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Abstract

Biological cells replicate their genomes in a well-planned manner. The DNA replication pro-

gram of an organism determines the timing at which different genomic regions are repli-

cated, with fundamental consequences for cell homeostasis and genome stability. In a

growing cell culture, genomic regions that are replicated early should be more abundant

than regions that are replicated late. This abundance pattern can be experimentally mea-

sured using deep sequencing. However, a general quantitative theory linking this pattern to

the replication program is still lacking. In this paper, we predict the abundance of DNA frag-

ments in asynchronously growing cultures from any given stochastic model of the DNA repli-

cation program. As key examples, we present stochastic models of the DNA replication

programs in budding yeast and Escherichia coli. In both cases, our model results are in

excellent agreement with experimental data and permit to infer key information about the

replication program. In particular, our method is able to infer the locations of known replica-

tion origins in budding yeast with high accuracy. These examples demonstrate that our

method can provide insight into a broad range of organisms, from bacteria to eukaryotes.

Author summary

Biological cells replicate their genome in a planned manner. One way of obtaining

experimental information about this plan is by deep sequencing a growing culture of

cells. The idea underlying these experiments is that genomic regions that are replicated

earlier would be present in higher abundances than regions replicated at a later stage. In

this paper, we make use of this idea to obtain precise quantitative information on repli-

cation programs from sequencing. As a main application, we infer the locations of ori-

gins of replication in budding yeast from sequencing data. Our inference is consistent

with direct experimental evidences on the locations of these origins. Our method can be

in principle be applied to any organism that can be cultured and sequenced, and has

therefore the potential to shed light on the replication program of a broad class of

organisms.
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Introduction

The genome of an organism contains precious information about its functioning. Genomes

need to be reliably and quickly replicated for cells to pass biological information to the next

generation. Replication of a genome proceeds according to a certain plan, termed the “replica-

tion program” [1–4]. For example, most bacteria have a circular genome, where two repli-

somes initiate replication by binding at the same origin site [5]. They replicate the genome in

opposite directions. Replication is completed when they meet, after each of them has copied

approximately half of the genome. The replication program is carefully orchestrated, but not

completely deterministic. Stochasticity is particularly relevant in eukaryotes and archaea,

where many origin sites are present in each chromosome [6, 7]. Replication can initiate at

these origin sites at different times. These times are characterized by some degree of random-

ness [8, 9] and often only a subset of origins are activated at all [1].

Replication programs must be coordinated with the cell cycle in some way. In eukaryotes,

replication takes place at a well-defined stage of the cell cycle (the S phase), during which dif-

ferent genomic regions are replicated at different times [8]. In bacteria, replication initiation is

carefully timed relative to the cell cycle as well [10–12]. The interplay between the replication

program and the cell cycle is crucial when trying to infer the replication program from experi-

mental observations. Many experiments study samples in which all cells are approximately at

the same stage of the cell cycle. This can be achieved by either arresting the cell cycle at a cer-

tain stage or by cell sorting [4]. The fraction of these synchronized cells that have copied each

genome location can be then measured using deep sequencing. This approach has been exten-

sively used to study the eukaryotic replication program [4, 13, 14].

An alternative method is to measure the abundance of DNA fragments in asynchronous,

exponentially growing populations. This approach, traditionally called marker frequency analysis

[15], has been extensively applied to bacterial replication, for example to study Escherichia coli
mutant lacking genes that assist DNA replication [16–18] and artificially engineered E.coli strains

with multiple replication origins [19]. The asynchronous approach is experimentally much sim-

pler and avoids potential artifacts caused by the cell cycle arrest or cell sorting [4]. Progress in

DNA sequencing have made these experiments high-throughput and relatively inexpensive.

However, the DNA sampled in these experiments originates from a mixture of cells at different

stages in their life cycle, rendering the theoretical interpretation of such data problematic [20].

Theoretical approaches have attempted to describe measurements in asynchronous popula-

tions. However, these approaches either neglect stochasticity, or are limited to specific model

systems. For example, we recently proposed a stochastic model describing DNA replication in

growing E.coli populations [21]. A broader range of bacterial systems have been studied

assuming a deterministic replication program [22, 23]. Finally, a model of the replication pro-

gram in budding yeast adopted the working hypothesis that cells in an asynchronous popula-

tion are at random, uniformly distributed stages in their cell cycle [3].

In this paper, we develop a general theory to infer the replication program from sequencing

of an asynchronously growing population of cells. Our theory builds upon classic results on

age-structured populations [15, 24–27], that we extend to populations of stochastically repli-

cating genomes. Our approach requires minimal assumptions on the replication dynamics. In

particular, it allows for a stochastic replication program and equally applies to bacteria and

eukaryotes. We apply our method to models of the DNA replication program in budding yeast

and E. coli. We provide exact solutions for both of these models. These solutions fit existing

experimental data very well. In the case of yeast, our approach permits us to reliably infer the

location of replication origins. In the case of E. coli, our model sheds light on recently observed

oscillations of bacterial replisome speed.
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Methods

General theory

We consider a large, growing population of cells. We call Nc(t) the number of cells that are

present in the population at time t. Each cell may contain multiple genomes, some complete

and other undergoing synthesis (incomplete). We denote by Ng(t) the the total number of

complete and incomplete genomes in the population.

Our theory is based on the following assumptions. The number of cells grows exponentially:

Nc(t)/ exp(Λt), where Λ is the exponential growth rate. The population grows in a steady,

asynchronous manner. This assumption implies that the average number of genomes per cell

must remain constant, and therefore Ng(t)/ exp(Λt). Genomes in the population are immor-

tal, i.e. we neglect the rate at which they might be degraded. All genomes in the population are

statistically identical, in the sense that they are all characterized by the same stochastic replica-

tion program. These assumptions are realistic in common experimental situations. Moreover,

some of them can be readily relaxed, if necessary (see S1A Appendix).

We now assign an age to each genome in the population. To this aim, we conventionally set

the birth time of a daughter genome at the start of the replication process that generates it

from a parent genome, see Fig 1a. We note that the distinction between a “parent” and a

“daughter” genome is somewhat arbitrary, as each of them is made up of a preexisting strand

and a newly copied complementary one. Since genomes are immortal, the probability density

of new genomes is proportional to _NgðtÞ, which is proportional to exp(Λt) as well. It follows

that the distribution of ages τ of genomes in the population must be proportional to _Ngðt � tÞ.
From this fact, we conclude that the distribution of genome ages in the population is

PðtÞ ¼ Le� Lt: ð1Þ

We now look into the DNA replication program in more details. In bacteria, replication is car-

ried out by a pair of replisomes, that bind at a specific genome site (the origin) and proceed in

opposite directions, each replicating both strands. DNA replication is substantially more com-

plex in eukaryotes, where a large number of replisomes replicate the same chromosome, and

initiation sites might be stochastically activated. We encapsulate the outcome of all of these

processes into the probability f(x, τ) that the genome location x has already been copied in a

genome of age τ. By definition, f(x, τ) is a non-decreasing function of τ. Our assumption that

genomes are statistically identical means that all genomes are characterized by the same f (x, τ).

Fig 1. DNA abundance in an asynchronous, exponentially growing microbial population. (a). Total number of genomes (black line) and genealogy of

individual genomes (colored tree). Nodes in the tree represent replication initiations. Such events leave the template unchanged and create a new genome

(differently colored descendant) with initial age τ = 0. (b). Example of a deterministic replication program f (x, τ) on a linear genome in which replication is

initiated at two origins, one firing at age τ = 0 and one at age τ = τ0, and proceeds deterministically with constant speed. We recall that the function f (x, τ)

represents the probability that location x is replicated by time τ. (c). A stochastic version of the replication program in (b), in which the second origin fires

randomly at either τ0, τ1 or τ2. (d). DNA abundance distribution predicted by Eq (2) from replication programs (b) and (c).

https://doi.org/10.1371/journal.pcbi.1011753.g001
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Examples of deterministic and stochastic replication programs are represented in Fig 1b and

1c, respectively.

We now introduce the probability PðxÞ that a randomly chosen genome in the population

contains the genome location x. According to our definition, incomplete genomes that are

undergoing synthesis form part of the genome population, together with complete ones. This

already suggests that PðxÞmust contain information about the size spectrum of incomplete

genomes, which in turn depends on the replication program. We also remark that PðxÞ is not

necessarily normalized to one when integrated over the entire genome. Its normalized coun-

terpart represents the probability density that a randomly chosen genome fragment in the pop-

ulation originates from genomic location x. For this reason, we call PðxÞ the DNA abundance

distribution. The DNA abundance distribution can be experimentally measured using deep

sequencing.

By using Eq (1) and integrating over all genome ages, we find that PðxÞ is related with f(x, τ)

by

PðxÞ ¼
R1

0
dtLe� Ltf ðx; tÞ; ð2Þ

see Fig 1d. To find a more transparent expression, we introduce the probability density ψ(x, τ)

= @τ f (x, τ) of the time τ at which a particular location x is replicated. Substituting this definition

into Eq (2) and integrating by parts we obtain

PðxÞ ¼ he� Ltix ; ð3Þ

where h. . .ix ¼
R1

0
dt . . .cðx; tÞ is the average over the distribution of replication ages. Eq (2),

or equivalently Eq (3), is the basis of our approach.

In our derivation, we intentionally avoided modeling the specific dynamics of the cell cycle,

how it is regulated, and how it is coordinated with the DNA replication program [28–30]. Our

theory is rigorously valid independently of these aspects, provided that our initial assumptions

hold.

We also note that the absolute timing of initiation of the replication program can not be

inferred in our framework. Indeed, it follows from Eq (3) that changing the initial time of rep-

lication (or its uncertainty) would alter PðxÞ by a multiplicative factor. This factor is not

empirically measurable, because with deep sequencing we can only measure PðxÞ up to a nor-

malization constant. However, in organisms with multiple origins, firing time lags between

different origins would alter the relative abundance of different genomic regions and would

therefore be measurable with our approach.

Deterministic limit

In the simple case where replication proceeds deterministically and the replisome speed is a

function of its position on the DNA, one has

cðx; tÞ ¼ d t � t0 �

Z x

x0

dx0

vðx0Þ

 !

ð4Þ

where v(x) is the replisome speed at position x, x0 is the coordinate of the replication origin for

the replisome that copied position x, and τ0 is the firing age for that origin. The speed v might

take positive or negative values depending on whether the replisome proceeds in the positive
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genome direction. It follows from Eqs (3) and (4) that

PðxÞ ¼ exp � Lt0 � L

Z x

x0

dx0

vðx0Þ

 !

: ð5Þ

Solving for the speed, we obtain

vðxÞ ¼ � L
d
dx

lnPðxÞ
� �� 1

; ð6Þ

i.e., the replication speed is inversely proportional to the logarithmic slope of PðxÞ [22, 23]. An

advantage of the deterministic assumption is that it leads to a one-to-one correspondence

between DNA abundance and local replisome speed thanks to Eq (6). However, in many real-

istic cases, neglecting stochasticity might lead to inaccurate predictions.

Unfortunately, in the general stochastic case, different replication programs might give rise

to the same DNA abundance distribution. This implies that one cannot directly invert Eq (3)

to express f(x, τ) in terms of PðxÞ. In these situations, one has to complement the information

contained in PðxÞ with modeling assumptions, as exemplified in the following.

Results

Eukaryotic DNA replication

In eukaryotes, replication is initiated from many randomly activated replication origins. When

an origin fires, two replisomes are formed and start moving from that origin in opposite direc-

tions. Origins are prevented from firing on stretches of DNA that have already been dupli-

cated. To describe this process, theoretical progress [31, 32] has made use of an analogy with

freezing/crystallization kinetics, as described by the so-called Kolmogorov-Johnson-Mehl-

Avrami model [33–35], see also [36, 37]. We briefly summarize this idea and then extend it to

asynchronously growing populations.

In principle, a given location x on an eukaryotic genome of age τ could have been replicated

by different replisomes starting from different origins. The replication program f(x, τ) can be

seen as the probability that the past “light-cone” Vx,τ of the space-time point x, τ contains at

least one origin firing event. The past light-cone Vx,τ represents the set of space-time points x0,
τ0 from which x is reachable by a replisome within a time τ, see Fig 2a. This elegant argument

circumvents the problem of determining from which origin did the replisome that replicated

the genome location x started.

Assuming that replisomes progress deterministically with constant speed v0, the past light-

cone is expressed by

Vx;t ¼ fðx0; t0Þ j jx � x0j � v0ðt � t
0Þg; ð7Þ

see Fig 2a. Following [1, 38], we now assume that origins attempt to fire independently from

one another with stochastic rates I(x, τ). The probability that location x has been replicated by

age τ is then expressed by f ðx; tÞ ¼ 1 � expð�
R R

Vx;t
dx0dt0 Iðx0; t0ÞÞ, where we took into

account that each origin can fire only once (Fig 2b). This expression would remain valid if we

chose a different replisome dynamics, corresponding to a form of the light-cone Vx,τ other

than that expressed by Eq (7). Using Eq (2), we express the DNA abundance distribution as

PðxÞ ¼ 1 � L

Z 1

0

dt exp
�

� Lt �

Z Z

Vx;t

dx0dt0 Iðx0; t0Þ
�

: ð8Þ
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We now focus on budding yeast, where origins correlate with specific DNA motifs and are

therefore thought to be at well-defined locations x1, . . ., xK on the chromosomes [6]. We fur-

ther assume that firing rates are constant in time, so that Iðx; tÞ ¼
PK

j¼1
I?j dðx � xjÞ:We note

that the origin firing rate was observed to be time-dependent in budding yeast [8]. This means

that this second assumption is not fully accurate and should be taken as a simplifying approxi-

mation. Under these assumptions, the DNA abundance is given by

PðxÞ ¼
XK

k¼1

1

Wk� 1

�
1

Wk

� �

e� LT k with

tk ¼
jx � xkj

v0

; T k ¼ tk þ
Xk

j¼1

tk � tj

� �
I?j =L; Wk ¼ 1þ

Xk

j¼1

I?j =L:

ð9Þ

where τk is the travel time from the k-th origin to location x and we ordered the origins, for

each given x, such that 0< τ1 < � � �< τK. Eq (9) is derived in S1B Appendix.

We implemented a simulated annealing algorithm to infer the origin number, location, and

intensities based on DNA abundance data via Eq (9). Our inference procedure treats Λ/v0, the

number of origins K, the origin positions x1, . . ., xK, and the re-scaled firing rates

I?
1
=v0; . . . ; I?K=v0 as free parameters. We call the compound parameter I?j =v0 the intensity of ori-

gin j. Our algorithm uses the Akaike information criterion (AIC) as the cost function to avoid

over-fitting (details in S1C Appendix).

We first tested this inference procedure on artificial data, in which the genome length

(1.6Mbp) and origins distribution are comparable to those of the longest chromosome of bud-

ding yeast (chromosome IV). Our inference algorithm detected the location and intensity of

26 out of 39 true origins with high accuracy (Fig 2c; median distance to true origin 1.5kb,

median relative error of intensity 40% if non-resolved clusters of true origins are merged; true

intensities range over two orders of magnitude). The 13 non-recovered origins either have low

intensity or were merged with another origin in close proximity.

Inferring yeast replication origins from experimental data

We now apply our model and inference procedure to experimentally measured DNA abun-

dance in an asynchronous populations of budding yeast (S. cerevisiae W303) [39]. Our algo-

rithm infers K = 234 origins across the 16 yeast chromosomes, which is about 30% less than

Fig 2. Eukaryotic model. (a). Past light-cone Vx,τ of a space-time point (x, τ). At least one origin must have fired within the light cone for location x to be

replicated by time τ. (b). Eukaryotic replication program from Eq (9) for the annotated origins on S. cerevisiae W303 chromosome IV with intensities I?i =v
randomly log-uniformly distributed on [10−5, 2 � 10−3]. (c). Inference of origin locations and intensities from a simulated DNA abundance. Top: the model

(black line) fitted to simulated abundances (green line). Bottom: inferred 26 origins (black bars) and 39 true origins (green bars). Rescaled intensities I?i =v
[1/bp] are plotted in log-scale. Parameters are: v = 27 bp/s, Λ = 9.6 � 10−5 1/s (doubling time 120 minutes). The true origin locations and intensities are those

from panel (b). The resulting true abundances are multiplied by a Gamma-distributed random variable with mean 1.0 and coefficient of variation 0.04 to

mimic measurement errors.

https://doi.org/10.1371/journal.pcbi.1011753.g002
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the number of known origins for S. cerevisiae W303 (K = 354). The predicted DNA abundance

well matches the experimental one, see Fig 3a.

Our method well predicts origins of replication with a resolution on the order of a few kilo-

bases, and without using additional experimental information other than the DNA abundance

distribution. Comparing the densities of inferred and known origins of S. cerevisiae W303 at

different length scales shows a peak at about 7kb. This length scale can be interpreted as the

spatial resolution of the inferred origin locations, see Fig 3b. A second correlation peak at

100kb suggests a large-scale pattern in the distribution of origins. As expected, the peak at 7kb

vanishes when known origin locations are randomly shifted by ±88kbp, or shuffled by ran-

domly reordering chromosomes. The results of the correlation analysis are corroborated by

matching each inferred origin to the closed known origin (Fig 3c; median distance 3.9kb)

respectively each known origin to the closest inferred origin (Fig 3d; median distance 6.6kb).

In both cases, the average distances are significantly increased if the known origins are shifted

or shuffled.

Fig 3. Eukaryotic model fitted to S. cerevisiae data from [39]. Fitted parameters are: Λ/v, origin positions x1, . . ., xn and intensities I?
1
=v; . . . ; I?n=v. The

fitted number of origins is K = 234. Known origins used for validation were lifted from the annotated genome for strain 288C (RefSeq assembly R64-3-1,

accession GCF_000146045.2) using liftoff [40]. We excluded the mitochondrial genome. (a). Observed (green circles) and predicted (black line) DNA

abundances (top) and inferred origin positions and intensities (bottom). Known origin positions (blue) shown for comparison. (b). Correlation of

estimated densities of predicted (K = 234) and known (K = 354) origins at different smoothing length scales (yellow). Y-axis shows the Pearson correlation

between densities of known and predicted origins computed using kernel density estimation (KDE) using a Gaussian kernel with variance equal to the

indicated smoothing length scale. For comparison, we show the correlation with the density of the known origins after: (i) shifting each origin up to ±5× the

average half-distance between origins (i.e. ± 88kb) using uniformly randomly generated displacements (blue). (ii) shuffling by re-arranging chromosomes

I-XVI but keeping the relative positions within each chromosome the same (green). (c). Distribution of distances between estimated and closest known

origins. (d). Distribution of distances between known and closest estimated origins. In (c) and (d), the y-axis is non-linearly scaled to enlarge the region of

interest. Horizontal lines indicate the medians. Reported p-values are computed using Mann–Whitney U tests.

https://doi.org/10.1371/journal.pcbi.1011753.g003

PLOS COMPUTATIONAL BIOLOGY Genome replication in asynchronously growing microbial populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011753 January 5, 2024 7 / 15

https://doi.org/10.1371/journal.pcbi.1011753.g003
https://doi.org/10.1371/journal.pcbi.1011753


Bacterial DNA replication

In this Section, we introduce a stochastic model for the DNA replication of the bacterium E.
coli. The model accounts for variations in the speed of replication, as recently observed [21]. In

addition, replisomes in the model can stochastically stall, as observed in single molecule exper-

iments [41, 42].

Most bacteria, including E. coli, have a single circular chromosome that is replicated by two

replisomes. The two replisomes start from the same origin site, one proceeding clockwise and

the other counterclockwise. Replication is completed when the two replisomes meet. We assume

that the two replisomes do not backtrack and that they act independently from one another

until they meet. A base is therefore replicated by whichever replisome reaches it first. The joint

replication program of two replisomes is therefore f(x, τ) = 1 − [1 − f1(x, τ)][1 − f2(x, τ)], where

f1(x, τ) and f2(x, τ) are the individual replication programs of each replisome, i.e. the probabili-

ties that position x has been replicated at age τ by the respective replisome. Substituting this

expression in Eq (2) we obtain

PðxÞ ¼ 1 �

Z 1

0

dtLe� Ltð1 � f1ðx; tÞÞð1 � f2ðx; tÞÞ: ð10Þ

We define the genome coordinate x 2 [0, L] where L is the genome length. We set the coordi-

nate of the replication origin at x = 0 (and equivalently x = L, since the genome is circular). We

call x1(τ) and x2(τ) the positions of the two replisomes along this coordinate as a function of age.

The first replisome starts at x(0) = 0 and moves in the direction of increasing x, whereas the sec-

ond starts at x(0) = L, where L is the genome length, and moves in the direction of decreasing x.

We express the replisome dynamics in terms of two Langevin equations

d
dt

y1 ¼ v0hðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DhðtÞ

p
x1ðtÞ;

d
dt

y2 ¼ � v0hðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DhðtÞ

p
x2ðtÞ;

x1ðtÞ ¼ max
t0�t

y1ðt
0Þ; x2ðtÞ ¼ min

t0�t
y2ðt

0Þ ;
ð11Þ

where ξ1(τ) and ξ2(τ) are Gaussian white noise sources. The function h(τ) represents a temporal

modulation of the replisome speed, as a consequence of varying conditions during the cell cycle

[21]. We assume for convenience that the diffusivity is modulated by the same function. We also

assume for simplicity that the two replisomes are equally affected by these fluctuations. Eq (11)

can be interpreted as follows: Whenever yi(τ) attains a new maximal distance from its origin,

then xi(τ) is moving forward and it coincides with yi(τ). If, instead, yi(τ) is making a negative

excursion from its past maximal distance, then xi(τ) stalls, i.e. remains frozen at the value of the

last maximal distance of yi(τ). The dimensionless Peclet number Pe = Lv0/4D controls the com-

monness of long stalling events; for large Pe, the dynamics are nearly deterministic and long

stalling events are rare (Fig 4a). Stochastic trajectories generated by the model are qualitatively

similar of those observed in single-molecule experiments with DNA polymerases [41, 42]. We

remark that our model describes stochastic, position-independent stalling, in contrast with

more regular stalling at specific position as observed in Bacillus subtilis [22].

A consequence of Eq (11) is that the individual replication program fi(x, τ) is equal to the

first-passage probability of the associated process yi through x. This first-passage probability is

expressed by the inverse Gaussian distribution

fiðx; tÞ ¼
Z HðtÞ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3
i

2ps2
i u3

s

exp �
1

2

ðu � miÞ
2

s2
i

mi

u

� �

du ; ð12Þ
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where HðtÞ ¼
R t

0
hðuÞdu and

m1 ¼ x=v0; m2 ¼ ðL � xÞ=v0;

s2
1
¼ 2Dx=v3

0
; s2

2
¼ 2DðL � xÞ=v3

0
:

ð13Þ

Eqs (12) and (13) are derived in S1D Appendix. We compute the DNA abundance PðxÞ by

substituting Eq (12) into Eq (10), see Fig 4b. We numerically evaluate the final integral over τ
appearing in Eq (10).

The main effect of diffusivity is to smooth the DNA abundance distribution around the

expected meeting point x = L/2 of the two replisomes (see Fig 4c). Briefly, for D = 0 the DNA

abundance exhibits a cusp, whereas for positive D the abundance is smooth, see S1E Appendix.

From the point of view of trajectories, this smoothing occurs because the two replisomes do

not necessarily meet exactly at x = L/2. The uncertainty on the location Z of the meeting point

is approximately equal to

ðDZÞ2 ¼ hðZ � L=2Þ
2
i �

DL
2v0

¼
L2

8Pe
: ð14Þ

Eq (14) is derived in S1F Appendix.

Fig 4. Bacterial DNA replication model. Parameters are: genome length L = 5 � 106, growth rate Λ = 2h−1, baseline speed

v0 = 103 bp/s. (a). Trajectories x1, x2 of the model (black lines) and auxiliary processes y1, y2 (blue lines). Backwards

movements of y1, y2 correspond to stochastic stalling of x1, x2. Replication concludes at an age τx when x1 and x2 first meet

at a random meeting point Z = x1(τx) = x2(τx). (b). Bacterial replication program f(x, τ) = 1 − (1 − f1)(1 − f2) with f1, f2 from

Eq (12) for D = 108 bp2/s. (c). DNA abundance distribution for constant and oscillating replisome speed and different

values of D. In the constant speed case, h(τ) = 1, whereas in the oscillating speed case h(τ) = 1 + δ cos(ωτ + ϕ) with δ = 0.5,

ω = 2π/1800, and ϕ = 0.

https://doi.org/10.1371/journal.pcbi.1011753.g004
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Inferring speed fluctuations in E. coli from experimental data

We now fit our model of replisome dynamics to experimentally measured DNA abundance

from wild type E. coli grown at different temperatures (from Ref. [21]). We assume that the

speed and diffusion coefficient are modulated in time by a function

hðtÞ ¼ 1þ d cosðotþ �Þ; ð15Þ

see Fig 4. In the fit, we treat v0, D, δ, ω, and ϕ as free parameters (see S1H Appendix).

The model fits the experimental DNA abundances very well, see Fig 5a. The estimates of

the mean speed v0 are highly consistent among replicates across all temperatures, see Table 1.

At temperatures above 17˚C we find robust evidence of speed fluctuations. The model pro-

vides consistent estimates of δ, ω and ϕ in these cases, with an improvement of the quality of

fit ranging between 20% to 40% percent compared to the constant-speed case (Fig 5b). At

Table 1. Parameter estimates for time-dependent speed v(t) = v0(1 + δ cos(ωt + ϕ)). For v0, D, δ, ω, ϕ the reported standard errors represent the variability over repli-

cates. The Peclet number Pe = Lv0/4D and meeting point uncertainty DZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DL=2v0

p
, see Eq (14), are computed from the average estimates of v0 and D over replicates

where D> 0. Their standard error are estimated using error propagation.

T [˚C] v0 [bp/s] D [kbp2/s] δ ω [rad/h] ϕ [rad] Pe ΔZ [kbp]

17 230 ± 30 1.6 ± 1.4 0.29 ± 0.1 5.8 ± 4.2 1.3 ± 1.5 100 ± 100 130 ± 50

22 350 ± 21 0.5 ± 0.8 0.19 ± 0.07 3.9 ± 0.6 3.1 ± 0.5 200 ± 30 110 ± 7

27 530 ± 20 1.0 ± 1.2 0.19 ± 0.03 8.7 ± 0.4 2.0 ± 0.2 400 ± 400 80 ± 40

32 810 ± 57 1.7 ± 1.8 0.12 ± 0.04 16 ± 1.3 1.5 ± 0.2 500 ± 400 80 ± 30

37 950 ± 24 1.2 ± 2.3 0.19 ± 0.03 15 ± 0.4 2.9 ± 0.2 500 ± 600 70 ± 50

https://doi.org/10.1371/journal.pcbi.1011753.t001

Fig 5. Bacterial model fit to the data of Ref. [21]. The replisome speed is modulated by an oscillatory function, see Eq (15). We fitted the parameters v0, D,

δ, ω, and ϕ from the measured DNA abundances. The growth rate Λ was independently measured in the experiments (see S1H Appendix). (a). Observed

DNA abundance and model predictions for E. coli cultures growing at temperatures T = 17˚C, 22˚C, 27˚C, 32˚C, 37˚C. (b). Relative decrease in residuals

(SQðYÞ ¼
PN

i¼1
ðai � lPðxijYÞÞ

2
=s2

i , see S1H Appendix) of the model (Θosc) vs. the constant speed case (Θc). (c) Average instantaneous speed v(τ) = v0h
(τ) as a function of the fraction τ/τ2 of the doubling time τ2 = log(2)/Λ. (d). Average instantaneous speed v(τ) = v0h(τ) as the function of the time τ since

replication initiation.(e) Average instantaneous speed v(τ) = v0h(τ) as a function of the replication progress, i.e. of the fraction 2
R t

0
vðuÞdu=L of replicated

genome. In (c-e) we omitted 17˚C since the effect of speed fluctuations on PðxÞ is negligible at that temperature (see panel b).

https://doi.org/10.1371/journal.pcbi.1011753.g005

PLOS COMPUTATIONAL BIOLOGY Genome replication in asynchronously growing microbial populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011753 January 5, 2024 10 / 15

https://doi.org/10.1371/journal.pcbi.1011753.t001
https://doi.org/10.1371/journal.pcbi.1011753.g005
https://doi.org/10.1371/journal.pcbi.1011753


17˚C, the effect of the speed fluctuations on PðxÞ is small and, consequently, the uncertainty

in the associated parameters ω and ϕ is high. Regardless of temperature, model selection

appears to prefer a vanishing value of D for some replicates. The reason is likely that the esti-

mates of D correspond to Peclet numbers in the range from Pe� 200 to Pe� 1000, which lies

close to the detection threshold; see S1H Appendix.

The frequency of speed oscillations appears linked with the population doubling time. In

fact, the oscillations for 22˚C to 37˚C align well when time is rescaled according to the dura-

tion of a cell cycle, see Fig 5c. The speed consistently attains a minimum after one doubling

time τ2 = log(2)/Λ when the next replication cycle starts and the number of active forks is thus

increased. As comparisons, when plotting the oscillations against absolute time since replica-

tion initiation (Fig 5d) or against replication progress (Fig 5e) the alignment is substantially

worse.

The speed oscillations were first observed and quantified using a model in which speed is

modulated in space, rather than in time [21]. Our general theory permits to analytically solve

also a spatially modulated speed model in the small-noise limit. The resulting parameter values

well match those of Ref. [21], and are consistent with our temporally modulated model, see

S1G Appendix for details. The model with temporal speed oscillations yields a better fit for the

majority of samples, consistently with the idea that the speed variations are linked with the

doubling time. The improvement in likelihood is, however, small (Fig G2b in S1G Appendix).

Conclusions

In this paper, we introduced a general theory that connects the DNA replication program with

the abundance of DNA fragments that one should expect in an asynchronously growing popu-

lation of cells. Our theory builds on previous approaches [3, 15, 21, 22, 25] and has the advan-

tage of being based on a minimal set of realistic assumptions and allowing for stochastic

replication programs. As we have demonstrated, these key properties make our theory applica-

ble to a broad range of organisms, from bacteria to eukaryotes.

We have used our approach to estimate the origins location and intensities in budding

yeast from the DNA abundance distribution measured in [43]. Our approach is based on semi-

nal work by Bechhoefer and coworkers [1, 38], that we extended to asynchronously growing

populations. A previous study [3] also attempted at extending the approach from [1, 38] to

asynchronously growing budding yeast. Our results differ from those of Ref. [3] in two differ-

ent aspects. First, in fitting the model to the data, Ref. [3] used prior knowledge of the origin

locations. Instead, our method was able to directly infer these coordinates, without requiring

any species-specific information other than the unannotated reference genome and the DNA

abundance distribution. In this respect, our approach is much simpler than existing methods

to map origins of replication in budding yeast [44–47]. Second, Ref. [3] assumed as a working

hypothesis a uniform distribution for the distribution P(τ). In contrast, we have shown that

the distribution P(τ) should be exponential under very general conditions.

In our eukaryotic model, we assumed for simplicity that replisome speed is constant; that

origins are placed at well defined sites; and that they fire at an origin-dependent rate that is

constant in time. The last assumption, in particular, is a drastic approximation, since origin fir-

ing rates in yeast are known to be markedly time-dependent [8, 48]. Relaxing these assump-

tions constitutes an important challenge for future research and will permit to recover origin

timing behaviour, beside locations, and thus provide a more complete picture of the replica-

tion program.

In any case, despite these simplifying assumptions, our algorithm successfully recovers the

locations of the majority of known origins in budding yeast, with an accuracy on the order of
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kilobases. The accuracy can likely be further increased by exploiting advances in sequencing

technology, in particular increased sequencing depth and read lengths, and by further improv-

ing the optimization algorithm. Our results demonstrate that the combination of deep

sequencing of asynchronous populations and our inference approach provides a cost-effective

way of discovering the replication origins of any single-cellular eukaryotic species which can

be cultured and sequenced.

In the case of bacterial DNA replication, we proposed a model in which the replisome

speed is modulated in time and replisomes can stochastically stall. In our model, stochastic

stalling is described in terms of a biased diffusion process, see Eq (11). This idea is reminiscent

of the dynamics of RNA polymerases, where such a mechanism has been experimentally tested

[49]. It will be interesting in the future to quantitatively test whether this mechanism is consis-

tent with the single-molecule dynamics of DNA polymerases.

We solved our bacterial replication model exactly and fitted its prediction against sequenc-

ing data of E.coli growing at different temperatures [21]. The fits show that the period of speed

oscillations matches the population doubling time, or equivalently the time interval between

consecutive origin firing. Our model with time-periodic speed variations fits the data slightly

better than the one with space-periodic variations as postulated in [21]. Taken together, these

observations support that the causes of oscillations are linked with the cell cycle, or alterna-

tively with the origin firing rate. A possible candidate would be competition among multiple

forks on the same genome [21]. Ref. [21] observed a correlation between speed oscillations

and genome-wide variations in mutation rate as reported in [50]. Our results suggest that both

variations are caused by a time-dependent mechanism. Further work is needed to elucidate

the possible causal link between these two phenomena.

At variance with Ref. [21], the approach introduced in this paper leads to an analytical

expression for the DNA abundance distribution, which considerably simplifies the inference

procedure and provides additional physical insight.

Our approach reveals that the replisome speed fluctuations in E.coli are rather small. On the

one hand, this observation confirms that simpler approaches that neglect stochasticity [22, 23]

provide reliable results, at least in the case of wild type E.coli. On the other hand, speed fluctua-

tions, albeit small, provides important information about the uncertainty of the replisome

meeting point. In E.coli, the Tus-Ter system is know to set bounds on the region in which

replisomes can meet [51–53], thereby likely affecting this accuracy. Our model predicts that, in

wild type E.coli under laboratory conditions, the replisome diffusivity is so small that the Tus-

Ter system is barely exercised and has therefore a negligible effect on the DNA abundance dis-

tribution, see S1F Appendix. It will be interesting for future studies to apply our approach to

mutant strains, to see whether they are characterized by a different degree of uncertainty.

Supporting information

S1 Appendix. Appendices A-H containing detailed derivations and algorithms.

(PDF)
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