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Abstract: The remote monitoring of vital signs and healthcare provision has become an urgent
necessity due to the impact of the COVID-19 pandemic on the world. Blood oxygen level, heart
rate, and body temperature data are crucial for managing the disease and ensuring timely medical
care. This study proposes a low-cost wearable device employing non-contact sensors to monitor,
process, and visualize critical variables, focusing on body temperature measurement as a key health
indicator. The wearable device developed offers a non-invasive and continuous method to gather
wrist and forehead temperature data. However, since there is a discrepancy between wrist and actual
forehead temperature, this study incorporates statistical methods and machine learning to estimate
the core forehead temperature from the wrist. This research collects 2130 samples from 30 volunteers,
and both the statistical least squares method and machine learning via linear regression are applied
to analyze these data. It is observed that all models achieve a significant fit, but the third-degree
polynomial model stands out in both approaches. It achieves an R2 value of 0.9769 in the statistical
analysis and 0.9791 in machine learning.

Keywords: COVID-19; machine learning; linear regression; body temperature; Internet of Things;
wearable device

1. Introduction

Chronic diseases are becoming a major issue worldwide, resulting in a rising need
for medical treatment and services. Traditional medical practices diagnose these diseases
and abnormalities in the human body. For instance, hospitals conduct physiological tests
that can lead to extended hospital stays for patients during their recovery [1–3]. This
could be observed with the most recent pandemic caused by the Coronavirus Disease
2019 (COVID-19). Recent events’ rapid spread and clinical evolution have highlighted
significant deficiencies in hospital infrastructure and preparedness worldwide. As a result,
there is an urgent need for more accessible and efficient medical solutions, leading to
re-evaluating traditional practices. This situation has prompted the search for innova-
tive methods that enable faster diagnosis and treatment and more effective prevention
and monitoring systems, which can be implemented outside the hospital environment.
This will facilitate access to medical care and improve the ability to respond to future
health emergencies [4–7].
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As a result of the pandemic, telemedicine and compact smart devices have been used
to monitor important medical indicators and detect diseases. These devices act as remote
assistants, allowing patients to be monitored outside hospitals. Integrating these technolo-
gies is a significant advancement in remote health management, providing an effective
alternative for continuous patient monitoring, especially when direct access to medical
services is limited [8–10]. Monitoring vital signs is essential for maintaining patients’ health
inside and outside the hospital, and using sensors with remote communication is proposed
for this purpose through technologies such as the Internet of Things (IoT) and wearable
devices (WDs) [11].

IoT networks have been a popular research area for decades. This technology has
evolved and adapted to optimize task allocation using various criteria such as network
duration, latency, and reliability [12]. The healthcare sector has greatly benefited from
the IoT revolution, as sensors, devices, and actuators allow remote patient monitoring.
This technology offers a variety of applications and utilities for displaying and storing
physiological data such as body temperature, heart rate, and blood oxygenation [13,14].

WD comes with sensors that can interpret physiological signals via electrical impulses.
These devices find widespread usage in the healthcare sector, as well as in certain industries
and sports fields [15]. In recent years, there has been a significant increase in the use of
wearable biomedical sensors in healthcare, with a focus on monitoring vital signs in real
time to manage chronic diseases [16,17].

Body temperature is a vital sign in evaluating an individual’s health. Changes in
body temperature are instrumental in identifying major public health events, as evidenced
by historical cases such as Severe Acute Respiratory Syndrome (SARS) and the recent
COVID-19 pandemic [18]. Therefore, monitoring and measuring body temperature are
essential to observing daily medical care, disease diagnosis, and administering advanced
medical interventions.

WD has become increasingly popular for tracking various personal health metrics.
One such device is designed to be worn on the wrist, providing comfort and flexibility and
allowing for the continuous monitoring of vital health data with an easy and non-invasive
way to collect individual information, such as body temperature [19]. It is important to
note that there is a difference between the temperature measured at the wrist and the actual
body temperature. According to [20], the wrist temperature’s accuracy may vary and may
not always accurately reflect the body temperature.

The implementation of Machine Learning (ML) algorithms has had a significant
impact on the healthcare industry. By using these algorithms, disease prediction methods
have become much stronger, leading to the better diagnosis and treatment of patients and
even saving lives [21,22]. This has made a significant contribution to healthcare and has
demonstrated the effectiveness of ML in this field [23]. ML can establish the relationship
between two variables by identifying specific attributes in the data and measuring the
strength of this relationship using mutual information [24].

In this way, this work aims to develop a WD to monitor vital signs that integrate IoT
technologies, Statistical Analysis (SA) methods, and ML models to best estimate the body
temperature based on the data measured on the wrist. The contributions of this paper can
be summarized as follows:

• The development of a WD for remotely monitoring vital signs, focusing on tempera-
ture measurement at the wrist and forehead. This opens the door to a less invasive
and more accessible method of monitoring and measuring body temperature changes.

• The integration of the OBNiSE IoT architecture, that can be applied in general to
several areas such as industry, education, mobility, smart cities, agriculture, health,
energy, etc. This IoT architecture encompasses six layers: devices, network, processing,
cloud, security, and applications.

• A comparative analysis of models, applying the SA and ML method, with the aim of
estimating core body temperature based on wrist temperature.
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This paper is organized as follows: Section 2 comprehensively reviews the related
works. Section 3 shows the study case. Section 4 describes the design of the WD, including
the architecture of the proposed system. Section 5 indicates the process for collecting data.
Section 6 presents the applied SA and an ML algorithm to predict the forehead temperature
from the wrist. Section 7 presents the experimental results and their respective analysis,
while Section 8 presents the discussion. Finally, Section 9 presents the conclusions and
limitations found.

2. Related Works

During the pandemic, rapid fever screening has proven to be an effective method for
the detecting suspected symptoms of infectious diseases. However, contactless infrared
thermometers are only reliable if they are properly handled.

The authors in [25] proposed the development of an infrared thermometer on the
wall for fever screening. The difference with normal contactless infrared thermometers
is that the prototype can automatically estimate the human body temperature when the
distance is adequate to measure the forehead temperature. The results indicate that the
prototype could accurately detect body temperature under various environmental and
physical conditions.

The study in [26] proposed a WD to detect potential heat stroke by measuring physio-
logical data using fuzzy logic with the wearable temperature sensor placed on the wrist.
This study employs other sensors to measure the heart rate, ambient temperature, relative
humidity, and core body temperature to generate a quantitative heat stroke risk level.
The device can detect potential heat stroke and alert users earlier. The authors in [27] intro-
duced an IoT-based wearable device that can help monitor vital signs related to COVID-19.
The device can detect the primary symptoms of COVID-19, such as body temperature. This
innovative device is designed to improve the communication between doctors, authorities,
and family members, and facilitate the management of the pandemic.

The investigation in [28] aimed to test a wearable wrist device to measure vital signs.
The device’s measurements were compared to the standard manual measurements of
nurses, with 132 participants participating in the study. The results showed that the
heart rate and systolic blood pressure measurements had high agreement with the device,
but respiratory rate, temperature, and oxygen saturation measurements had low agreement.
Nonetheless, most participants had a positive impression of the device and would be
willing to use it in future hospital visits.

In the works presented in [29–33], the continuous monitoring of vital signs such as
breathing and heartbeat temperatures is carried out; these variables play an essential role
in predicting diseases. The results highlight the significance of assessing these devices
for telemonitoring and clinical decision making, illustrating the potential of wearable
technology in real-time health monitoring.

In [34], the authors propose a prototype non-contact temperature sensor for early fever
detection. The thermal infrared sensor is placed on a hat to measure forehead temperature
and employs a microcontroller. The data are sent to a mobile application through Bluetooth,
and the estimated temperature can be visualized as a matrix. The study found that the
portable wearable device can accurately detect objects with high temperatures (>37.5 ◦C)
indoors and outdoors, with a detection accuracy of up to 99.42% and 98.10%, respectively.

Other works [35] present the development of a wearable device placed on the ear to
detect early signs of COVID-19 by measuring the human biometric signals of temperature,
heart rate, and SpO2. The study results reveal an average difference of 0.40 in temperature
estimation compared to standardized commercial devices.

Research in [36] contemplates the best places to measure anatomical temperature using
wearable sensors to measure this variable. These studies conclude that the most accurate
areas to measure temperature are the forehead and the ear because they are more closely
related to body temperature.
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The authors in [37] propose a sensor-based wireless health monitoring system to
estimate the body core temperature from the skin surface of the back under the neck. In this
way, a linear regression algorithm is employed to estimate the body core temperature.
The results showed that the proposed device could accurately measure skin with an average
error of approximately ±0.19 ◦C between the ear temperature and estimated core body
temperature. However, greater variability was observed in pulse oximetry measurement.

In the papers presented in [14,38], a comparison is made between temperature mea-
surements taken in different parts of the body with infrared sensors installed on the
forehead, ear, and wrist, showing the relationship between each zone; it is concluded that
the temperatures taken on the forehead and ear are closest to the body temperature and
that the temperature taken on the wrist usually varies, which is why it is necessary to
establish a relationship with the body temperature.

Tools like ML have great potential to process large amounts of data collected by
sensors from IoT devices in real environments [39]. The work presented in [40] proposes
the integration of neural networks as an architecture for processing data obtained to predict
diseases and abnormalities in the human body, taking advantage of these architectures’
great data processing capacity. On the other hand, the study [41] examines the potential of
WD to forecast clinical laboratory outcomes through the continuous monitoring of vital
signs compared to clinical vital signs. The study employs statistical and ML models, such
as linear regression, Lasso, random forests, and canonical correlation analysis, to establish
the correlation between measurements and laboratory results. This study demonstrates
that WD can accurately predict certain laboratory tests.

In [42], WD and ML algorithms were used to continuously monitor high-risk postopera-
tive patients and predict their outcomes in real time. The vital signs of 292 patients, including
systolic and diastolic blood pressure, heart rate, pulse rate, respiratory rate, and oxygen
saturation were monitored. Different ML models were trained and tested, and the results
showed that the random forest model performed the best. The investigation in [43] presents
an IoT system to enhance healthcare services and help professionals reduce their workload.
The data were analyzed using ML techniques to detect adverse health conditions early.

The review of related works demonstrates the possibility of using IoT technologies to
implement sensors and collect data remotely. It also shows the potential of implementing
ML architectures to predict abnormalities in vital signs, which can help improve healthcare.
This highlights the importance of ongoing research and the development of remote health
status monitoring methods.

3. Study Case

This study employs a commonly used temperature device used at temperature check-
points in various locations across Mexico, namely the K3 GP-100 non-contact temperature
sensor (Figure 1). The primary objective is to determine a correlation between the forehead
and wrist temperature readings by obtaining the measurements of both points. The main
characteristics of this device are shown in Table 1.

Figure 1. Commercial infrared sensor Model K3TIA K3 GP100 GP-100.
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Table 1. K3TIA K3 GP100 GP-100 sensor specifications.

Temperature range 0–50 ◦C

Accuracy 0.2 degrees

Response time 500 ms

Measurement distance 5 cm–10 cm

The experiment involved taking measurements using a mercury thermometer placed
under the armpit as a ground truth under constant artificial lighting conditions. The non-
contact temperature sensor is maintained perpendicular to the forehead and wrist while
moving at 3 cm, 5 cm, and 10 cm for each measurement. Each measurement was sampled
every five minutes, and 90 readings were taken. Research suggests that the wrist tends to
have lower temperatures than other body parts, such as the forehead. The graph in Figure 2
shows that temperatures at the wrist ranged from about 31 ◦C to 33 ◦C [40].

Figure 2. Body temperature distribution.

Figure 3 provides the values obtained by analyzing the body temperatures at the wrist
and forehead, respectively (reported in ◦C).

The Standard Deviation (STD) values for the forehead and wrist are 0.135 ◦C and
0.137 ◦C, respectively. Furthermore, based on ground truth measurements, the mean
absolute errors for the forehead and wrist are found to be 0.107 ◦C and 0.196 ◦C, respectively.
The experiment results indicate that the sensor deployed for temperature measurement
does not differentiate between the temperature readings captured from the forehead and
wrist. This may happen due to different factors; previous works evaluated four non-contact
temperature sensors and found high bias in the measurements due to the incorrect working
distance, inclination angle, measurement site, and light conditions, which can result in
considerable discrepancies in body temperature estimation [44].

Determining a correlation between the temperature readings obtained from the fore-
head and wrist based on the provided data appears to be challenging. Therefore, to achieve
accurate human body detection with minimal external impact, it is necessary to use a
simple and convenient method [20].
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Figure 3. Temperature vs. distance data (reported on the x axis in ◦C) collected during the experiment.

4. Design and Implementation of Wearable Device

This section outlines the development of a WD for collecting body temperature us-
ing the National Digital Observatory of Smart Environments (OBNiSE, by its initials in
Spanish), presented in [45], part of the Center for Research, Innovation, and Technological
Development of the University of the Valley of Mexico (CIIDETEC-UVM). The OBNiSE
architecture has been designed as an integrated system that enables the control, analysis,
monitoring, and development of intelligent systems for the creation of IoT-based solu-
tions while ensuring the security and efficient management of large volumes of data at
various levels.

The OBNiSE architecture comprises six layers, each performing specific tasks as follows:

• Device connections: The physical layer collects all the data from the sensors.
• Network: The network comprises three essential components, namely tools, user

profiles, and data accessibility. Tools constitute graphics cards, memory, and other
auxiliary connections that enable the configuration of devices. User profiles are
classified into three categories: programmers, managers or administrators, and regular
users. Data accessibility determines how devices communicate with users and other
devices, whether through Wi-Fi, Bluetooth, or ZigBee.

• Processing: This layer processes information from the network and device layers,
organizes data for interpretation, and can use a physical or virtual server.

• Cloud: This layer is where the data are stored and ensures its availability for any
application or service.

• Applications: This layer allows the development of services, functions, and soft-
ware solutions to interact with end users created under this IoT architecture; some
applications are mobility, cities, health, and technology, among others.

• Security: The system ensures control and security across all layers of architecture. De-
vices are stored in secure locations, user profiles are limited to authorized information,
and applications use encryption. Data are stored on physical servers and the cloud,
with access restricted to administrators. Encryption keys protect the information
transmitted between devices, the cloud, and the server.

The OBNiSE architecture for WD is shown in Figure 4.
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Figure 4. Smart system for healthcare based on the OBNiSE architecture.

The description for every layer is described in subsequent sections.

4.1. Device and Network Layer: Wearable Device

The WD consists of a microcontroller and two non-contact temperature sensors; one
sensor will be worn on the wrist, while the second temperature sensor measures the
forehead to collect simultaneous data between both. The connection diagram is shown in
Figure 5; the elements of WD are described below.

Figure 5. Sensors and battery connections on wearable device.

• NodeMCU: module for managing communication tools such as Wi-Fi and Bluetooth. It
can handle various applications, from low-power sensors to high-processing capacity
tasks. This module features the ESP32-D0WDQ6 chip, which can be customized
to meet specific requirements. It incorporates two CPU cores that can be adjusted
from 80 to 240 MHz and a co-processor that conserves energy by handling simple
tasks like peripheral control. Additionally, the module offers connectivity options
with various peripherals, such as touch Secure Digital (SD) cards, Ethernet, Serial
Peripheral Interface (SPI), Universal Asynchronous Receiver-Transmitter (UART),
and Inter-Integrated Circuit (I2C).

• MLX90614: A non-contact infrared temperature sensor that integrates a low-noise
amplifier, a high-resolution 17-bit ADC, and a DSP MLX90302. The calculated object
and ambient temperatures are available with a resolution of 0.01 ◦C. They are accessible
by a two-wire serial SMBus compatible protocol (0.02 ◦C resolution) or via the device’s
10-bit PWM (Pulse Width Modulated) output. The MLX90614 is factory-calibrated in a
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wide temperature ranges: from −40 to 125 ◦C for the ambient temperature, and from
−70 to 382.2 ◦C for the object temperature.

Two enclosures were created to enable the sensors to be worn on the wrist or fore-
head. The enclosures possess a mechanism to regulate the distance of the sensor with
the object being measured. Figure 6a,c show the wrist device, while Figure 6c,d show the
forehead device.

(a) (b)

(c) (d)
Figure 6. Wearable device: 3D design (a,c) and assembled (b,d).

The MLX90614 sensors and microcontroller NodeMCU are incorporated by employing
the I2C communication protocol bus, with information being transmitted to the cloud via
Wi-Fi using the MQTT (Message Queuing Telemetry Transport) protocol. This study
establishes two types of user profiles: viewers and managers. Viewers can only view the
information using a PC or mobile device, while managers can view the data, as well as
modify the data processing.

4.2. Processing and Cloud Layer

The information is stored in a database based on cloud technology, which is available
for later visualization and processing. This database can be accessed easily by both the
application and the processing system. As a result, data analytics and ML techniques can
be applied to the data to systematically detect trends and correlations between the forehead
and wrist temperature, as explained in Section 6.

4.3. Application Layer

ThingSpeak is a cloud platform specifically designed for IoT and Industry 4.0 projects.
It simplifies the management of device sensors, transmission channels, Message Queuing
Telemetry Transport (MQTT) connections, and graphs for data analysis and storage [46].
The purpose of this study is to use ThingSpeak to present information to end-users.

An Application Programming Interface (API) allows users to import data from the
cloud into ThingSpeak. The server offers graphical displays, such as dashboards, that
enable users to visualize the data’s behavior. These dashboards include useful features like
meters, buttons, and images, as shown in Figure 7.
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Figure 7. ThingSpeak cloud platform graphical interface.

5. Data Acquisition

An initial sample group of volunteers between 18 and 30 years old was called in the
data acquisition process, conveniently selected by the most prevalent age of the students at
the university. This group was organized volunteers aged between 19 and 24 years old and
comprised 30 volunteers, 16.67% of whom were women and 83.33% of whom were men.
This experiment is the first planned group. Considering the study [47] and aiming to enrich
the research, the same experiment is planned for other age groups; moreover, collaborations
running the same experiments, product design considerations, and ergonomy with a more
ethnically diverse sample would be beneficial. Volunteers participated in an experiment to
measure the temperature using sensors placed on their forehead and wrist, as shown in
Figure 8. Their health data were not considered during the measurements. Furthermore,
the experiment was conducted in the same room at the Autonomous University of Zacatecas
under artificial light conditions and at ambient temperature.

Figure 8. Wearable device to measure temperature in wrist and forehead.

Participants were instructed to wait for ten minutes before starting the measurement
process. This allowed them to acclimate to the ambient temperature and minimize the
effects of temperature fluctuations on the experiments. This is particularly important for



Sensors 2024, 24, 1944 10 of 20

experiments that involve a lengthy measurement process. Keeping volunteers at the same
room temperature makes the measurements more consistent and reproducible, which is
essential for ensuring the study’s validity. Following this, the WD sensors were attached to
the participants for 15 min, with a sampling rate of 12–13 s due to IoT latency, resulting in
2130 samples.

The protocol for making the measurements is as follows. Initially, the WD sensors
were employed to measure forehead temperature, placed at a distance of 1 cm, and then
the distance gradually increased to 2.5 and 5 cm for five-minute intervals. Simultaneously,
measurements of the temperature on the wrist were recorded by the WD at a fixed distance.

The data from 2130 samples were stored on the cloud platform to establish a correlation
between the temperatures measured on the wrist and the forehead.

6. Statistical Analysis and Machine Learning

A comprehensive analysis of the collected data will be conducted in the upcoming
sections, as shown in Figure 9.

Figure 9. Overview of the data analysis process for obtaining the mathematical model from the
wearable data.

Initially, the interdependencies will be examined by generating the mathematical
correlation equations for each dataset, ranging from the first degree to the third degree
to capture complex patterns in the data. This approach aims to attain a detailed under-
standing of the relationships existing between the variables. Subsequently, ML techniques
will be employed to construct predictive models. The validation of all relationships will
be conducted using the coefficient of determination, denoted by R-squared (R2), which
measures the extent to which independent variables determine the dependent variable in
terms of variance proportion [48], as expressed in Equation (1):

R2 = 1 − RSS
TSS

= 1 − ∑(yi − ŷ1)
2

∑(yi − y1)
2 (1)

where RSS is the Residual Sum of Squares and TSS is the Total Sum.
This study involves deriving equations using SA and ML methods at three polynomial

degrees. It then moves on to a crucial verification phase, where it tests the predictive
efficacy of these equations using an entirely new dataset. This dataset is distinct from those
used in the initial analysis, allowing the evaluation of the models’ real-world applicability
and accuracy. By doing this, the study ensures that the relationships captured by the
models are not just artifacts of the original datasets but hold general predictive power.
The effectiveness of each equation will be assessed based on its performance on these new
data, focusing on how closely the predicted values align with actual measurements. This
validation step is essential for establishing the reliability and robustness of the predictive
models, providing a comprehensive measure of their utility in practical applications.
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6.1. Statistical Analysis

The SA uses a Partial Least Squares (PLS) process to obtain first-, second-, and third-degree
equations. Least squares path modeling is a widely used method to analyze data associated
with complex phenomena. The characteristics of PLS are essential in explaining the causal
relationships between concepts in the real world. This method aims to optimally fit the
polynomial equations to the data by minimizing the sum of the squares of the differences
between the measured and predicted values [49].

The PLS model can be expressed as Equation (2):

Y = B0 + B1X + B2X2 + . . . + BkXk + E (2)

where Y represents the dependent or response variable, X represents the independent
predictor variable, and k indicates the polynomial degree. The PLS procedure estimates
the model coefficients, which include B0 (the intercept) and B1, ..., and Bk (the coefficients
of successive powers of X). The error term, represented by E, captures the discrepancy
between the observed values of Y and the values predicted by the polynomial model.

6.2. Machine Learning

One of the most used techniques for data analysis is Linear Regression (LR) because of
its ability to represent complex phenomena and ease of data understanding. The structure
of simple Linear Regression is expressed as Equation (3):

Y = β0 + β1X + ϵ (3)

where Y is called the dependent variable or the response variable, whereas X is the inde-
pendent variable used to predict. The regression coefficients or parameters of the model are
represented by β0 and β1, which correspond to the intercept and slope, respectively. Lastly,
ϵ represents the error in predicting the response variable due to the stochastic relationship
between Y and X [48].

Polynomial regression is a type of multiple regression that only involves one inde-
pendent variable, referred to as X. In this model, the dependent variable Y is linearly
dependent on the powers of this single independent variable, including X, X2, and so on,
up to Xk. A polynomial regression model with a single independent variable and an order
of k can be expressed as Equation (4):

Y = β0 + β1X + β2X2 + . . . + βkXk + ϵ (4)

where Y is the measured or observed variable at time X, the polynomial order is denoted
by k, and the B denotes the parameters that need to be estimated as they are unknown.
The error term ϵ is also time-dependent and follows the probability distribution of Y. It is
important to note that t is a time sequence, where X equals 1, 2, 3, and so on up to n [50].

LR and PLS formulas are often used interchangeably because least squares is the
standard method for estimating linear and polynomial regression coefficients. These
equations define the relationship between dependent and independent variables, optimized
using least squares. However, this study implements LR using ML techniques, making a
significant difference. ML trains the model with known response data, allowing it to learn
the relationship between variables and prepare to make accurate predictions on new data.
This predictive capability is essential for practical applications, highlighting the importance
of ML in extending SA towards broader predictive applications.

6.2.1. Model Evaluation

Several theoretical aspects suggest potential connections between dependent or inde-
pendent data when utilizing an algorithm to determine uninterrupted values. Selecting
the appropriate metric to evaluate the model is crucial, as it aids in comprehending the
phenomenon’s connection and fundamental objective. In the present study, various metrics,
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such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE) [48] are used as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ1)2 (5)

MAE =
1
n

n

∑
i=1

| yi − ŷ1 | (6)

MAPE =
1
n

n

∑
i=1

| yi − ŷ1 |
yi

(7)

where n is the number of observations and yi − xi is the error between the forecast and actual
values. The RMSE is a mathematical formula used to standardize the units of measurement
of the Mean Squared Error (MSE). The MSE evaluates the variance by measuring how well
a model fits the training data. The RMSE assigns more weight to specific data points, which
results in a more significant impact on the overall error if a prediction is incorrect, as shown
in Equation (5). On the other hand, MAE measures the result regarding distances from the
regressor to the actual points. Unlike RMSE, MAE does not heavily penalize outliers, as it
smooths out all errors due to its norm. This provides a generic and bounded performance
measure for the model and can be expressed in the equation as shown in Equation (6).
Finally, MAPE is used when variations impact the estimate more than the absolute values
of the data, as expressed in Equation (7).

6.2.2. Data Split

The dataset for the LR model was divided into 80% for training and 20% for testing.
Google Colab was used as the programming editor, and Python architecture was used as
the programming language to run the data modeling algorithms. The data from WD were
extracted and imported into Pandas for manipulation, analysis, and use. NumPy was used
for complex mathematical operations on vectors to optimize the performance. Additionally,
libraries such as MatPlotLib and Seaborn were used to represent the time series graphs,
and sklearn was used to design mathematical algorithms.

7. Results

The results section showcases the findings obtained from the phases of SA and ML,
which have been outlined earlier. These findings offer a comprehensive perspective on the
interdependencies assessed using mathematical correlation equations and the implementa-
tion of predictive models. The results were also validated and compared for accuracy.

A total of 2300 data samples were gathered from 30 volunteers. These samples
included wrist and forehead temperature measurements at three distances: 1, 2.5, and 5 cm.
In order to conduct a comprehensive analysis, the data were systematically grouped
based on distance variations. This clustering approach enabled a detailed examination of
temperature readings across different proximities, ensuring the analysis was robust and
granular. These grouped data are shown in Figure 10.

The data were grouped to facilitate using PLS and ML methods, which helped explore
the interaction between temperature variables and develop predictive models. The catego-
rization of data simplified the analysis process and made the findings more comprehensible
and applicable in understanding the temperature dynamics among the volunteers.
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Figure 10. Comparison of wrist and forehead temperatures at distances of 1, 2.5, and 5 cm.

7.1. Results for Statistical Analysis

The least squares method investigated the relationship between the wrist and the
forehead temperature. Our approach focuses on implementing a correlation to identify
significant patterns and quantify the strength of the association between the variables. This
is achieved by obtaining correlation coefficients, which help us to determine the degree of
correlation between the variables.

The SA findings in Figures 11 and 12 showcase the patterns and correlations captured
by the polynomial models of varying orders, which have been fitted to the data. Table 2 pro-
vides the exact polynomial equations representing these models, which helps comprehend
the modeled dynamics more clearly.

Figure 11. The correlation between wrist and forehead temperature using the polynomial least
squares method. First (a), second (b), and third (c) order.

The analysis of the three polynomial models shows that they fit the data well, with all
models achieving R2 values greater than 0.96. This indicates that the models can effectively
explain the observed variability between forehead temperature and wrist temperature.
The third-order model was the most accurate among the three polynomial models, achiev-
ing an R2 value of 0.9769. This high level of fit highlights the third-order model’s accuracy
in capturing the relationship between the two variables and its superiority compared to
lower-order models. This result provides strong evidence of a significant relationship
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between wrist and forehead temperature, emphasizing the effectiveness of the third-degree
polynomial approach in modeling these dynamics.

Figure 12. Combined visualization of the correlation between wrist and forehead temperature across
first, second, and third polynomial orders using the least squares method.

Table 2. Effectiveness of the polynomial least squares models for estimating forehead temperature
from wrist measurements.

Model R2 Equation

First-order SA 0.9634 −10.6480 + 1.4056x

Second-order SA 0.9761 −232.7013 + 14.9710x − 0.2071x2

Third-order SA 0.9769 2120.9538 − 201.4835x + 6.4261x2 − 0.0677x3

7.2. Results for Machine Learning

In this study, the researcher employed ML and adopted a linear regression approach
to model the relationship between wrist and forehead temperature. Forehead temperature
was designated the independent variable, while wrist temperature was the dependent
variable. This approach enabled an evaluation of the influence of forehead temperature
on predicting wrist temperature, providing crucial insights into the interdependencies
between these variables.

The model was trained and tested using a split of 80% for training and 20% for testing.
With 2130 samples, 1704 were allocated for training, and 426 were reserved for testing. The
results of the third-degree polynomial with the first 200 samples are shown in Figure 13
compared to the true data. Additionally, Table 3 displays the training evaluation metrics
for each polynomial.

Table 3. Evaluation metrics for polynomial models using linear regression.

Polynomial Oder RMSE MAE MAPE

First 0.0324 0.1442 0.0041

Second 0.0218 0.0960 0.0028

Third 0.0201 0.0955 0.0027



Sensors 2024, 24, 1944 15 of 20

Figure 13. Comparison of third-degree polynomial prediction with true data for the first 200 samples.

Figures 14 and 15 compare the true data and the predictions generated by the different
polynomial models of various degrees, namely those of the first, second, and third order.
Each graph is created to visualize the effectiveness of the corresponding model in capturing
the relationship between the wrist and forehead temperature. The R2 values for each
polynomial model are also presented in Table 4, which offers a quantitative measure of
each model’s ability to explain the variation in the data. Additionally, Table 4 includes the
specific equations for each model, clearly referencing the mathematical formulas underlying
the predictions.

Figure 14. The correlation between wrist and forehead temperature using the polynomial linear
regression method. First (a), second (b), and third (c) order.

Table 4. Effectiveness of polynomial linear regression models for estimating the forehead temperature
from wrist measurements.

Model R2 Equation

First-order ML 0.9663 −10.4919 + 1.4009x

Second-order ML 0.9773 −241.3410 + 15.4971x − 0.2151x2

Third-order ML 0.9791 1666.7370 − 159.9030x + 5.1577x2 − 0.0548x3

All the evaluated models demonstrated a significant fit to the data through ML,
indicating the robustness of the ML techniques employed in this study. Each model
effectively captured the correlation between the wrist and forehead temperature, consistent
with the findings obtained through SA using least squares. However, it is important to
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highlight that the third-degree polynomial model was particularly noteworthy in this ML
approach, achieving an R2 score of 0.9791.

Figure 15. Combined visualization of the correlation between the wrist and forehead temperature
across first, second, and third polynomial orders using the linear regression method.

7.3. Model Validation

A new dataset comprising 720 samples validated the predictive models developed
for estimating the forehead temperature from the wrist temperature measurements. This
dataset differed from the ones used in the model development phase and was used to test
the efficacy of the six equations derived from both SA and ML approaches. The models
were evaluated using two metrics: MAPE and STD. MAPE was chosen for its ability to
express predictive errors as a percentage, making it easy to understand model accuracy
relative to the actual temperature values. On the other hand, STD was used to measure
the dispersion of prediction errors around their mean. The results of this validation
process, including the predictive performance and error analysis for each model across the
three polynomial degrees, are presented in Table 5.

Table 5. Detailed comparison of the validation metrics for temperature prediction models.

Model Equation MAPE STD

First-order SA -10.6480 + 1.4056x 0.0253 1.2554

Second-order SA −232.7013 + 14.9710x − 0.2071x2 0.0234 1.2254

Third-order SA 2120.9538 − 201.4835x + 6.4261x2 − 0.0677x3 0.0228 1.1814

First-order ML −10.4919 + 1.4009x 0.0253 1.2537

Second-order ML −241.3410 + 15.4971x − 0.2151x2 0.0233 1.2254

Third-order ML 1666.7370 − 159.9030x + 5.1577x2 − 0.0548x3 0.0228 1.1878

8. Discussion

The validation process results, comprising 720 samples, are presented in Table 5. This
dataset was used to test the efficacy of the six equations derived from the SA and ML
approaches. The models were evaluated using two metrics: MAPE and STD. The results
demonstrated a significant fit to the data, indicating the robustness of the techniques employed
in this study. Each model effectively captured the correlation between the wrist and forehead
temperatures, consistent with the findings obtained through the least squares analysis.
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The results demonstrated a significant fit to the data, indicating that each model
employed in this study effectively captured the correlation between wrist temperature
and forehead temperature, achieving an R2 score of 0.9791 in the ML approach. However,
the difference between the lowest and highest R2 shows a relatively small difference, sug-
gesting that although the third-degree polynomial model may explain a greater variability
in the data, the improvement is marginal compared to the first-degree polynomial model.

Moreover, it is important to highlight that, while the wrist temperature is not a reliable
reference that reflects the body temperature [13], the data reveal that the suggested approach
establishes a linear correlation between the wrist and forehead temperature. This indicates
that the wrist temperature could be a viable proxy for forehead temperature, provided that
the appropriate model accounts for the inherent variability in the data. Considering the
model’s complexity and the risk of overfitting, balancing accuracy and complexity when
selecting a model is essential. In this way, the model’s validation experiment shows a
standard deviation of 1.2537 ◦C temperature between the wrist and forehead temperature
employing the first-order ML model, achieving a difference of 0.9463 ◦C lower than that
reported in [13].

Additionally, the fact that our data are based exclusively on temperature information
may limit our study’s ability to capture the relationship between wrist temperature and
forehead temperature. However, future research could benefit from including additional
data, such as heart rate or skin humidity, to provide a more complete picture of this
relationship. Additionally, validating our models with larger and more diverse datasets
could improve our findings’ robustness and generalizability.

The wrist wearable devices currently cost around USD 60 each. However, it is impor-
tant to note that this cost could significantly decrease when these devices are produced
on a large scale. This price adjustment not only makes the technology more accessible for
widespread use but also enhances its viability as a cost-effective solution for comprehensive
health monitoring programs. In addition, the reduction in cost associated with large-scale
deployments could encourage broader adoption in various sectors, including public health
initiatives and remote patient monitoring systems. This would amplify the devices’ impact
on human health research and care provision.

Temperature measurement in smartwatches and wristbands is an added novelty
that is almost exclusive to the new models of any brand, such as Google Pixel Watch 2,
Apple Watch Series 9, Samsung Galaxy Watch 6, Garmin Vivoactive 5, Huawei Watch GT-4,
and others. The previous series of these devices lacked a temperature sensor. Although they
are now integrating this feature, they have yet to have a clear application. This new device
was created from its conception not to be another smartwatch but rather a cheap health
assistant, which is why the application has been clear from the beginning.

9. Conclusions

The COVID-19 pandemic has emphasized the importance of remotely monitoring
vital signs and efficient healthcare provision. This study introduced a WD with non-contact
sensors to monitor critical health indicators, focusing on measuring body temperature as a
primary health indicator. Despite the notable differences between wrist temperature and
actual body temperature and considering the inaccuracy of existing devices used during the
pandemic, the study explored SA and ML methods to accurately estimate body temperature
from wrist temperature data. Six different models were tested, counting three using least
squares-based SA and three using ML with polynomial models of degrees 1, 2, and 3. An
analysis of 2130 samples from 30 volunteers showed that all models provided strong fits.
However, the third-degree polynomial models stood out in both approaches, achieving
R2 values of 0.9769 in the SA and 0.9791 in the ML. This finding underscores the superior
ability of third-degree models to capture the complexity of the relationship between wrist
temperature and body temperature, offering a promising solution to temperature discrep-
ancy and the need for precision in health monitoring. The low-cost nature of the WD further
enhances its appeal as an accessible tool for widespread health monitoring. This study
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opens new avenues for accurate and accessible body temperature monitoring, reinforcing
the vital role of wearable technology and advanced analytics in the evolution of healthcare.
However, further validation with larger and more diverse datasets is recommended to
confirm these findings and to ensure the model’s generalizability to new data.
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