority, and the result is
presented in Table 4.
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Table 4. Performance comparison of event-triggered scheme.

Event-Triggered
Mean Time Interval

1 2 3 4

[5] 0.0198 0.0198 0.0198 -
[42] 0.0127 0.0119 0.0151 -
[43] 0.0114 0.0116 0.0117 0.0046
[44] 0.0153 0.0114 0.0160 0.0214

Theorem 1 0.0467 0.0325 0.0249 -

5. Conclusions

This paper proposed a novel event-triggered pinning control scheme (PETS) for a class
of uncertain delayed CMNNs. According to the theory of pinning control schemes and
degree distribution of complex neural networks, the algorithm for pinned node selection
has been designed. Additionally, taking the pinned nodes into account, a fresh Lyapunov
function has been formulated, with a new pinning event-triggered control scheme, a trig-
gered function, an average update interval, and several criteria contrived to guarantee the
pinning synchronization for CMNNs. Accordingly, the Zeno behavior could be naturally
avoided through the appropriate triggered conditions, which combine the mismatched
parameters, nonlinear properties, uncertainties, and the topology of CMNNs. More com-
parisons indicated that the PETS possessed better energy efficiency and faster stability
convergence than other event-triggered approaches.
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