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Abstract: Compact stars have been perceived as natural laboratories of matter at an extremely high
density. The uncertainties of the equation of state (EOS) of matter can be constrained by observing
compact stars. In this review, we investigate the EOSs, global structure, and elastic properties of
compact stars. We focus in detail on how to constrain the above properties of compact stars via
asteroseismology. Observations that include studies of quasi-periodic oscillations from giant flares of
soft gamma-ray repeaters and gravitational waves provide information about the elastic properties
and internal compositions of compact stars.
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1. Introduction

The equation of state (EOS) for dense matter holds a crucial role in many astrophysical
phenomena linked to neutron stars (NSs). Given the non-perturbative properties of strong
interaction at low energy, the EOS stands as a key question in both astrophysics and nuclear
physics [1–3]. The EOS can also be used to infer key aspects of microphysics, such as
the role of many-body interactions at nuclear densities. At high densities, one expects
transitions to non-nucleonic states of matter [4], such as the formation of hyperons, and
free quarks. The entire star may convert into a lower energy self-bound state consisting
of u, d, and s valence quarks, known as a strange quark star (QS) [5], or a strangeon star
(SS) [6], the latter of which could be in a solid state due to massive strangeons and to low
temperatures. Other states that have been hypothesized include Bose–Einstein condensates
of mesons [7] or strange quark matter that may form superfluid in the core of NSs,

giving rise to hybrid stars (HSs) [8], and even hybrid strangeon stars [9]. Differently,
the conventional NSs and HSs are gravity-bound models, while QSs and SSs are self-bound
models with strong interaction.

Besides magnetospheric activity [10] and gravitational-wave echoes [9], elastic prop-
erties play also an important role in identifying the nature of compact stars, which is the
focus of this paper. The investigation of the solid crust properties of NSs has garnered
significant attention. This is because vibrations within the crust could offer a mechanism for
the quasi-periodic oscillations (QPOs) observed in the giant flares (GFs) of soft gamma-ray
repeaters (SGRs) [11,12]. The problem of mountain formation on the surface of NSs is
connected to their elastic properties. These mountains can be efficient sources of contin-
uous gravitational waves (CGWs) [13–17]. The starquake model [18] and the superfluid
component of NSs [19–21] can explain the pulsar glitches [22]. On the other hand, involving
the SS model may illuminate the physical mechanisms behind pulsar glitches [23–26] and
the QPOs in GFs [27].

It is worth noting that NS observations could find observable signatures and test
predictions from theoretical models. Measurements of the masses or radii of NSs can
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strongly constrain the EOS and consequently the interior composition of NSs. Pulsar
timing obtains the cleanest constraints on the EOS and the most massive pulsars have
masses M ≈ 2 M⊙ [28,29]. The Neutron Star Interior Composition Explorer (NICER)
experiment is currently measuring the mass and radii of several NSs [30–36]. Moreover,
the tidal deformability of a compact star carries important information about the EOS
of the star. The observation of the GW170817 event set an upper limit on the NS tidal
Love number Λ̃ ≤ 800, which ruled out some stiff EOSs [37]. Yunes et al. [38] discussed
how to provide interior information on the NS combined gravitational waves (GWs) with
X-ray observations.

Certainly, pulsating compact stars are important sources of information for astro-
physics, which would greatly constrain basic properties like the EOS, or crust elasticity.
Non-axisymmetric stellar oscillations will lead to the production of gravitational radia-
tion [39,40]. A realistic NS model has rich oscillation spectra with various modes. For
typical non-rotating relativistic stars, various modes are classified in polar and axial cat-
egories. Note that the two classes of modes are often called spheroidal and torsional in
Newtonian stellar pulsation. The spheroidal modes include the fundamental ( f ) modes,
pressure (p) modes, and gravity (g) modes. The torsional modes have spacetime (w) modes,
which are directly associated with the spacetime metric [41], and the shear (s) modes, which
depend on the shear modulus [42]. In this review, we focus in detail on asteroseismology,
which aims to constrain the EOSs, global structure, and elastic properties of compact stars,
and how the results may impact observations, in particular, related to QPOs in GFs and
GW observations.

An exciting possibility is the existence of quark matter at high densities [43]. The
features in the EOS can also be inferred from GW observations through tides. Such tidal
deformability can be used to probe a quark matter core [43–46]. Moreover, the existence of a
possible hadron–quark phase transition at high densities is associated with the appearance
of a g-mode and interfacial (i)-mode. The potential detectability of g-modes in various
NS models with different compositions uses third-generation GW detectors by stacking
multiple events [47]. Lau and Yagi [48], Zhu et al. [49] investigated the dynamical tides
of the i-mode associated with a quark-hadron phase transition. These results indicate
that a ground-based GW detector has the potential to detect the signature of these phase
transitions via the crust–core interfacial mode.

The paper is organized as follows. In Section 2, we review the EOSs of NSs, QSs,
and SSs. In Section 3, we review the global aspects of NSs, QSs, and SSs, including the
mass–radius relations and the maximum mass versus the corresponding central density.
The elastic properties of compact stars are reviewed in Section 4. The asteroseismology of
compact stars is presented in Section 5. The radial oscillation modes and the dynamical
stability are discussed in Section 5.1. The relation between spheroidal oscillation modes
and tidal deformability is studied in Section 5.2. Observations of oscillations in GFs from
SGRs are confronted with models of torsional oscillations in Section 5.3.

2. Equation of State of Compact Stars
2.1. Neutron Star

In this subsection, we will summarize the NS interiors in detail. The stellar structure
can be roughly divided into four distinct sections: the atmosphere, the outer crust, the inner
crust, and the core [7].

The atmosphere is a thin plasma layer, situated on the uppermost layer of a star. It
contains a negligible amount of mass, but it plays an important role in shaping the outgoing
radiation. In particular, the radiation emitted by NSs gives information on the parameters
of the surface layer, the effective surface temperature, surface gravity, chemical composition,
and cooling [50,51].

The crust extends for about 1–2 km on the top of the core and is typically divided into
an outer and inner layer. The outer crust extends from the atmosphere bottom to the layer
of the neutron drip density (i.e., ρ ≈ 4 × 1011g cm−3). The characteristics of the matter
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are strongly dependent on the Coulomb interactions of charged particles that form a solid
Coulomb crystal. Matter at densities below neutron drip is not only relevant for outer
crusts of NSs but also for white dwarfs. Following Baym et al. [52], the total energy density
can be written as

ρtot = nNE{A, Z}+ ρe + ρL , (1)

where nN is the number density of nuclei, E{A, Z} is the energy of a nucleus with Z protons
and A − Z neutrons, and ρe is the electron kinetic energy density,

ρe =
mec2

λ3
e

{
x(1 + x2)1/2(1 + 2x2)− ln[x + (1 + x2)1/2]

}
, (2)

where λe is the electron Compton wavelength, x = pF/mec is a dimensionless relativity
parameter, pF is the Fermi momentum, and the ρL is the lattice energy density, which
accounts for the electron–electron, electron–ion, and ion–ion Coulomb interactions, which
are determined as

ρL = − 9
10

(
4π

3
)Z2/3e2n4/3

e , (3)

where ne is the number density of the electron. According to the first law of thermodynam-
ics, the total pressure P is given by

P = n2
b

d
dnb

(
ρtot

nb

)
, (4)

where nb is the baryon number density. Moreover, using Equation (1), the total pressure P
can be expressed as

P = Pe +
1
3

ρL . (5)

Here, the electron pressure Pe = ρe − µene, where µe is the electron chemical potential.
The inner crust is taken to continue down to the crust–core interface, where density

extends from ρ ≈ 4 × 1011 g cm−3 to ρ ≈ 2.8 × 1014 g cm−3. The matter of the inner crust
may condense into a superfluid phase [7,53–55]. The structure of the inner crust has been
studied using different approximations and nuclear models [54]. Moreover, the EOSs of
the inner crust have been described by parametrized polytrope models. For example, the
analytic form of the SLy EOS is set by the values of the coefficient Ki, the adiabatic index Γi,
and the rest-mass density ρi listed in Table II of Read et al. [56]. At the bottom of the crust,
some calculations predict various pasta phases of nonspherical nuclei, such as slab-like or
cylinder phases [57].

The core constitutes up to 99 % of the NS mass. A density range between 1.4×1014 g cm−3

and 5.6 × 1014 g cm−3 corresponds to the outer core [7]. The matter consists of neutrons;
protons; electrons; and in some models, muons. This matter is determined by charge neu-
trality, β-equilibrium, and many-body nuclear interactions. Beyond ρ > 5.6 × 1014 g cm−3,
it is called the inner core, and its composition is even more unknown. Hence, the results
here become sensitively model-dependent. The models have hyperonization (Σ− and
Λ), pion condensation (π), kaon condensation (K), or even a phase transition to a quark
matter. Quark matter may form the crystalline color superconducting (CSC) phase at the
core of NSs, giving rise to HSs [8]. Haskell et al. [58] estimated the maximal deformation
that can be sustained by rotating HSs. Probing elastic quark phases in HSs with radius
measurements has been discussed by Pereira et al. [59].

A phenomenological model parameterizes those EOSs in contrast to describe the
accurate but complicated microphysics. Read et al. [56] calculated a piecewise polytropic
description of the EOSs, and the method of the spectral representations has been discussed
by Lindblom [60].
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2.2. Quark Star

If we consider noninteracting quark matter, it takes into account the bare quark kinetic
energy density, ρK, and the bag constant, B, which is the energy density difference between
the nonperturbative vacuum in quantum chromodynamics (QCD) and the perturbative
vacuum [2]. We consider several massless quarks with N f flavors. The quarks form a
degenerate Fermi sea at low temperatures, and the quark number density is given by

nq = 2NcN f

∫ pF

0

d3 p
(2π)3 = NcN f

p3
F

3π2 , (6)

where Nc = 3 is the number of quark colors, and pF is the quark Fermi momentum. The
bare quark kinetic energy density is defined by

ρK = 2NcN f

∫ pF

0

d3 p
(2π)3 |p| =

NcN f

4π2 p4
F . (7)

The total energy density is ρ = ρK + B, and the baryon chemical potential µB = 3µq,
where µq = ∂ε/∂nq is the quark chemical potential. Hence, the energy density and pressure
can be represented as

ρ(pF) = 3ap4
F + B , (8)

P(pF) = ap4
F − B , (9)

where a = NcN f /(12π2). The maximum mass of the QS scales with B as [2]

Mmax ≃ 1.78
(

155 MeV
B1/4

)2
M⊙ , (10)

and the corresponding radius scales as

R ≃ 9.5
(

155 MeV
B1/4

)2
km . (11)

As described in the Introduction, the QS is a self-bound model, and the pressure
vanishes at a nonvanishing value of the energy density.

Deconfined quarks at low-temperature and high-density regimes can form a con-
densate of Cooper pairs driven by the BCS mechanism [61] and become CSC [62]. We
follow the phenomenological quark-matter EOS model [8]. The model is based on the
thermodynamic potential

ΩQM = − 3
4π2 a4µ4

q +
3

4π2 a2µ2
q + Beff , (12)

where the parameters a4, a2, and Beff are independent of µq. The reasonable value for a4 is
expected to be of order 0.7 [8] and a4 = 1 for the model of the free non-interacting quarks.
The parameter a2 is used to model the effects of quark masses and pairing, and Beff is an
effective bag constant. The energy density and pressure are given by

ρ =
9

4π2 a4µ4
q −

3
4π2 a2µ2

q + Beff , (13)

P =
3

4π2 a4µ4
q −

3
4π2 a2µ2

q − Beff . (14)

In Figure 1, we show the relations of the pressure and the energy density against
quark chemical potential for the CSC model. Moreover, Lin [63] investigated the torsional
oscillations of HSs with crystalline CSC. Lau et al. [64] studied the tidal deformability of
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HSs with crystalline CSC, and the deviations of the tidal deformability from the fluid case
are in the order of 10 %.
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Figure 1. The upper panel shows the pressure as a function of the quark chemical potential µq. The
lower panel shows the relationship between the energy density and the quark chemical potential µq.

2.3. Strangeon Star

In view of the non-perturbative strong interaction between three-flavoured quarks at
free pressure, as in the case of two-flavoured atomic nuclei, Xu [6] conjectured that the bulk
dense matter may be composed of strangeons, which are quark clusters with nearly equal
numbers of u, d, and s valence quarks, rather than a CSC phase. The interaction potential
between two strangeons could be Lennard-Jones-like in analogy to the case of condensed
matter made of chargeless atoms, to be described by the 6–12 potential,

u(r) = 4ϵ

[(σ

r

)12
−
(σ

r

)6
]

, (15)

where ϵ is the depth of the potential, r is the distance between two strangeons, and σ is the
distance when u(r) = 0. We note that this potential exhibits a characteristic of repulsion at
short distances and attraction at long distances.

Based on the findings from earlier investigations [65–67], the potential energy density
is given by

ρp = 2ϵ
(

A12σ12n5 − A6σ6n3
)

, (16)

where A12 = 6.2, A6 = 8.4, and n is the number density of strangeons. The total energy
density of zero-temperature dense matter composed of strangeons reads

ρ = 2ϵ
(

A12σ12n5 − A6σ6n3
)
+ nNqmq , (17)
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where Nqmq is the mass of a strangeon with Nq being the number of quarks in a strangeon
and mq being the quark mass. From the first law of thermodynamics, one derives
the pressure

P = n2 d(ρ/n)
dn

= 4ϵ
(

2A12σ12n5 − A6σ6n3
)

. (18)

At the surface of SSs, the pressure becomes zero and we obtain the surface number
density of strangeons as

[
A6/(2A12σ6)

]1/2. For convenience, we transform it to the number
density of baryons

ns =

(
A6

2A12

)1/2 Nq

3σ3 . (19)

Finally, the EOS can be rewritten into a form that depends on parameter set (ϵ, ns, Nq):

ρ =
1
9

ϵ
A2

6
A12

(
Nq

4

18n4
s

n5 −
N2

q

n2
s

n3

)
+ mqNqn , (20)

p =
2
9

ϵ
A2

6
A12

(
N4

q

9n4
s

n5 −
N2

q

n2
s

n3

)
. (21)

Recently, Zhang et al. [9] removed the parameters ns and Nq by doing the following
dimensionless rescaling:

ρ̄ =
ρ

mq ns
, p̄ =

p
mq ns

, n̄ =
Nq n
ns

, ϵ̄ =
ϵ

Nq mq
, (22)

so that

ρ̄ =
a
9

ϵ̄

(
1

18
n̄5 − n̄3

)
+ n̄ , (23)

p̄ =
2 a
9

ϵ̄

(
1
9

n̄5 − n̄3
)

, (24)

where a = A2
6/A12 ≈ 11.38. In particular, we observe that the three parameters (ns, ϵ, Nq)

can be reduced to a single parameter (ϵ̄).
SSs can explain many observational phenomena in astrophysics, including pulsar

glitches, sub-pulse drifts, the presence of extremely strong magnetic fields, and the transient
bursts of GCRT J1745−3009 [10,23,68–71], even for fast radio bursts related to galactic
magnetars [72,73]. The tidal deformability of merging binary SSs, along with the analysis
of ejecta and light curves, has been investigated in previous works [74–76]. Recently, Gao
et al. [77] have explored the universal relations among the moments of inertia I, the tidal
deformability λ, and the quadrupole moment Q of SSs.

In the upper panel of Figure 2, we summarized the density and pressure relations
for these EOSs. One notices that there is a large difference between different EOS models,
especially between the models for a conventional NS and models for a QS or an SS. This
characteristic remains valid approximately as the mass of the star increases, resulting
in distinctions in other aspects such as the moment of inertia [77] and the frequency of
oscillation mode [78].

Another important dimensionless parameter characterizing the stiffness of the EOS at
a given density is the adiabatic index, defined by

Γ =
ρ + P

P
dP
dρ

, (25)

which is equal to the adiabatic index governing the equilibrium pressure–energy density
relation. In the lower panel of Figure 2, we show that the relation between the adiabatic
index Γ and the energy density ρ. It is evident that the adiabatic indices for QSs and SSs
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exhibit qualitative differences from those of NSs at low density. Furthermore, SSs generally
demonstrate a higher adiabatic index compared to both NSs and QSs, suggesting that the
EOSs for SSs are stiffer.
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Figure 2. The upper panel shows the relation between mass–energy density ρ and pressure P for
NSs [79,80], QSs, and SSs (see Figure 1 in Gao et al. [77]). The lower panel shows the adiabatic
index Γ as a function of the mass-energy density ρ. We represent the EOSs of SSs through their
corresponding values of ns and ϵ. For instance, the label “LX2430” signifies a surface baryon number
density of ns = 0.24 fm−3 and a potential depth of ϵ = 30 MeV. “SQM” is related to QSs in the MIT
bag model [79].

3. Global Structure of Compact Stars

Global aspects of compact stars are determined by the equations of hydrostatic equilib-
rium. In this section, we will discuss the basic information of a compact star, revealing the in-
teraction and inner structure of its components. In the following, we take G = c = 1 except
when the units are written out explicitly, and the convention of the metric is (−,+,+,+).

We shall consider an unperturbed star to be composed of a perfect fluid. The energy-
momentum tensor is Tµν = (ρ + p)uµuν + pgµν. The static and spherically symmetric
metric, which describes an equilibrium relativistic star is given by the line element,

ds2 = −e2Φdt2 + e2Λdr2 + r2(dθ2 + sin2 θdϕ2) , (26)

where Φ and Λ are metric functions of r. A mass function m(r) is defined as
m(r) = r(1 − e−2Λ)/2, which satisfies

dm
dr

= 4πr2ρ , (27)
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where ρ is the mass-energy density. The Tolman–Oppenheimer–Volkoff (TOV) equations
that determine the pressure P(r) and the metric function Φ(r) are expressed as

dP
dr

= −(ρ + P)
dΦ
dr

, (28)

dΦ
dr

=
m + 4πr3P
r(r − 2m)

. (29)

Integrating Equations (27)–(29) combined with the EOSs, which are described in Figure 2,
one obtains the stellar structure of spherical stars and the corresponding spacetime ge-
ometry. In Figure 3, we show the mass–radius relations for NSs, QSs, and SSs using the
aforementioned EOSs.

6 8 10 12 14 16
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Figure 3. Mass-radius relations of NSs, QSs, and SSs [77]. The 1-σ regions of the mass measurements
in PSRs J0348+0432 [28] and J0740+6620 [29] are illustrated.

The maximum mass of NSs serves as an indicator of the stiffness of high-density EOSs.
The observation of massive NSs around 2M⊙ through pulsar timing has ruled out extremely
soft EOSs [28,29]. Lattimer and Prakash [81] demonstrated that the largest measured NS
mass can also establish an upper bound to the energy density of cold baryonic matter. As
shown in Figure 4, a larger maximal mass MTOV corresponds to a lower central density
ρc. Hence, a sufficiently large measured mass could rule out classes of possible EOSs. The
upper limit of the central density will be revised downwards if more massive NSs are
discovered in the future, potentially challenging the applicability of perturbative QCD in
proposing the existence of a quark phase within NS cores [82–86].
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dP/d
=1/3
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Figure 4. The relation between the maximum mass MTOV and the corresponding central density ρc

(see Figure 3 in Gao et al. [77]). Results for different classes of EOSs shown in Figure 2 are depicted:
SSs (diamond), conventional NSs (triangle), and QSs in the MIT bag model (star). The MTOV–ρc relation
for dP/dρ = 1/3 as well as the Tolman IV and Tolman VII solutions coupled with dP/dρ = 1 are
illustrated. The Tolman solutions approximately bound all studied EOSs, and the curve dP/dρ = 1/3
effectively bounds stars containing free quarks.

4. Elastic Properties of Compact Stars

The study of the elastic properties of the crust is a crucial aspect in the physics of
NSs. Chamel and Haensel [54] have summarized the elastic properties of the NS crust.
Elastic properties of an isotropic solid are described by two elastic moduli. The deformation
energy can be written as

εdef =
1
2

K(∇∇∇ · uuu)2 + µ

[
uik −

1
3

δik (∇∇∇ · uuu)
]2

, (30)

where µ is the shear modulus and K is the compression modulus due to lattice distortions.
Considering the motion of ions around their lattice nodes, Ogata and Ichimaru [87] cal-
culated the shear modulus of the body-centered cubic (bcc) Coulomb crystal. The shear
modulus µ is given by

µ = 0.1194
ni(Ze)2

a
, (31)

where ni is the ion number density, a = [3/(4πni)]
1/3 is the average ion spacing, and +Ze is

the ion charge. Dependence of µ on temperature has been discussed by Strohmayer et al. [88].
The shear modulus can be rewritten as

µ = 0.1194
ni(Ze)2

[1 + 1.781 × (100/β)2] a
, (32)

where β = (Ze)2/(akBT), kB is the Boltzmann’s constant, and the crystallization point
occurs at β = 173 [89]. We find that the effective shear modulus decreases with an
increasing temperature. Horowitz and Hughto [90] calculated the shear modulus of the
Coulomb crystal, taking into account weak electron screening in the Thomas–Fermi model.
The quantum effects of Coulomb crystal elastic moduli were studied by Baiko [91].

On the other hand, quark matter may form the crystalline CSC phase at the core of
NSs [8]. Mannarelli et al. [92] calculated the shear modulus of the crystalline CSC quark
matter, and it can be written as

µ = 2.47 MeV/fm3
(

∆
10 MeV

)2( µq

400 MeV

)2
, (33)



Universe 2024, 10, 157 10 of 20

where ∆ is the gap parameter, which is in the range of 5–25 MeV. For quark matter inside
compact stars, the quark chemical potential µq range in 350 MeV < µq < 500 MeV [92,93].
Taking into account the uncertainty in the gap parameter ∆ and in the quark chemical
potential µq, the value of shear modulus is larger than in the conventional NS crust and it
is in the range of 7 × 1032 erg cm−3–4 × 1034 erg cm−3.

In essence, the shear modulus µ is determined by the interaction between particles
inside matter. That is, µ ∝ Z2e2ni/a ∼ αn4/3

i , where α is the coupling constant. For the
SS model, the number density ns of strangeon is much larger than ni of the NS’s crust
and the strong interaction dominates over the Coulomb interaction by several orders of
magnitude. It can be estimated that the shear modulus of the SS ranges from 1032 erg cm−3

to 1034 erg cm−3 [6,26,27].

5. Asteroseismology of Compact Stars

In Section 5.1, we summarize the perturbation equations for determining the radial
oscillation modes and discuss the dynamical stability of compact stars. We discuss the
significance of the f -mode as well as present the universal relation connecting the f -
mode and the tidal Love number for compact stars in Section 5.2. In Section 5.3, we
review the torsional oscillations of compact stars which are thought to be important for the
interpretation of QPOs observed in magnetars.

5.1. Dynamical Stability of Compact Stars

Following Li et al. [78], we adopt the radial displacement of a fluid element as δr(r, t)
and its harmonic oscillation mode with circular frequency ω as δr(r, t) = X(r)eiωt. In
practice, we defined a new variable ζ = r2e−ΦX, and thus, the perturbation equation is
written as

d
dr

(
P dζ

dr

)
+
(
Q+ ω2W

)
ζ = 0 , (34)

where

r2P = ΓP e(Λ+3Φ) ,

r2Q = e(Λ+3Φ)(ρ + P)
[
(Φ′)2 + 4

Φ′

r
− 8πe2ΛP

]
,

r2W = (ρ + P)e(3Λ+Φ) . (35)

By setting η = Pζ ′, one obtains the following coupled differential equations,

dζ

dr
=

η

P , (36)

dη

dr
= −

(
ω2W +Q

)
ζ . (37)

At the center of the star, the boundary condition is 3ζ0 = η0/P0, where ζ0 and η0 are
the values of ζ and η at r = 0, respectively [94]. By setting η0 = 1, we have ζ0 = 1/3P0,
where P0 = ΓP(0)e(Λ(0)+3Φ(0)). At the star surface r = R, the pressure perturbation
must vanish, namely ∆P = 0, which provides another boundary condition, ΓPζ ′ = 0.
Equations (36) and (37) with the above two boundary conditions form a two-point boundary
value problem of the Sturm–Liouville type with eigenvalues ω2

0 < ω2
1 < ω2

2 < · · · [95],
where ω0 is the eigenfrequency of the fundamental mode. If ω2

0 > 0, all eigenfrequencies
of the oscillation modes are real, implying the dynamic stability of the equilibrium stellar
model [96–98]. Inversely, ω2

0 < 0 corresponds to an exponentially growing, unstable radial
oscillation. In particular, if the perturbed star is spherically symmetric, the gravitational
field in the exterior is static. In other words, a star undergoing radial oscillations does not
emit GWs.
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In Figure 5, we show the fundamental mode frequencies, ν0, and the frequencies of
the first two excited modes, ν1 and ν2, versus the central density for NSs and QSs [78]. The
period of the fundamental mode is given by τ0 = 1/ν0 = 2π/ω0, where ν0 is the ordinary
or temporal frequency. As the central density of the star the frequency of the fundamental
mode decreases. It passes through zero at the point at which the mass reaches an extremum.
It is worth noting that the frequencies of QSs behave very differently from those of NSs
at low central density, rooted in the self-bound and gravity-bound nature of QSs and NSs
respectively. Figure 6 displays similar results for self-bound SSs and QSs.
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H
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Figure 5. Frequencies of the fundamental mode, ν0, and the first two excited modes, ν1 and ν2, of
radial oscillation, as functions of the central density ρc. The left panel is NS model, and the right
panel is QS model (see Figure 4 in Li et al. [78]).
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Figure 6. Relationship between the frequencies of the fundamental mode ν0 and the mass M for QSs
and SSs (see Figure 5 in Li et al. [78]).

In examining different results for NSs, QSs, and SSs, it is noteworthy that at low central
density, the star can be treated as a homogeneous nonrelativistic star [95]. In this case, the
angular frequency ω0 of the fundamental mode is given by ω2

0 = 4πρ(4Γ − 3)/3. Using the
relations between the adiabatic index and the density shown in the lower panel in Figure 2,
we expect the frequency ω0 to diverge as the density reaches a minimum for QSs and SSs.
In contrast, for NSs, ω0 gradually tends toward zero as the central density decreases, with
the adiabatic index showing less variation in this scenario.
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5.2. Spheroidal Oscillations of Compact Stars

In this subsection, we will introduce the spheroidal oscillation of a relativistic fluid
star in the Cowling approximation, which neglects the perturbations of spacetime [99]. The
fluid Lagrangian displacement vector is given by

ξ i =
(

e−ΛW,−V∂θ ,−V sin−2 θ∂ϕ

)
r−2Yℓm(θ, ϕ) , (38)

where W and V are functions of t and r, while Yℓm(θ, ϕ) is the spherical harmonic function.
Then the perturbation of the four-velocity, δuµ, can be written as

δuµ =
(

0, e−Λ∂tW,−∂tV∂θ ,−∂tV sin−2 θ∂ϕ

)
r−2e−ΦYℓm(θ, ϕ) . (39)

Assuming a harmonic time dependence, the perturbative variables can be expressed
as W(t, r) = W(r)eiωt and V(t, r) = V(r)eiωt. The final perturbation equations are [100],

dW
dr

=
dρ

dP

[
ω2r2eΛ−2ΦV +

dΦ
dr

W
]
− ℓ(ℓ+ 1)eΛV , (40)

dV
dr

= 2
dΦ
dr

V − eΛ W
r2 . (41)

The boundary condition at the center of the star can be parameterized as, W = Arl+1

and V = −Arl/l, with A being an arbitrary constant. It can be obtained by examining
the behavior of W and V in the vicinity of r = 0. At the surface of the star, the perturbed
pressure must vanish, which provides

ω2eΛ(R)−2Φ(R)V(R) +
1

R2
dΦ
dr

∣∣∣
r=R

W(R) = 0 . (42)

In particular, we consider a uniform-density star; the frequency is given by

ω2 =
2ℓ(ℓ− 1)

2ℓ+ 1
GM
R3 ≈ 1.5 × 108 2ℓ(ℓ− 1)

2ℓ+ 1
M1.4R3

10 s−2 , (43)

where M1.4 = M/1.4 M⊙ and R10 = R/(10 km). This is a reasonable approximation also
for a more realistic EOS, and we find that the quadrupole (ℓ = 2) f -mode has a frequency
of approximately 2 kHz [39].

Moreover, the quadrupole f -mode holds significance for several reasons: (i) its behav-
ior is depends on the EOS of compact stars; (ii) it is anticipated to be stimulated in various
astrophysical scenarios, leading to efficient GW emission; (iii) its frequency is lower than
that of other typical modes, such as p-modes and w-modes, making the f -mode oscillation
more likely to be detectable, especially with third-generation detectors like the Einstein
Telescope and the Cosmic Explorer [101–103], or conceivably even by the current generation
LIGO/Virgo/KAGRA detectors in optimal cases [104–106].

For binary NSs of masses Ma and Mb, the dimensionless tidal coupling constant is
defined as [107–109],

κt
2 = 2

[
q
(

Xa

Ca

)5
ka

2 +
1
q

(
Xb
Cb

)5
kb

2

]
, (44)

where q = Mb/Ma ≤ 1, Xa = Ma/(Ma + Mb), and Ci and ki
2 (i = a, b) are respectively

the compactness and the quadrupole Love number of each star. In the context of a binary
system characterized by a non-rotating, equal-mass configuration, the dimensionless tidal
coupling constant can be expressed as follows: κt

2 = k2/8C5 = 3Λ/16, where Λ represents
the dimensionless tidal deformability.

Motivated by the universal relation between the dimensionless tidal coupling constant
and the f -mode frequency [110], we illustrate the connection between M f2 and κt

2 for NSs,
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QSs, and SSs in Figure 7. For NSs and QSs, we observe that the scaled frequency of the
f -mode approximately adheres to the following relation:

M f2 = 0.184(κt
2)

−0.016 − 0.154 . (45)

For SSs, the universal relation is

M f2 = 0.071(κt
2)

−0.266 . (46)

The universal relations for QSs and SSs will complement that of NSs, and play a role
in GW data analysis [111].
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Figure 7. Scaled frequency of the f -mode M f2 as a function of the tidal quadrupolar (l = 2) coupling
constant κt

2 for NSs, QSs and SSs. The solid line represents the best power-law fit in κt
2 to the scaled

frequencies of the NSs, QSs, and SSs (see Figure 10 in Li et al. [78]).

5.3. Torsional Oscillations of Compact Stars

Torsional oscillations are commonly employed to explain the origin of QPOs observed
in the spectra of SGRs [11,12,112–114]. We first consider the torsional oscillations of a
non-magnetized relativistic star with axial perturbations. The perturbation equations for
the elastic solid star in the Cowling approximation are written as

d2Y
dr2 +

(
4
r
+

dΦ
dr

− dΛ
dr

+
1
µ

dµ

dr

)
dY
dr

+

[
ρ + P

µ
ω2e−2Φ − (ℓ+ 2)(ℓ− 1)

r2

]
e2ΛY = 0 . (47)

Here, Y(r) is the radial component of the angular oscillation amplitude, and the integer ℓ
represents the angular separation constant, which comes into play when expanding Y(r)
in spherical harmonics Yℓm(θ, ϕ). To determine the oscillation frequencies, the boundary
conditions require that the traction vanishes at the top and the bottom of the crust.

For NS models, we neglect the effects of the magnetic field, superfluid, and nuclear
pasta phases in the inner crust. The frequency of the fundamental crust mode corresponding
to n = 0, is approximately given by [113]

ℓ f 2
0 ≈ e2Φv2

S(ℓ− 1)(ℓ+ 2)
2RRc

, (48)

where vS = (µ/ρ)1/2 is the shear speed and Rc is the base of the crust. In particular,
matching the observed data of the SGRs with specific crust modes requires a dependence
on ℓ. The frequencies of overtone n > 0 are given by
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ℓ fn = eΦ−Λ nπvS
∆

, (49)

where ∆ = R − Rc. We find that the frequencies of the overtone are independent of ℓ. For a
realistic crust model, the crust thickness can be estimated as follows:

∆
R

≈
(

1 +
M
αR

e2Λ
)−1

, (50)

where the parameter α = 0.02326 depends on the EOS of the NS [113].
We explore potential effects of the magnetic field on the frequencies of different

torsional modes. In the presence of magnetic fields, the frequencies experience shifts, as
described by [114].

ℓ fn = ℓ f (0)n

[
1 + ℓαn

(
B
Bµ

)2
]1/2

. (51)

For NSs models, we chose the EOS WFF3 [115], which describe the core of neutron
stars. We consider two different proposed EOSs for the crusts, including EOSs for NV [116]
and DH [117] models. We match various core EOSs to two different EOSs for the crust.
The crust–core boundary for the NV and DH EOSs is defined at ρ ≈ 2.4 × 1014 g cm−3, and
ρ ≈ 1.28 × 1014 g cm−3, respectively.

In Figure 8, we show the effects of the magnetic field on the oscillation frequencies of
NSs. The magnetic field strength is normalized by Bµ = 4 × 1015 G. The various dashed
lines in Figure 8 represent our fits to the numerically calculated data with high accuracy. In
the case of B > Bµ, we observe that the frequencies exhibit a quadratic growth concerning
the magnetic field and tend to display reduced sensitivity to NS parameters.

0.10 1.00 10.00
B/Bµ

40

60

80

100

f
[H

z]

WFF3+DH

WFF3+NV

Figure 8. The frequencies of the fundamental mode n = 0 and ℓ = 2 torsional mode frequencies as a
function of the magnetic field. The NS mass is chosen as M = 1.4 M⊙. The dashed lines correspond
to our fits using the empirical formula (51) with different coefficient values. The fitting values are 0.5
and 0.35 for WFF3+ DH model and WFF3+ NV model, respectively.

Alternatively, involving strange quarks may shed light on the physical mechanism of
QPOs in GFs. In our recent work [27], we systematically investigate torsional oscillation
frequencies based on the SS model. The fundamental frequencies of the ℓ = 2 mode vary
from 145 Hz to 277 Hz, depending on the SS mass. For the case of the first overtone ℓ f1, the
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frequencies range from 300 Hz to 1700 Hz and the first overtone frequency decreases as the
SS mass increases (see Tables 1, 2, and 3 of Li et al. [27]). However, such an anticorrelation
differs from those of NSs, where the frequency of the first overtone would increase with
a higher NS mass [114]. In particular, our results explain well the high-frequency QPOs
(≳150 Hz).

Due to the higher shear modulus of the SS model, explaining the low-frequency QPOs
(≲150 Hz) becomes challenging. Consequently, we suggest the possibility that SSs may
possess a thin surface ocean characterized by density and temperature within the ranges
of 106–109 g cm−3 and 108–109 K, respectively. With the presence of such an ocean layer,
we can employ the interface modes at the ocean–crust interface to account for the low-
frequency QPOs. The frequency of the interface mode can be analytically approximated
as [118]

f ≈ 16.5 Hz
(

β

173

)1/2(T8

4

)1/2
×
(

64
A

)1/2(10 km
R

)[
ℓ(ℓ+ 1)

2

]1/2

, (52)

where T8 ≡ T/108K, and A is the baryon number. We estimate the frequencies of the
ocean–crust interface modes and observe that these modes provide a suitable interpretation
for the observed low-frequency QPOs in GFs for some SGRs.

In Figure 9, we show the effects of the magnetic field on the torsional modes for the
SS model. The magnetic field strength is normalized by Bµ = 4 × 1016 G. The various
dashed lines in Figure 9 represent our fits to the numerically calculated data. In the case
of B > Bµ, we observe that the frequencies exhibit a quadratic growth concerning the
magnetic field and tend to display reduced sensitivity to the SS parameters. NSs could
exhibit similar behaviors, but the critical magnetic field strength for this transition is much
lower, approximately ∼4 × 1015 G [114].
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Figure 9. Frequencies of different overtones as a function of the normalized magnetic field for ℓ = 2
(see Figure 3 in Li et al. [27]). The dashed lines are our fits using Equation (51). The SS mass is chosen
as M = 1.4 M⊙. The coefficients ℓαn are 0.3, 0.42 and 0.48 for n = 0, n = 1, and n = 2, respectively.

6. Summary

The EOS serves as a tool for deducing crucial aspects of microphysics, including the
characteristics of nucleon interaction and the potential existence of free quarks at high
densities. Therefore, determining the EOS of supranuclear density matter holds significant
importance in fundamental physics. We focus in detail on how to constrain the EOS of
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compact stars induced by asteroseismology. Observations that include studies of QPOs in
GFs and GWs provide information about the elastic properties and internal compositions
of compact stars.

The dynamical stability of stellar configurations for radial perturbations is determined
by the fundamental mode. In this review, we have investigated the properties of radial
oscillations of compact stars in detail and study the stability of compact stars rigorously. We
find that the fundamental mode frequency of the models of the self-bound on the surface
by strong interaction (e.g.,QSs and SSs) is very different from that of the gravity-bound
model (NSs) at low central density. This can be understood by approximating the stars
in the nonrelativistic regime and observing that the adiabatic index Γ for the self-bound
models tends to infinity as the density decreases to its minimum value. The presence of this
elastic property of quark matter in the core should produce astrophysical signatures that
are different from those of normal NSs with a fluid core. Pereira et al. [59] investigated the
dynamical stability of HSs with elastic quark phases. In particular, the imprint of elasticity
on the eigenfrequencies is mostly relevant for large masses and the relative changes would
be larger than 10% for NSs with mass above 2 M⊙. We will discuss the effect of the elastic
property on the dynamical stability of SSs in the future.

The frequencies of torsional oscillations are highly dependent on the elastic properties.
In the SS model, we observe its ability to accurately describe the high-frequency QPOs
in the GFs of some SGRs. Additionally, we explore the impact of magnetic fields on the
frequencies of torsional oscillations. The typical value of the magnetic field strength is
adopted as Bµ = 4 × 1016 G, which is much larger than the ordinary NS models. Alcock
et al. [119] suggested that QSs could have a thin nuclear crust that extends to the neutron
drip density (i.e., ρ ≈ 4 × 1011g cm−3). Jaikumar et al. [120] proposed another possible
model that a crust is made up of nuggets of strange quark matter embedded in a uniform
electron background. Our results show that both models are difficult to reproduce the
recorded QPO frequencies well [27].
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