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Abstract 

 
In this paper, motivated by Fulga and Proca [1], we define the notion of dualistic E-contraction, generalized dualistic E-

contraction, and Dass-Gupta dualistic rational E-contraction. We establish some new fixed-point theorems for E-

contraction, generalized dualistic E-contraction, and Dass-Gupta dualistic rational E-contraction in a DPM space. Also, 

we define dualistic 𝐸∆-contraction, generalized dualistic 𝐸∆-contraction, and Dass-Gupta dualistic rational 𝐸∆-contraction. 

We establish some common fixed-point theorems for 𝐸∆ -contraction, generalized dualistic 𝐸∆ -contraction and Dass-

Gupta dualistic rational 𝐸∆-contraction in the setting of DPM spaces. Our results extend and generalize some well-known 

results of [1] and [2]. We also provide an example that shows the usefulness of these contractions.  
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1 Introduction  
 

During the past twenty years, one of the most active areas of study has been fixed point theory. Novel and 

captivating outcomes are attained, primarily in two aspects: altering the framework (the composition of the 

abstract space, such as the b-metric, delta symmetric quasi-metric, or non-symmetric metric space, among 

others) or modifying the characteristics of the operators.  

 

The common idea of a metric space has been numerous times generalized. A partial metric (PM) space, which 

Matthews developed and examined, is one such generalization [3]. He verified the exact correspondence 

between the so-called weightable quasi-metric spaces and PM spaces. PM space has certain generalizations. One 

major modification to Matthews' definition of the PM, for instance, was suggested by O'Neill [4] and involved 

moving their range from [0, ∞) to (−∞, ∞). Dualistic partial metric (DPM) is the term used to refer to the PM 

space in the O'Neill sense, and a pair (𝒞, 𝜏∗) here 𝒞 is a nonempty set and 𝜏∗ is a DPM on 𝒞 is called a DPM 

space, according to [4]. O'Neill established multiple links between PM space and the topological features of 

domain theory in this manner. Studying Banach's contraction principle is the first step in creating contractual 

requirements. Several fixed-point theorems for some generalized metric space have made use of these criteria. 

Fulga and Proca [1] established the idea of E-contraction. Several writers have since refined this idea, including 

[5, 6].  

 

A coincidence point in mathematics is the location at which two or more functions coincide, or intersect, 

indicating that they have the same value at that particular position. Numerous areas of mathematics, such as 

algebra, differential equations, and calculus, are interested in coincidence points. They can be used to solve 

equations, comprehend the behavior of mathematical models, and solve optimization problems. A key finding in 

the theory of fixed-point theorems is the Coincidence Point Theorem, which establishes the circumstances in 

which two mappings share a fixed point. The Kakutani-Ky Fan Coincidence Theorem is another name for it, and 

it bears the names of the mathematicians Ky Fan and Shizuo Kakutani who independently proved it in the 

1940s. 

 

The theorem states the following:  

 

Let 𝒞 be a topological space and 𝒜 a convex subset of a Hausdroff vector space. Let Υ, Δ: 𝒞 → 𝒞 be mappings, 

where Υ is upper semi-continuous and Δ is compact and continuous. If there exists a point 𝜃 ∈ 𝒞  such that 

Υ(𝜃) ⊆ Δ(𝜃), then there exists a point 𝜗 ∈ 𝒞 such that Υ(𝜗) = Δ(𝜗). 

 

Aydi et al. [7] proved some coincidence and common fixed-point results in partially ordered cone metric spaces. 

Since then, there have been many results related to coincidence and common fixed-point, we refer to ([8], [9], 

[10], [11]) and references therein. Fixed point theorems for generalized contractions on partial metric spaces 

were established by Altun et al. [12]. Some fixed-point theorems in ordered dualistic partial metric spaces were 

introduced by Arshad et al. [13]. Certain fixed-point results for dualistic rational contractions were established 

by Nazam et al. [14]. Certain fixed-point outcomes in ordered dualistic partial metric spaces were proven by 

Nazam and Arshad [15]. Fixed point theorems for contractions with rational inequalities in the extended b-

metric space were proved in 2019 by Alqahtani et al. [16]. Fixed point theorems for rational type contractions in 

extended b-metric spaces were demonstrated by Huang et al. [17]. Within the context of super metric spaces, 

Karapinar and Fulga [18] established fixed point theorems for contraction in rational forms.  

 

In this paper, we shall propose three types of contraction, namely, E-contraction, generalized dualistic E-

contraction and Dass-Gupta dualistic rational E-contraction, which combine the dualistic contraction approach, 

E-contraction and rational contraction setting and establish some fixed-point results in the framework of DPM 

spaces. Also, prove some common fixed-point results via dualistic 𝐸∆-contraction, generalized dualistic 𝐸∆-

contraction and Dass-Gupta dualistic rational 𝐸∆-contraction in a DPM space. Our result extends and generalizes 

some well-known results of [2] and [1]. Also, we verify our results with an example. 
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2 Preliminaries  
 

We recall some mathematical basics and definitions to make this paper self-sufficient. 

 

Definition 2.1 (see [3]) Let 𝒞 be a non-empty set. A partial metric (PM) on 𝒞 is a function 𝜏: 𝒞 × 𝒞 → [0, ∞) 

complying with following axioms, for all 𝜃, 𝜗, 𝜔 ∈ 𝒞  

 

      (𝜏1) 𝜃 = 𝜗 ⟺ 𝜏(𝜃, 𝜗) = 𝜏(𝜃, 𝜃) = 𝜏(𝜗, 𝜗); 
      (𝜏2) 𝜏(𝜃, 𝜃) ≤ 𝜏(𝜃, 𝜗); 
      (𝜏3) 𝜏(𝜃, 𝜗) = 𝜏(𝜗, 𝜃); 
      (𝜏4) 𝜏(𝜃, 𝜗) ≤ 𝜏(𝜃, 𝜔) + 𝜏(𝜔, 𝜗) − 𝜏(𝜔, 𝜔) 

 

The pair (𝒞, 𝜏) is called a partial metric space (PM space). 

 

Definition 2.2 (see [4]) Let 𝒞 be a non-empty set. A dualistic partial metric (DPM) on 𝒞 is a function 𝜏∗: 𝒞 ×
𝒞 → (−∞, ∞) satisfying the following axioms, for all 𝜃, 𝜗, 𝜔 ∈ 𝒞 

 

      (𝜏1
∗) 𝜃 = 𝜗 ⟺ 𝜏∗(𝜃, 𝜗) = 𝜏∗(𝜃, 𝜃) = 𝜏∗(𝜗, 𝜗); 

      (𝜏2
∗) 𝜏∗(𝜃, 𝜃) ≤ 𝜏∗(𝜃, 𝜗); 

      (𝜏3
∗) 𝜏∗(𝜃, 𝜗) = 𝜏∗(𝜗, 𝜃); 

      (𝜏4
∗) 𝜏∗(𝜃, 𝜔) + 𝜏∗(𝜗, 𝜗) ≤ 𝜏∗(𝜃, 𝜗) + 𝜏∗(𝜗, 𝜔) 

 

The pair (𝒞, 𝜏∗) is called a dualistic partial metric space (DPM space). 

 

Remark 2.3 Noting that each PM is a DPM, but the converse is false. Indeed, define 𝜏∗  on (−∞, ∞)  as 

𝜏∗(𝜃, 𝜗) = max{𝜃, 𝜗}, ∀𝜃, 𝜗 ∈ (−∞, ∞) . Obviously, 𝜏∗ is a DPM on  (−∞, ∞) . Since 𝜏∗(𝜃, 𝜗) < 0 ∉
[0, ∞), ∀ 𝜃, 𝜗 ∈ (−∞, 0) and then 𝜏∗ is not a PM on (−∞, ∞). This confirms our remark.  

 

Example 2.4 (see [19], [4]) 

 

(1) Define 𝜏𝑑
∗ : 𝒞 × 𝒞 → (−∞, ∞) by 𝜏𝑑

∗ (𝜃, 𝜗) = 𝑑(𝜃, 𝜗) + 𝑏, where 𝑑 is a metric on a nonempty set 𝒞 and 

𝑏 ∈ (−∞, ∞) is arbitrary constant, then it is easy to check that 𝜏𝑑
∗  verifies axioms (𝜏1

∗) − (𝜏4
∗) and hence 

(𝒞, 𝜏∗) is a DPM space. 

(2) Let 𝜏 be a PM defined on a non-empty set 𝒞. The function 𝜏∗: 𝒞 × 𝒞 → (−∞, ∞) defined by 𝜏∗(𝜃, 𝜗) =
𝜏(𝜃, 𝜗) − 𝜏(𝜃, 𝜃) − 𝜏(𝜗, 𝜗) satisfies the axioms (𝜏1

∗) − (𝜏4
∗) and so it defines a DPM on 𝒞 . Note that 

𝜏∗(𝜃, 𝜗) may have negative values. 

(3) Let 𝒞 = (−∞, ∞) . Define 𝜏∗: 𝒞 × 𝒞 → (−∞, ∞)  by 𝜏∗(𝜃, 𝜗) = |𝜃 − 𝜗|  if 𝜃 ≠ 𝜗  and 𝜏∗(𝜃, 𝜗) = −𝛾  if 

𝜃 = 𝜗 and 𝛾 > 0. We can easily see that 𝜏∗ is a DPM on 𝒞.  

 

O’Neill [4] established that each DPM 𝜏∗ on 𝒞 generates a 𝒯0 topology 𝜏(𝜏∗ ) on 𝒞 having a base, the family of 

𝜏∗-balls {ℬ𝜏∗ (𝜃, 𝜖)│𝜃 ∈ 𝒞 , 𝜖 > 0}, where 

 

  ℬ𝜏∗ (𝜃, 𝜖) = {𝜗 ∈ 𝒞│𝜏∗(𝜃, 𝜗) < 𝜏∗(𝜃, 𝜃) + 𝜖}.                                                                                (2.1)     

              

If (𝒞, 𝜏∗) is a DPM space, then the function 𝑑𝜏∗ ∶  𝒞 ×  𝒞 → [0, ∞) defined by 

 

   𝑑𝜏∗(𝜃, 𝜗) = 𝜏∗(𝜃, 𝜗) − 𝜏∗(𝜃, 𝜃)                                                                                                       (2.2)       

                              

defines a quasi-metric on 𝒜 such that 𝜏(𝜏∗) = 𝜏(𝑑𝜏∗) and 

 

𝑑𝜏∗
𝑠 (𝜃, 𝜗) = max{𝑑𝜏∗(𝜃, 𝜗), 𝑑𝜏∗(𝜗, 𝜃)}                                                                                               (2.3)                           

 

defines a metric on 𝒞. 

 

Definition 2.5 (see [20]) Let (𝒞, 𝜏∗) be a DPM space. 
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1. A sequence {𝜃𝑖} in 𝒞 is said to converge or to be convergent if there is a 𝜃 ∈ 𝒞 such that 

 

                                      lim
𝑖→∞

𝜏∗(𝜃𝑖 , 𝜃) = 𝜏∗(𝜃, 𝜃). 

 

 𝜃 is called the limit of {𝜃𝑖} and we write 𝜃𝑖 → 𝜃.  

 

2. A sequence {𝜃𝑖} in 𝒞 is said to be Cauchy sequence if lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑛, 𝜃𝑚) exists, finite. 

 

3. A DPM space 𝒞 = (𝒞, 𝜏∗) is said to be complete if every Cauchy sequence {𝜃𝑖} in 𝒞 converges, with 

respect to 𝜏(𝜏∗ ), to a point 𝜃 ∈ 𝒞 such that  

 

                                       𝜏∗(𝜃, 𝜃) = lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑖 , 𝜃𝑗). 

  

Remark 2.6  For a sequence, convergence with respect to metric space may not imply convergence with respect 

to DPM space. Indeed, if we take 𝛾 = 1 and {𝜃𝑖 =
1−𝑖

𝑖
: 𝑖 ≥ 1}

𝑖∈ℕ
⊂ 𝒞  as in Example 2.4 (3). Mention that 

lim
𝑖→∞

𝑑(𝜃𝑖, −1) = −1 and therefore, 𝜃𝑖 → −1 with respect to 𝑑. On the other hand, we make a conclusion that 

𝜃𝑖 ↛ −1 with respect to 𝜏∗ because lim
𝑖→∞

𝜏∗(𝜃𝑖 , −1) = lim
𝑖→∞

𝜏∗|𝜃𝑖 − (−1)| = lim
𝑖→∞

|
1−𝑖

𝑖
+ 1| = 0 and 𝜏∗(−1, −1) =

−1. 

 

Lemma 2.7 (see [20]) Let (𝒞, 𝜏∗) be a DPM space. 

 

(1) Every Cauchy sequence in (𝒞, 𝑑𝜏∗
𝑠 ) is also a Cauchy sequence in (𝒞, 𝜏∗). 

(2) A DPM (𝒞, 𝜏∗) is complete if and only if the induced metric space (𝒞, 𝑑𝜏∗
𝑠 ) is complete. 

(3) A sequence {𝜃𝑖} in 𝒞 converges to a point 𝜃 ∈ 𝒞 with respect to 𝜏(𝑑𝜏∗
𝑠 ) if and only if  

 

                         𝜏∗(𝜃, 𝜃) = lim
𝑖→∞

𝜏∗(𝜃𝑖 , 𝜃) = lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑖 , 𝜃𝑗). 

 

Definition 2.8 (see [11]) Let (𝒞, 𝔡) be a metric space. A mapping and Δ: 𝒞 → 𝒞 is said to be an E-contraction if 

there exists a real number 𝔯 ∈ [0,1) such that 

 

                𝔡(Δ𝜃, Δ𝜗) ≤ 𝔯[𝔡(𝜃, 𝜗) + |𝔡(𝜃, Δ𝜃) − 𝔡(𝜗, Δ𝜗)|] 
for all 𝜃, 𝜗 ∈ 𝒞. 

 

Definition 2.9 (see [2]) Let (𝒞, 𝔡) be a metric space. A mapping and Δ: 𝒞 → 𝒞  is said to be a Dass-Gupta 

Rational contraction if there exist real numbers 𝔯1, 𝔯2 ∈ [0,1) with 𝔯1 +  𝔯2 < 1 such that 
 

                 𝔡(Δ𝜃, Δ𝜗) ≤ 𝔯1
[1+𝔡(𝜃,Δ𝜃)]𝔡(𝜗,Δ𝜗)

1+𝔡(𝜃,𝜗)
+ 𝔯2𝔡(𝜃, 𝜗) 

for all 𝜃, 𝜗 ∈ 𝒞. 
 

In DPM space, we define dualistic E-contraction, generalized dualistic E-contraction and Dass-Gupta dualistic 

rational E-contraction. We establish some new fixed-point theorems for E-contraction, generalized dualistic E-

contraction and Dass-Gupta dualistic rational E-contraction defined on a DPM space. Also, we define dualistic 

𝐸∆-contraction, generalized dualistic 𝐸∆-contraction and Dass-Gupta dualistic rational 𝐸∆-contraction in DPM 

space. We establish some coincidence and common fixed-point theorems for 𝐸∆ -contraction, generalized 

dualistic 𝐸∆ -contraction and Dass-Gupta dualistic rational 𝐸∆ -contraction defined on DPM spaces. These 

theorems expand and generalize several intriguing findings from metric fixed-point theory to the dualistic partial 

metric setting. We also provide an example to support our results. 
 

3 Main Results 
 

This section contains some fixed-point theorems for dualistic 𝐸-contraction, dualistic rational 𝐸-contraction and 

generalized dualistic 𝐸 -contraction, an illustrative example and deductions. We begin with the following 

definitions. 
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Definition 3.1 Let (𝒞, 𝜏∗) be a DPM space. A mapping Υ: 𝒞 → 𝒞 is called dualistic E-contraction, if for all 

distinct 𝜃, 𝜗 ∈ 𝒞, there exists a number 𝜆 ∈ [0,1) such that 

 

                    |𝜏∗(Υ𝜃, Υ𝜗)| ≤ 𝜆[|𝜏∗(𝜃, 𝜗)| + ||𝜏∗(𝜃, Υ𝜃)| − |𝜏∗(𝜗, Υ𝜗)||].                                                         (3.1) 

 

Definition 3.2 Let (𝒞, 𝜏∗) be a DPM space. A mapping Υ: 𝒞 → 𝒞 is called dualistic rational 𝐸-contraction, if for 

all distinct 𝜃, 𝜗 ∈ 𝒞, there exist numbers 𝜆1, 𝜆2 ∈ [0,1) with 𝜆1 + 𝜆2 < 1 such that 

 

                    |𝜏∗(Υ𝜃, Υ𝜗)| ≤ 𝜆1[|𝜏∗(𝜃, 𝜗)| + ||𝜏∗(𝜃, Υ𝜃)| − |𝜏∗(𝜗, Υ𝜗)||] + 𝜆2
[1+|𝜏∗(𝜃,Υ𝜃)|]|𝜏∗(𝜗,Υ𝜗)|

1+|𝜏∗(𝜃,𝜗)|
.              (3.2) 

 

Definition 3.3 Let (𝒞, 𝜏∗) be a DPM space. A mapping Υ: 𝒞 → 𝒞 is called generalized dualistic E-contraction, if 

for all distinct 𝜃, 𝜗 ∈ 𝒞, there exists a number 𝜆 ∈ [0,1) such that 

 

                   |𝜏∗(Υ𝜃, Υ𝜗)| ≤ 𝜆 max {|𝜏∗(𝜃, 𝜗)| + ||𝜏∗(𝜃, Υ𝜃)| − |𝜏∗(𝜗, Υ𝜗)||,
|𝜏∗(𝜃,Υ𝜃)|+|𝜏∗(𝜗,Υ𝜗)|

2
}.                   (3.3) 

  

Our first result as follows. 

 

Theorem 3.4 Let (𝒞, 𝜏∗) be a complete DPM space and Υ: 𝒞 → 𝒞 be a dualistic E-contraction. Then Υ has a 

unique fixed point. 

 

Proof. Let {𝜃𝑖} be the sequence in 𝒞 defined as 𝜃1 = Υ𝜃0, 𝜃𝑖 = Υ𝜃𝑖−1, for any 𝑖 ∈ ℕ, where 𝜃0 is an arbitrary 

fixed point in 𝒞. If there exists 𝑟 ∈ ℕ such that 𝜃𝑟+1 = 𝜃𝑟 , then 𝜃𝑟  is a fixed point of Υ and 𝜏∗(𝜃𝑟 , 𝜃𝑟) = 0. 

Suppose that 𝜃𝑖+1 ≠ 𝜃𝑖 for any 𝑖 ∈ ℕ. By (3.1), we have 

 

                  |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| = |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| 

                                        ≤ 𝜆[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + ||𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)| − |𝜏∗(𝜃𝑖 , Υ𝜃𝑖)||] 

                                        = 𝜆[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + ||𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)||]                                              (3.4)    

 

If |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| < |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| for some 𝑖, from (3.4), we have 

 

    |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝜆[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|] = 𝜆|𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|,   
                      

which is a contradiction. Hence, |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| ≥ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| and so from (3.4), we have 

 

                   |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝜆[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|] 
                                         = 𝜆[2|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|]. 
 

The last inequality gives 

 

                               |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤
2𝜆

1+𝜆
|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| = 𝒸|𝜏∗(𝜃𝑖−1, 𝜃𝑖)|. 

 

where 𝒸 =
2𝜆

1+𝜆
. From this, we can write, 

 

               |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝒸|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| ≤ 𝒸2|𝜏∗(𝜃𝑖−2, 𝜃𝑖−1)| ≤ ⋯ ≤ 𝒸𝑖|𝜏∗(𝜃0, 𝜃1)|.                              (3.5) 

 

Now, consider the self-distance 

 

                     |𝜏∗(𝜃𝑖 , 𝜃𝑖)| = |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)| 

                                        ≤ 𝜆[|𝜏∗(𝜃𝑖−1, 𝜃𝑖−1)| + ||𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)| − |𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)||] 

                                        = 𝜆|𝜏∗(𝜃𝑖−1, 𝜃𝑖−1)|                                                                                                    (3.6)    

 

Similarly,   

                                  |𝜏∗(𝜃𝑖−1, 𝜃𝑖−1)| ≤ 𝜆|𝜏∗(𝜃𝑖−2, 𝜃𝑖−2)|                                              
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Inequality (3.6) implies that 

 

                                        |𝜏∗(𝜃𝑖 , 𝜃𝑖)| ≤ 𝜆2|𝜏∗(𝜃𝑖−2, 𝜃𝑖−2)|   
                                           

Proceeding further in a similar way, we get 

 

                                          |𝜏∗(𝜃𝑖 , 𝜃𝑖)| ≤ 𝜆𝑖|𝜏∗(𝜃0, 𝜃0)|     
                                             

Equation implies (2.2) that 

 

              𝑑𝜏∗(𝜃𝑖 , 𝜃𝑖+1) ≤ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| − 𝜏∗(𝜃𝑖 , 𝜃𝑖) 

                                    ≤ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| + |𝜏∗(𝜃𝑖, 𝜃𝑖)| 
                                    ≤ 𝒸𝑖|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝑖|𝜏∗(𝜃0, 𝜃0)| 
 

Now, for 𝑗 > 𝑖, we have 

 

     𝑑𝜏∗(𝜃𝑖 , 𝜃𝑗) ≤ 𝑑𝜏∗(𝜃𝑖 , 𝜃𝑖+1) + 𝑑𝜏∗(𝜃𝑖+1, 𝜃𝑖+2) + ⋯ + 𝑑𝜏∗(𝜃𝑗−1, 𝜃𝑗) 

                       ≤ 𝒸𝑖|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝑖|𝜏∗(𝜃0, 𝜃0)| + 𝒸𝑖+1|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝑖+1|𝜏∗(𝜃0, 𝜃0)| 
                       + ⋯ + 𝒸𝑗−1|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝑗−1|𝜏∗(𝜃0, 𝜃0)|                          
                       = (𝒸𝑖 + 𝒸𝑖+1 + ⋯ + 𝒸𝑗−1)|𝜏∗(𝜃0, 𝜃1)| 
                       +(𝜆𝑖 + 𝜆𝑖+1 + ⋯ + 𝜆𝑗−1)|𝜏∗(𝜃0, 𝜃0)| 

                       ≤
𝒸𝑖

1−𝒸
|𝜏∗(𝜃0, 𝜃1)| +

𝜆𝑖

1−𝜆
|𝜏∗(𝜃0, 𝜃0)|    

 

The last inequality gives 

 

                          𝑑𝜏∗(𝜃𝑖 , 𝜃𝑗) ≤
𝒸𝑖

1−𝒸
|𝜏∗(𝜃0, 𝜃1)| +

𝜆𝑖

1−𝜆
|𝜏∗(𝜃0, 𝜃0)|                                                            

 

We conclude that lim
𝑖,𝑗→∞

𝑑𝜏∗
𝑠 (𝜃𝑖 , 𝜃𝑗) = lim

𝑖,𝑗→∞
max{𝑑𝜏∗(𝜃𝑖 , 𝜃𝑗), 𝑑𝜏∗(𝜃𝑗 , 𝜃𝑖)} = 0,  thus, {𝜃𝑖}  is a Cauchy sequence 

in (𝒞, 𝑑𝜏∗
𝑠 ). Since (𝒞, 𝜏∗) is a complete DPM space, by Lemma 2.7(2), (𝒞, 𝑑𝜏∗

𝑠 ) is a complete metric space. Thus, 

there exists 𝜔 ∈ (𝒞, 𝑑𝜏∗
𝑠 ) such that 𝜃𝑖 → 𝜔 as 𝑖 → ∞, that is lim

𝑖→∞
𝑑𝜏∗(𝜃𝑖 , 𝜔) = 0 and by Lemma 2.7(3), we know 

that 

 

                                   𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑖 , 𝜃𝑗).                                                                  (3.7)   

                     

Since, lim
𝑖→∞

𝑑𝜏∗(𝜃𝑖, 𝜔) = 0, by (2.2) and (3.7), we have 

 

                                   𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑖 , 𝜃𝑗) = 0.                                                          (3.8)     

             

This shows that {𝜃𝑖} is a Cauchy sequence converging to 𝜔 ∈ (𝒞, 𝜏∗). We shall show that 𝜔 is a fixed point of 

Υ. From condition (3.1), we have   

 

                |𝜏∗(𝜃𝑖+1, Υ𝜔)| = |𝜏∗(Υ𝜃𝑖 , Υ𝜔)| 

                                        ≤ 𝜆[|𝜏∗(𝜃𝑖, 𝜔)| + ||𝜏∗(𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(𝜔, Υ𝜔)||] 

                                        = 𝜆[|𝜏∗(𝜃𝑖 , 𝜔)| + ||𝜏∗(𝜃𝑖, 𝜃𝑖+1)| − |𝜏∗(𝜔, Υ𝜔)||] 
 

Applying limit as 𝑖 → ∞ and using equation (3.8), we have  

 

                                                         |𝜏∗(𝜔, Υ𝜔)| ≤ 𝜆|𝜏∗(𝜔, Υ𝜔)|,  
 

which implies that |𝜏∗(𝜔, Υ𝜔)| = 0, because 𝜆 < 1 and then 𝜏∗(𝜔, Υ𝜔) = 0. Again from (3.1), we have 

 

            |𝜏∗(Υ𝜔, Υ𝜔)| ≤ 𝜆[|𝜏∗(𝜔, 𝜔)| + ||𝜏∗(𝜔, Υ𝜔)| − |𝜏∗(𝜔, Υ𝜔)||] = 𝜆|𝜏∗(𝜔, 𝜔)| 
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Since 𝜆 < 1, and 𝜏∗(𝜔, 𝜔) = 0, we get |𝜏∗(Υ𝜔, Υ𝜔)| = 0. Hence, 𝜏∗(Υ𝜔, Υ𝜔) = 0, and  

 

                                        𝜏∗(𝜔, 𝜔) = 𝜏∗(Υ𝜔, Υ𝜔) = 𝜏∗(𝜔, Υ𝜔)                                                                       (3.9)     

                               

By using axiom (𝜏1
∗), we have 𝜔 = Υ𝜔. This shows that 𝜔 is a fixed point of Υ.  

 

To prove the uniqueness of 𝜔, suppose that 𝜔∗ is another fixed point of  Υ, then Υ𝜔∗  = 𝜔∗  and 𝜏∗(𝜔∗ , 𝜔∗ ) =
0. By (3.1), we obtain 

 

                 |𝜏∗(𝜔, 𝜔∗)| = |𝜏∗(Υ𝜔, Υ𝜔∗)| 

                                    ≤ 𝜆[|𝜏∗(𝜔, 𝜔∗)| + ||𝜏∗(𝜔, Υ𝜔)| − |𝜏∗(𝜔∗, Υ𝜔∗)||] 

                                    = 𝜆[|𝜏∗(𝜔, 𝜔∗)| + ||𝜏∗(𝜔, 𝜔)| − |𝜏∗(𝜔∗, 𝜔∗)||]          

                                    = 𝜆|𝜏∗(𝜔, 𝜔∗)|                 
 

which implies that (1 − 𝜆)|𝜏∗(𝜔, 𝜔∗)| ≤ 0. This is possible only when |𝜏∗(𝜔, 𝜔∗)| = 0, since 𝜆 < 1. Hence, 

𝜏∗(𝜔, 𝜔∗) = 0 and then, 

 

                                      𝜏∗(𝜔, 𝜔∗) = 𝜏∗(𝜔, 𝜔) = 𝜏∗(𝜔∗ , 𝜔∗ ) 

 

By (𝜏1
∗), we have 𝜔 = 𝜔∗. Consequently, Υ has unique fixed point 𝜔.  

  

Theorem 3.5 Let (𝒞, 𝜏∗) be a complete DPM space and Υ: 𝒞 → 𝒞 be a dualistic rational E-contraction. Then Υ 

has a unique fixed point. 

 

Proof. Following the steps of proof of Theorem 3.1, we construct the sequence {𝜃𝑖} by iterating 

 

     𝜃1 = Υ𝜃0, 𝜃𝑖 = Υ𝜃𝑖−1, for any 𝑖 ∈ ℕ.  

 

where 𝜃0 ∈ 𝒞 is arbitrary point. Then, by (3.2), we have 

 

         |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| = |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| 

                               ≤ 𝜆1[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + ||𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)| − |𝜏∗(𝜃𝑖 , Υ𝜃𝑖)||] + 𝜆2
(1+|𝜏∗(𝜃𝑖−1,Υ𝜃𝑖−1)|)|𝜏∗(𝜃𝑖,Υ𝜃𝑖)|

1+|𝜏∗(𝜃𝑖−1,𝜃𝑖)|
 

                               = 𝜆1[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + ||𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)||] + 𝜆2
(1+|𝜏∗(𝜃𝑖−1,𝜃𝑖)|)|𝜏∗(𝜃𝑖,𝜃𝑖+1)|

1+|𝜏∗(𝜃𝑖−1,𝜃𝑖)|
          

                               = 𝜆1[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + ||𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)||] + 𝜆2|𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|                       (3.10)    

 

If |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| < |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| for some 𝑖, from (3.10), we have 

 

   |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝜆1[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + |𝜏∗(𝜃𝑖, 𝜃𝑖+1)|] + 𝜆2|𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| 
                         = (𝜆1 + 𝜆2)|𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|,     
                    

which is a contradiction. Hence, |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| ≥ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|and so from (3.10), we have 

 

    |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝜆1[|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|] + 𝜆2|𝜏∗(𝜃𝑖, 𝜃𝑖+1)| 
                          = 𝜆1[2|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|] + 𝜆2|𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|. 
 

The last inequality gives 

 

                               |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤
2𝜆1

1+𝜆1−𝜆2
|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| = 𝒸|𝜏∗(𝜃𝑖−1, 𝜃𝑖)|. 

 

where 𝒸 =
2𝜆1

1+𝜆1−𝜆2
. From this, we can write, 

 

                               |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝒸|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| ≤ 𝒸2|𝜏∗(𝜃𝑖−2, 𝜃𝑖−1)| ≤ ⋯ ≤ 𝒸𝑖|𝜏∗(𝜃0, 𝜃1)|.                   (3.11) 
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Now, consider the self-distance 

 

 |𝜏∗(𝜃𝑖 , 𝜃𝑖)| = |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)| 

                    ≤ 𝜆1[|𝜏∗(𝜃𝑖−1, 𝜃𝑖−1)| + ||𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)| − |𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)||] + 𝜆2
(1+|𝜏∗(𝜃𝑖−1,Υ𝜃𝑖−1)|)|𝜏∗(𝜃𝑖−1,Υ𝜃𝑖−1)|

1+|𝜏∗(𝜃𝑖−1,𝜃𝑖−1)|
   

                    = 𝜆1[|𝜏∗(𝜃𝑖−1, 𝜃𝑖−1)| + ||𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖−1, 𝜃𝑖)||] + 𝜆2
(1+|𝜏∗(𝜃𝑖−1,𝜃𝑖)|)|𝜏∗(𝜃𝑖−1,𝜃𝑖)|

1+|𝜏∗(𝜃𝑖−1,𝜃𝑖−1)|
 

                    = 𝜆1|𝜏∗(𝜃𝑖−1, 𝜃𝑖−1)| + 𝜆2|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| 
                    ≤ (𝜆1 + 𝜆2)|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| = 𝜆|𝜏∗(𝜃𝑖−1, 𝜃𝑖)|                                                                                 (3.12) 

 

where 𝜆 = 𝜆1 + 𝜆2. Using inequality (3.11), we have 

 

                                        |𝜏∗(𝜃𝑖 , 𝜃𝑖)| ≤ 𝜆𝒸𝑖−1|𝜏∗(𝜃0, 𝜃1)|.      
                                                  

Equation implies (2.2) that 

 

              𝑑𝜏∗(𝜃𝑖 , 𝜃𝑖+1) ≤ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| − 𝜏∗(𝜃𝑖 , 𝜃𝑖) 

                                    ≤ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| + |𝜏∗(𝜃𝑖, 𝜃𝑖)| 
                                    ≤ 𝒸𝑖|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝒸𝑖−1|𝜏∗(𝜃0, 𝜃1)| 
 

Now, for 𝑗 > 𝑖, we have 

 

     𝑑𝜏∗(𝜃𝑖 , 𝜃𝑗) ≤ 𝑑𝜏∗(𝜃𝑖 , 𝜃𝑖+1) + 𝑑𝜏∗(𝜃𝑖+1, 𝜃𝑖+2) + ⋯ + 𝑑𝜏∗(𝜃𝑗−1, 𝜃𝑗) 

                       ≤ 𝒸𝑖|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝒸𝑖−1|𝜏∗(𝜃0, 𝜃1)| + 𝒸𝑖+1|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝒸𝑖|𝜏∗(𝜃0, 𝜃1)| 
                       + ⋯ + 𝒸𝑗−1|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝒸𝑗−2|𝜏∗(𝜃0, 𝜃1)|                          
                       = (𝒸𝑖 + 𝒸𝑖+1 + ⋯ + 𝒸𝑗−1)|𝜏∗(𝜃0, 𝜃1)| 
                       +𝜆(𝒸𝑖−1 + 𝒸𝑖 + ⋯ + 𝒸𝑗−2)|𝜏∗(𝜃0, 𝜃1)| 

                       ≤
𝒸𝑖

1−𝒸
|𝜏∗(𝜃0, 𝜃1)| + 𝜆

𝒸𝑖−1

1−𝒸
|𝜏∗(𝜃0, 𝜃1)| 

 

The last inequality gives 

 

                          𝑑𝜏∗(𝜃𝑖 , 𝜃𝑗) ≤
𝒸𝑖

1−𝒸
|𝜏∗(𝜃0, 𝜃1)| + 𝜆

𝒸𝑖−1

1−𝒸
|𝜏∗(𝜃0, 𝜃1)|      

                                                         

We conclude that lim
𝑖,𝑗→∞

𝑑𝜏∗
𝑠 (𝜃𝑖 , 𝜃𝑗) = 0, thus, {𝜃𝑖} is a Cauchy sequence in (𝒞, 𝑑𝜏∗

𝑠 ). Since (𝒞, 𝜏∗) is a complete 

DPM space, by Lemma 2.7(2), (𝒞, 𝑑𝜏∗
𝑠 ) is a complete metric space. Thus, there exists 𝜔 ∈ (𝒞, 𝑑𝜏∗

𝑠 ) such that 

𝜃𝑖 → 𝜔 as 𝑖 → ∞, that is lim
𝑖→∞

𝑑𝜏∗(𝜃𝑖, 𝜔) = 0 and by Lemma 2.7(3), we know that 

 

                                  𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑖 , 𝜃𝑗).                                                                 (3.13)      

                  

Since, lim
𝑖→∞

𝑑𝜏∗(𝜃𝑖, 𝜔) = 0, by (2.2) and (3.7), we have 

 

                                   𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑖 , 𝜃𝑗) = 0.                                                         (3.14)  

                

This shows that {𝜃𝑖} is a Cauchy sequence converging to 𝜔 ∈ (𝒞, 𝜏∗). We shall show that 𝜔 is a fixed point of 

Υ. From condition (3.2), we have   

 

                |𝜏∗(𝜃𝑖+1, Υ𝜔)| = |𝜏∗(Υ𝜃𝑖 , Υ𝜔)| 

                                        ≤ 𝜆1[|𝜏∗(𝜃𝑖 , 𝜔)| + ||𝜏∗(𝜃𝑖, Υ𝜃𝑖)| − |𝜏∗(𝜔, Υ𝜔)||] + 𝜆2
(1+|𝜏∗(𝜃𝑖,Υ𝜃𝑖)|)|𝜏∗(𝜔,Υ𝜔)|

1+|𝜏∗(𝜃𝑖,𝜔)|
 

                                        ≤ 𝜆1[|𝜏∗(𝜃𝑖 , 𝜔)| + ||𝜏∗(𝜃𝑖, 𝜃𝑖+1)| − |𝜏∗(𝜔, Υ𝜔)||] + 𝜆2
(1+|𝜏∗(𝜃𝑖,𝜃𝑖+1)|)|𝜏∗(𝜔,Υ𝜔)|

1+|𝜏∗(𝜃𝑖,𝜔)|
 

 

Applying limit as 𝑖 → ∞ and using equation (3.14), we have  
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                                        |𝜏∗(𝜔, Υ𝜔)| ≤ (𝜆1 + 𝜆2)|𝜏∗(𝜔, Υ𝜔)|,  
 

which implies that |𝜏∗(𝜔, Υ𝜔)| = 0, because 𝜆1 + 𝜆2 < 1 and then 𝜏∗(𝜔, Υ𝜔) = 0. Again from (3.2), we have 

 

            |𝜏∗(Υ𝜔, Υ𝜔)| ≤ 𝜆1[|𝜏∗(𝜔, 𝜔)| + ||𝜏∗(𝜔, Υ𝜔)| − |𝜏∗(𝜔, Υ𝜔)||] + 𝜆2
(1+|𝜏∗(𝜔,Υ𝜔)|)|𝜏∗(𝜔,Υ𝜔)|

1+|𝜏∗(𝜔,𝜔)|
 

                                   = 𝜆1|𝜏∗(𝜔, 𝜔)| 
 

Since 𝜆1 < 1, and 𝜏∗(𝜔, 𝜔) = 0, we get |𝜏∗(Υ𝜔, Υ𝜔)| = 0. Hence, 𝜏∗(Υ𝜔, Υ𝜔) = 0, and  

 

                                                 𝜏∗(𝜔, 𝜔) = 𝜏∗(Υ𝜔, Υ𝜔) = 𝜏∗(𝜔, Υ𝜔)   
                                                                              

By using axiom (𝜏1
∗), we have 𝜔 = Υ𝜔. This shows that 𝜔 is a fixed point of Υ. To prove the uniqueness of 𝜔, 

suppose that 𝜔∗ is another fixed point of  Υ, then Υ𝜔∗  = 𝜔∗  and 𝜏∗(𝜔∗ , 𝜔∗ ) = 0. By (3.2), we obtain 

 

                 |𝜏∗(𝜔, 𝜔∗)| = |𝜏∗(Υ𝜔, Υ𝜔∗)| 

                                    ≤ 𝜆1[|𝜏∗(𝜔, 𝜔∗)| + ||𝜏∗(𝜔, Υ𝜔)| − |𝜏∗(𝜔∗, Υ𝜔∗)||] + 𝜆2
(1+|𝜏∗(𝜔,Υ𝜔)|)|𝜏∗(𝜔,Υ𝜔)|

1+|𝜏∗(𝜔,𝜔)|
  

                                    ≤ 𝜆1[|𝜏∗(𝜔, 𝜔∗)| + ||𝜏∗(𝜔, 𝜔)| − |𝜏∗(𝜔∗, 𝜔∗)||] + 𝜆2
(1+|𝜏∗(𝜔,𝜔)|)|𝜏∗(𝜔,𝜔)|

1+|𝜏∗(𝜔,𝜔)|
  

                                    = (𝜆1 + 𝜆2)|𝜏∗(𝜔, 𝜔∗)| 
 

which implies that (1 − (𝜆1 + 𝜆2))|𝜏∗(𝜔, 𝜔∗)| ≤ 0. This is possible only when |𝜏∗(𝜔, 𝜔∗)| = 0,  since  𝜆1 +

𝜆2 < 1. Hence, 𝜏∗(𝜔, 𝜔∗) = 0 and then, 

 

                                                 𝜏∗(𝜔, 𝜔∗) = 𝜏∗(𝜔, 𝜔) = 𝜏∗(𝜔∗ , 𝜔∗ ) 

 

By (𝜏1
∗), we have 𝜔 = 𝜔∗. Consequently, Υ has unique fixed point 𝜔.   

 

Theorem 3.6 Let (𝒞, 𝜏∗) be a complete DPM space and Υ: 𝒞 → 𝒞 be a generalized dualistic E-contraction. Then 

Υ has a unique fixed point. 

 

Proof Following the steps of proof of Theorem 3.1, we construct the sequence {𝜃𝑖} by iterating 

 

     𝜃1 = Υ𝜃0, 𝜃𝑖 = Υ𝜃𝑖−1, for any 𝑖 ∈ ℕ.  

 

where 𝜃0 ∈ 𝒞 is arbitrary point. Then, by (3.3), we have 

 

       |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| = |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| 

                             ≤ 𝜆 max {|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + ||𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)| − |𝜏∗(𝜃𝑖 , Υ𝜃𝑖)||,
|𝜏∗(𝜃𝑖−1,Υ𝜃𝑖−1)|+|𝜏∗(𝜃𝑖,Υ𝜃𝑖)|

2
} 

                             = 𝜆 max {|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + ||𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)||,
|𝜏∗(𝜃𝑖−1,𝜃𝑖)|−|𝜏∗(𝜃𝑖,𝜃𝑖+1)|

2
}           (3.15)   

  

If |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| < |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| for some 𝑖, from (3.15), we have 

 

        |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝜆 max {|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|,
|𝜏∗(𝜃𝑖−1,𝜃𝑖)|+|𝜏∗(𝜃𝑖,𝜃𝑖+1)|

2
},    

                              = 𝜆 max {|𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|,
|𝜏∗(𝜃𝑖−1,𝜃𝑖)|+|𝜏∗(𝜃𝑖,𝜃𝑖+1)|

2
}      

                              ≤ 𝜆 max {|𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|,
|𝜏∗(𝜃𝑖,𝜃𝑖+1)|+|𝜏∗(𝜃𝑖,𝜃𝑖+1)|

2
} 

   = 𝜆|𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|    
                

which is a contradiction. Hence, |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| ≥ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| and so from (3.15), we have 

 

        |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝜆 max {|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| + |𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|,
|𝜏∗(𝜃𝑖−1,𝜃𝑖)|+|𝜏∗(𝜃𝑖,𝜃𝑖+1)|

2
}    

                              ≤ 𝜆 max{2|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|, |𝜏∗(𝜃𝑖−1, 𝜃𝑖)|}      

                              = 𝜆{2|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| − |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)|}. 
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The last inequality gives 

 

                               |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤
2𝜆

1+𝜆
|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| = 𝒸|𝜏∗(𝜃𝑖−1, 𝜃𝑖)|.                                                       (3.16) 

 

where 𝒸 =
2𝜆

1+𝜆
. From this, we can write, 

 

                            |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| ≤ 𝒸|𝜏∗(𝜃𝑖−1, 𝜃𝑖)| ≤ 𝒸2|𝜏∗(𝜃𝑖−2, 𝜃𝑖−1)| ≤ ⋯ ≤ 𝒸𝑖|𝜏∗(𝜃0, 𝜃1)|.                      (3.17) 

 

Now, consider the self-distance 

 

   |𝜏∗(𝜃𝑖 , 𝜃𝑖)| = |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)| 

                      ≤ 𝜆 max {|𝜏∗(𝜃𝑖−1, 𝜃𝑖−1)| + ||𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)| − |𝜏∗(𝜃𝑖−1, Υ𝜃𝑖−1)||,
|𝜏∗(𝜃𝑖−1,Υ𝜃𝑖−1)|+|𝜏∗(𝜃𝑖−1,Υ𝜃𝑖−1)|

2
}     

                      = 𝜆 max{|𝜏∗(𝜃𝑖−1, 𝜃𝑖−1)|, |𝜏∗(𝜃𝑖−1, 𝜃𝑖)|} 

                      ≤ 𝜆 max{|𝜏∗(𝜃𝑖−1, 𝜃𝑖)|, |𝜏∗(𝜃𝑖−1, 𝜃𝑖)|} 

                      = 𝜆|𝜏∗(𝜃𝑖−1, 𝜃𝑖)|    
                      ≤ 𝜆𝒸𝑖−1|𝜏∗(𝜃0, 𝜃1)|                                                                                                                   (3.18)                                         

 

The equation implies (2.2) that 

 

              𝑑𝜏∗(𝜃𝑖 , 𝜃𝑖+1) ≤ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| − 𝜏∗(𝜃𝑖 , 𝜃𝑖) 

                                    ≤ |𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| + |𝜏∗(𝜃𝑖, 𝜃𝑖)| 
                                    ≤ 𝒸𝑖|𝜏∗(𝜃0, 𝜃1)| + 𝜆𝒸𝑖−1|𝜏∗(𝜃0, 𝜃1)| 
                                    = (𝒸𝑖 + 𝜆𝒸𝑖−1)|𝜏∗(𝜃0, 𝜃1)| 
 

Now, for 𝑗 > 𝑖, we have 

 

 𝑑𝜏∗(𝜃𝑖 , 𝜃𝑗) ≤ 𝑑𝜏∗(𝜃𝑖 , 𝜃𝑖+1) + 𝑑𝜏∗(𝜃𝑖+1, 𝜃𝑖+2) + ⋯ + 𝑑𝜏∗(𝜃𝑗−1, 𝜃𝑗) 

                   ≤ (𝒸𝑖 + 𝜆𝒸𝑖−1)|𝜏∗(𝜃0, 𝜃1)| + (𝒸𝑖+1 + 𝜆𝒸𝑖)|𝜏∗(𝜃0, 𝜃1)| 
                   + ⋯ + (𝒸𝑗−1 + 𝜆𝒸𝑗−2)|𝜏∗(𝜃0, 𝜃1)|                          
                   = [(𝒸𝑖 + 𝒸𝑖+1 + ⋯ + 𝒸𝑗−1) + 𝜆(𝒸𝑖−1 + 𝒸𝑖 + ⋯ + 𝒸𝑗−2)]|𝜏∗(𝜃0, 𝜃1)| 
                   = (𝒸𝑖 + 𝜆𝒸𝑖−1)(1 + 𝒸 + 𝒸2 … + 𝒸𝑗−𝑖−1)|𝜏∗(𝜃0, 𝜃1)| 

                   ≤
(𝒸𝑖+𝜆𝒸𝑖−1)

1−𝒸
|𝜏∗(𝜃0, 𝜃1)| 

 

The last inequality gives 

 

                          𝑑𝜏∗(𝜃𝑖 , 𝜃𝑗) ≤
𝒸𝑖

1−𝒸
|𝜏∗(𝜃0, 𝜃1)| + 𝜆

𝒸𝑖−1

1−𝒸
|𝜏∗(𝜃0, 𝜃0)|                                         

 

We conclude that lim
𝑖,𝑗→∞

𝑑𝜏∗
𝑠 (𝜃𝑖 , 𝜃𝑗) = lim

𝑖,𝑗→∞
max{𝑑𝜏∗(𝜃𝑖 , 𝜃𝑗), 𝑑𝜏∗(𝜃𝑗 , 𝜃𝑖)} = 0,  thus, {𝜃𝑖}  is a Cauchy sequence 

in (𝒞, 𝑑𝜏∗
𝑠 ). Since (𝒞, 𝜏∗) is a complete DPM space, by Lemma 2.7(2), (𝒞, 𝑑𝜏∗

𝑠 ) is a complete metric space. Thus, 

there exists 𝜔 ∈ (𝒞, 𝑑𝜏∗
𝑠 ) such that 𝜃𝑖 → 𝜔 as 𝑖 → ∞, that is lim

𝑖→∞
𝑑𝜏∗(𝜃𝑖 , 𝜔) = 0 and by Lemma 2.7(3), we know 

that 

                                       𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑖 , 𝜃𝑗).                                                           (3.19)  

                   

Since, lim
𝑖→∞

𝑑𝜏∗(𝜃𝑖, 𝜔) = 0, by (2.2) and (3.19), we have 

 

                                      𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(𝜃𝑖, 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(𝜃𝑖 , 𝜃𝑗) = 0.                                                      (3.20)   

        

This shows that {𝜃𝑖} is a Cauchy sequence converging to 𝜔 ∈ (𝒞, 𝜏∗). We shall show that 𝜔 is a fixed point of 

Υ. From condition (3.3), we have 

 

               |𝜏∗(𝜃𝑖+1, Υ𝜔)| = |𝜏∗(Υ𝜃𝑖 , Υ𝜔)| 
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                                        ≤ 𝜆 max {|𝜏∗(𝜃𝑖 , 𝜔)| + ||𝜏∗(𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(𝜔, Υ𝜔)||,
|𝜏∗(𝜃𝑖,Υ𝜃𝑖)|+|𝜏∗(𝜔,Υ𝜔)|

2
} 

                                        = 𝜆 max {|𝜏∗(𝜃𝑖 , 𝜔)| + ||𝜏∗(𝜃𝑖 , 𝜃𝑖+1)| − |𝜏∗(𝜔, Υ𝜔)||,
|𝜏∗(𝜃𝑖,𝜃𝑖+1)|+|𝜏∗(𝜔,Υ𝜔)|

2
} 

 

Applying limit as 𝑖 → ∞ and using equation (3.20), we have  

 

                       |𝜏∗(𝜔, Υ𝜔)| ≤ 𝜆 max {|𝜏∗(𝜔, Υ𝜔)|,
|𝜏∗(𝜔,Υ𝜔)|

2
} = 𝜆|𝜏∗(𝜔, Υ𝜔)| 

 

which implies that |𝜏∗(𝜔, Υ𝜔)| = 0, because 𝜆 < 1 and then 𝜏∗(𝜔, Υ𝜔) = 0. Again from (3.3), we have 

 

                 |𝜏∗(Υ𝜔, Υ𝜔)| ≤ 𝜆 max {|𝜏∗(𝜔, 𝜔)| + ||𝜏∗(𝜔, Υ𝜔)| − |𝜏∗(𝜔, Υ𝜔)||,
|𝜏∗(𝜔,Υ𝜔)|+|𝜏∗(𝜔,Υ𝜔)|

2
} 

               = 𝜆 max{|𝜏∗(𝜔, 𝜔)|, |𝜏∗(𝜔, Υ𝜔)|} 
 

Since 𝜆 < 1, and 𝜏∗(𝜔, 𝜔) = 0, 𝜏∗(𝜔, Υ𝜔) = 0 we get |𝜏∗(Υ𝜔, Υ𝜔)| = 0. Hence, 𝜏∗(Υ𝜔, Υ𝜔) = 0 and then  

 

                                    𝜏∗(𝜔, 𝜔) = 𝜏∗(Υ𝜔, Υ𝜔) = 𝜏∗(𝜔, Υ𝜔)  
                                           

By using axiom (𝜏1
∗), we have 𝜔 = Υ𝜔. This shows that 𝜔 is a fixed point of Υ. To prove the uniqueness of 𝜔, 

suppose that 𝜔∗ is another fixed point of  Υ, then Υ𝜔∗  = 𝜔∗  and 𝜏∗(𝜔∗ , 𝜔∗ ) = 0. By (3.3), we obtain 

 

                |𝜏∗(𝜔, 𝜔∗)| = |𝜏∗(Υ𝜔, Υ𝜔∗)| 

                                    ≤ 𝜆 max {|𝜏∗(𝜔, 𝜔∗)| + ||𝜏∗(𝜔, Υ𝜔)| − |𝜏∗(𝜔∗, Υ𝜔∗)||,
|𝜏∗(𝜔,Υ𝜔)|+|𝜏∗(𝜔∗,Υ𝜔∗)|

2
} 

                                    = 𝜆 max {|𝜏∗(𝜔, 𝜔∗)| + ||𝜏∗(𝜔, 𝜔)| − |𝜏∗(𝜔∗, 𝜔∗)||,
|𝜏∗(𝜔,𝜔)|+|𝜏∗(𝜔∗,𝜔∗)|

2
}          

                                    = 𝜆|𝜏∗(𝜔, 𝜔∗)|                 
 

which implies that (1 − 𝜆)|𝜏∗(𝜔, 𝜔∗)| ≤ 0. This is possible only when |𝜏∗(𝜔, 𝜔∗)| = 0, since 𝜆 < 1. Hence, 

𝜏∗(𝜔, 𝜔∗) = 0 and then, 

 

                                      𝜏∗(𝜔, 𝜔∗) = 𝜏∗(𝜔, 𝜔) = 𝜏∗(𝜔∗ , 𝜔∗ ) 
 

By (𝜏1
∗), we have 𝜔 = 𝜔∗. Consequently, Υ has unique fixed point 𝜔.   

 

Now, we give an example in support of our results. 

 

Example 3.7 Let 𝒞 = (−∞, 0] and define 𝜏∗: 𝒞 × 𝒞 → (−∞, ∞) by 𝜏∗(𝜃, 𝜗) = max{𝜃, 𝜗}. It is easy to check 

that (𝒞, 𝜏∗) is a complete DPM space. Define Υ: 𝒞 → 𝒞 as Υ𝜃 =
𝜃

2
, ∀ 𝜃 ∈ 𝒞. Further, for all 𝜃, 𝜗 ∈ 𝒞 with 𝜃 ≥ 𝜗 

and 𝜆 =
1

2
, we have  

 

                 |𝜏∗(Υ𝜃, Υ𝜗)| = |max {
𝜃

2
,

𝜗

2
}| = |

𝜃

2
| 

                                      ≤
1

2
{|𝜃| + ||

𝜃

2
| − |

𝜗

2
||} 

                                      =
1

2
{|max{𝜃, 𝜗}| + ||max {𝜃,

𝜃

2
}| − |max {𝜗,

𝜗

2
}||} 

                                      = 𝜆[|𝜏∗(𝜃, 𝜗)| + ||𝜏∗(𝜃, Υ𝜃)| − |𝜏∗(𝜗, Υ𝜗)||] 
 

Cleary, (3.1) is satisfied. Also    

       

         |𝜏∗(𝒯𝜃, 𝒯𝜗)| = |max {
𝜃

2
,

𝜗

2
}| = |

𝜃

2
| 

                               ≤
1

2
max {|𝜃| + ||

𝜃

2
| − |

𝜗

2
|| ,

|
𝜃

2
|+|

𝜗

2
|

2
 } 

                               =
1

2
{|max{𝜃, 𝜗}| + ||max {𝜃,

𝜃

2
}| − |max {𝜗,

𝜗

2
}|| ,

|max{𝜃,
𝜃

2
}|+|max{𝜗,

𝜗

2
}|

2
} 
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                              = 𝜆 {|𝜏∗(𝜃, 𝜗)| + ||𝜏∗(𝜃, Υ𝜃)| − |𝜏∗(𝜗, Υ𝜗)||,
|𝜏∗(𝜃,Υ𝜃)|+|𝜏∗(𝜗,Υ𝜗)|

2
} 

 

for 𝜆 =
1

2
 and ∀ 𝜃, 𝜗 ∈ 𝒞 with 𝜃 ≥ 𝜗. Cleary, (3.3) is satisfied. In the view of Theorem 3.4 and Theorem 3.5, 

Υ has a unique fixed point in 𝒞, indeed Υ0 = 0.    

 

Now, we present some coincidence point and common fixed-point theorems for dualistic 𝐸∆ -contraction, 

dualistic rational 𝐸∆-contraction and generalized dualistic 𝐸∆-contraction, and deductions.  

 

Definition 3.8 Let (𝒞, 𝜏∗) be a DPM space and Υ, ∆ be two self-mappings on  . We say the mapping Υ, a 

dualistic 𝐸∆-contraction, if for all distinct 𝜃, 𝜗 ∈ 𝒞, there exists number 𝜆 ∈ [0,1) such that 

 

                     |𝜏∗(Υ𝜃, Υ𝜗)| ≤ 𝜆[|𝜏∗(∆𝜃, ∆𝜗)| + ||𝜏∗(∆𝜃, Υ𝜃)| − |𝜏∗(∆𝜗, Υ𝜗)||].                                            (3.21) 

 

Definition 3.9 Let (𝒞, 𝜏∗) be a DPM space and Υ, ∆ be two self-mappings on  . We say the mapping Υ, a 

dualistic rational 𝐸∆-contraction, if for all distinct 𝜃, 𝜗 ∈ 𝒞, there exist numbers 𝜆1, 𝜆2 ∈ [0,1) with 𝜆1 + 𝜆2 < 1 

such that 

 

                       |𝜏∗(Υ𝜃, Υ𝜗)| ≤ 𝜆1[|𝜏∗(∆𝜃, ∆𝜗)| + ||𝜏∗(∆𝜃, Υ𝜃)| − |𝜏∗(∆𝜗, Υ𝜗)||] 

                                  +𝜆2
[1+|𝜏∗(∆𝜃,Υ𝜃)|]|𝜏∗(∆𝜗,Υ𝜗)|

1+|𝜏∗(∆𝜃,∆𝜗)|
.                                                  (3.22) 

 

Definition 3.10 Let (𝒞, 𝜏∗) be a DPM space. and Υ, ∆ be two self-mappings on 𝒞 . We say the mapping Υ, a 

generalized dualistic 𝐸∆-contraction, if for all distinct 𝜃, 𝜗 ∈ 𝒞, there exists a number 𝜆 ∈ [0,1) such that 

 

                |𝜏∗(Υ𝜃, Υ𝜗)| ≤ 𝜆 max {
|𝜏∗(∆𝜃, ∆𝜗)| + ||𝜏∗(∆𝜃, Υ𝜃)| − |𝜏∗(∆𝜗, Υ𝜗)||,

|𝜏∗(∆𝜃,Υ𝜃)|+|𝜏∗(∆𝜗,Υ𝜗)|

2

}.                                       (3.23) 

  

Theorem 3.11 Let (𝒞, 𝜏∗) be a complete DPM space and Υ, ∆: 𝒞 → 𝒞 be two mappings such that 

 

(1) Υ(𝒞) ⊂ ∆(𝒞), 
(2) Υ is a dualistic 𝐸∆-contraction.  

 

If Υ(𝒞) or ∆(𝒞) is a complete subspace of 𝒞, then Υ and ∆have a coincidence point. Further, if Υ, ∆ are weakly 

compatible mappings, then Υ and ∆ have a unique common fixed point. 

 

Proof. Let 𝜃0  be an arbitrary point in 𝒞 . Since Υ(𝒞) ⊂ ∆(𝒞) , we can find 𝜃1 ∈ 𝒞  such that Υ𝜃0 = ∆𝜃1 . In 

general, 𝜃𝑖  is chosen such that Υ𝜃𝑖 = ∆𝜃𝑖+1  for 𝑖 = 0,1,2, …. If Υ𝜃𝑖 = Υ𝜃𝑖−1 = ∆𝜃𝑖  for some 𝑖 ∈ ℕ, then 𝜗 =
Υ𝜃𝑖 = Υ𝜃𝑖−1 = ∆𝜃𝑖 is a point of coincidence of Υ and ∆. Suppose that Υ𝜃𝑖 ≠ Υ𝜃𝑖−1 and thus ∆𝜃𝑖 ≠ ∆𝜃𝑖+1 for all 

𝑖 ∈ ℕ. By the dualistic 𝐸∆-contraction condition (3.21), we obtain 

 

        |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆[|𝜏∗(∆𝜃𝑖 , ∆𝜃𝑖+1)| + ||𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(∆𝜃𝑖+1, Υ𝜃𝑖+1)||] 

                                   = 𝜆[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)||].                                   (3.24)   

  

If |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| < |𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1)| for some 𝑖, from (3.24), we have 

 

      |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + |𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1)|]      
                                 = 𝜆|𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1)|                   
 

which is a contradiction. Hence, |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| ≥ |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| and so from (3.24), we have 

 

        |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|]      
                                   = 𝜆[2|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|]. 
 

The last inequality gives 
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                      |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤
2𝜆

1+𝜆
|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| = 𝒸|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)|. 

 

where 𝒸 =
2𝜆

1+𝜆
. From this, we can write, 

 

                        |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝒸|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| 
                                                   ≤ 𝒸2|𝜏∗(Υ𝜃𝑖−2, Υ𝜃𝑖−1)| 
                                                   ≤ ⋯ ≤ 𝒸𝑖|𝜏∗(Υ𝜃0, Υ𝜃1)|.                                                                              (3.25) 

 

Now, consider the self-distance 

 

    |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| ≤ 𝜆[|𝜏∗(∆𝜃𝑖, ∆𝜃𝑖)| + ||𝜏∗(∆𝜃𝑖, Υ𝜃𝑖)| − |𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)||] 

                            = 𝜆[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)||] 

                            = 𝜆|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)|                                                                                                          (3.26)    

 

Similarly,   

                                  |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)| ≤ 𝜆|𝜏∗(Υ𝜃𝑖−2, Υ𝜃𝑖−2)|     
                                          

The inequality (3.26) implies that 

 

                                          |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| ≤ 𝜆2|𝜏∗(Υ𝜃𝑖−2, Υ𝜃𝑖−2)|    
                                          

Proceeding further in a similar way, we get 

 

                                          |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| ≤ 𝜆𝑖|𝜏∗(Υ𝜃0, Υ𝜃0)|     
                                             

The equation implies (2.2) that 

 

              𝑑𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1) ≤ |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| − 𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖) 

                                        ≤ |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| + |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| 
                                        ≤ 𝒸𝑖|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆𝑖|𝜏∗(Υ𝜃0, Υ𝜃0)| 
 

Now, for 𝑗 > 𝑖, we have 

 

 𝑑𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗) ≤ 𝑑𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1) + 𝑑𝜏∗(Υ𝜃𝑖+1, Υ𝜃𝑖+2) + ⋯ + 𝑑𝜏∗(Υ𝜃𝑗−1, Υ𝜃𝑗) 

                        ≤ 𝒸𝑖|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆𝑖|𝜏∗(Υ𝜃0, Υ𝜃0)| 
                        +𝒸𝑖+1|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆𝑖+1|𝜏∗(Υ𝜃0, Υ𝜃0)| 
                        + ⋯ + 𝒸𝑗−1|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆𝑗−1|𝜏∗(Υ𝜃0, Υ𝜃0)|                          
                        = (𝒸𝑖 + 𝒸𝑖+1 + ⋯ + 𝒸𝑗−1)|𝜏∗(Υ𝜃0, Υ𝜃1)| 
                        +(𝜆𝑖 + 𝜆𝑖+1 + ⋯ + 𝜆𝑗−1)|𝜏∗(Υ𝜃0, Υ𝜃0)| 

                        ≤
𝒸𝑖

1−𝒸
|𝜏∗(Υ𝜃0, Υ𝜃1)| +

𝜆𝑖

1−𝜆
|𝜏∗(Υ𝜃0, Υ𝜃0)|    

 

The last inequality gives 

 

                𝑑𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗) ≤
𝒸𝑖

1−𝒸
|𝜏∗(Υ𝜃0, Υ𝜃1)| +

𝜆𝑖

1−𝜆
|𝜏∗(Υ𝜃0, Υ𝜃0)|                                                                (3.27)   

 

We conclude that lim
𝑖,𝑗→∞

𝑑𝜏∗
𝑠 (Υ𝜃𝑖, Υ𝜃𝑗) = lim

𝑖,𝑗→∞
max{𝑑𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗), 𝑑𝜏∗(Υ𝜃𝑗, Υ𝜃𝑖)} = 0,  thus, {Υ𝜃𝑖}  is a Cauchy 

sequence in (𝒞, 𝑑𝜏∗
𝑠 ). Since (𝒞, 𝜏∗) is a complete DPM space, by Lemma 2.7(2), (𝒞, 𝑑𝜏∗

𝑠 ) is a complete metric 

space. Consequently, there exists an element 𝜔 ∈ Υ(𝒞) ⊂ 𝒞  such that such that Υ𝜃𝑖 → 𝜔  as  𝑖 → ∞ , that is 

lim
𝑖→∞

𝑑𝜏∗(Υ𝜃𝑖 , 𝜔) = 0 and by Lemma 2.7(3), we know that 

 

                                  𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(Υ𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗).                                                          (3.28)   
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Since, lim
𝑖→∞

𝑑𝜏∗(𝜃𝑖, 𝜔) = 0, by (2.2) and (3.28), we have 

 

                            𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(Υ𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗) = 0.                                                         (3.29)  

 

This shows that {Υ𝜃𝑖} is a Cauchy sequence converging to 𝜔 ∈ (𝒞, 𝜏∗). As 𝜔 ∈ Υ(𝒞) ⊂ ∆(𝒞), there exists 𝜎 ∈ 𝒞 

such that 𝜔 = ∆𝜎 and by (3.29), we have 𝜏∗(∆𝜎 , ∆𝜎 ) = 0. By condition (3.21), we have        

        

             |𝜏∗(∆𝜃𝑖+1, Υ𝜎)| = |𝜏∗(Υ𝜃𝑖 , Υ𝜎)| 

                                       ≤ 𝜆[|𝜏∗(∆𝜃𝑖 , ∆𝜎)| + ||𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(∆𝜎, Υ𝜎)||] 

                                       = 𝜆[|𝜏∗(Υ𝜃𝑖−1, ∆𝜎)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(∆𝜎, Υ𝜎)||] 
 

Applying limit as 𝑖 → ∞ and using equation (3.29), we have  

 

                 |𝜏∗(∆𝜎, Υ𝜎)| ≤ 𝜆[|𝜏∗(∆𝜎, ∆𝜎)| + ||𝜏∗(∆𝜎, ∆𝜎)| − |𝜏∗(∆𝜎, Υ𝜎)||] = 𝜆|𝜏∗(∆𝜎, Υ𝜎)|,  
 

which implies that  |𝜏∗(∆𝜎, Υ𝜎)| = 0,  because 𝜆 < 1 and then 𝜏∗(∆𝜎, Υ𝜎) = 0 . Again from (3.21), we have  

  

   |𝜏∗(Υ𝜎, Υ𝜎)| ≤ 𝜆[|𝜏∗(∆𝜎, ∆𝜎)| + ||𝜏∗(∆𝜎, Υ𝜎)| − |𝜏∗(∆𝜎, Υ𝜎)||] = 0. 
 

Since 𝜆 < 1, and 𝜏∗(∆𝜎, ∆𝜎) = 0, 𝜏∗(∆𝜎, Υ𝜎) = 0, we get |𝜏∗(Υ𝜎, Υ𝜎)| = 0. Hence, 𝜏∗(Υ𝜎, Υ𝜎) = 0, and  

 

                                        𝜏∗(∆𝜎, ∆𝜎) = 𝜏∗(Υ𝜎, Υ𝜎) = 𝜏∗(∆𝜎, Υ𝜎)      
                                                                           

By using axiom (𝜏1
∗), we have ∆𝜎 = Υ𝜎. Thus, 𝜔 = ∆𝜎 = Υ𝜎 is a point of coincidence of Υ and ∆. Since Υ and 

∆ are weakly compatible mappings, 𝜔 = ∆𝜎 = Υ𝜎 implies Υ𝜔 = Υ∆𝜎 = ∆Υ𝜎 = ∆𝜔. By (3.21), we get 

 

                     |𝜏∗(Υ𝜎, Υ𝜔)| ≤ 𝜆[|𝜏∗(∆𝜎, ∆𝜔)| + ||𝜏∗(∆𝜎, Υ𝜔)| − |𝜏∗(∆𝜎, Υ𝜔)||] = |𝜏∗(Υ𝜎, Υ𝜔)| 
 

Thus, 𝜏∗(Υ𝜎, Υ𝜔) = 0 = 𝜏∗(Υ𝜎, Υ𝜎) = 𝜏∗(Υ𝜔, Υ𝜔). Hence, 𝜔 = ∆𝜔 = Υ𝜔, that is 𝜔 is common fixed point of 

Υ and ∆. To prove the uniqueness of 𝜔, suppose that there exists another common fixed point 𝜔∗ of Υ and ∆;  

we prove that 𝜔 = 𝜔∗. By (3.21), we obtain 

 

                 |𝜏∗(𝜔, 𝜔∗)| = |𝜏∗(Υ𝜔, Υ𝜔∗)| 

                                    ≤ 𝜆[|𝜏∗(∆𝜔, ∆𝜔∗)| + ||𝜏∗(∆𝜔, Υ𝜔)| − |𝜏∗(∆𝜔∗, Υ𝜔∗)||] 

                                    = 𝜆[|𝜏∗(𝜔, 𝜔∗)| + ||𝜏∗(𝜔, 𝜔)| − |𝜏∗(𝜔∗, 𝜔∗)||]          

                                    = 𝜆|𝜏∗(𝜔, 𝜔∗)|                 
 

which implies that (1 − 𝜆)|𝜏∗(𝜔, 𝜔∗)| ≤ 0. This is possible only when |𝜏∗(𝜔, 𝜔∗)| = 0, since 𝜆 < 1. Hence, 

𝜏∗(𝜔, 𝜔∗) = 0 and then, 

 

                                      𝜏∗(𝜔, 𝜔∗) = 𝜏∗(𝜔, 𝜔) = 𝜏∗(𝜔∗ , 𝜔∗ ) 

 

By (𝜏1
∗), we have 𝜔 = 𝜔∗. Consequently, Υ and ∆ have a unique common fixed point 𝜔.   

 

Theorem 3.12 Let (𝒞, 𝜏∗) be a complete DPM space and Υ, ∆: 𝒞 → 𝒞 be two mappings such that 

 

(1) Υ(𝒞) ⊂ ∆(𝒞), 
(2) Υ is a dualistic rational 𝐸∆- contraction. 

 

If Υ(𝒞) or ∆(𝒞) is a complete subspace of 𝒞, then Υ and ∆have a coincidence point. Further, if Υ, ∆ are weakly 

compatible mappings, then Υ and ∆ have a unique common fixed point. 

 

Proof Following the steps of proof of Theorem 3.11, we construct the sequence {𝜃𝑖} by iterating 
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     Υ𝜃0 = ∆𝜃1, Υ𝜃𝑖 = ∆𝜃𝑖+1 for 𝑖 = 0,1,2, ….  

 

where 𝜃0 ∈ 𝒞 is arbitrary point. By the dualistic rational 𝐸∆-contraction condition (3.22), we obtain 

 

     |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆1[|𝜏∗(∆𝜃𝑖, ∆𝜃𝑖+1)| + ||𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(∆𝜃𝑖+1, Υ𝜃𝑖+1)||] 

                   +𝜆2
[1+|𝜏∗(∆𝜃𝑖,Υ𝜃𝑖)|]|𝜏∗(∆𝜃𝑖+1,Υ𝜃𝑖+1)|

1+|𝜏∗(∆𝜃𝑖,∆𝜃𝑖+1)|
. 

                                = 𝜆1[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)||] 

                  +𝜆2
[1+|𝜏∗(Υ𝜃𝑖−1,Υ𝜃𝑖)|]|𝜏∗(Υ𝜃𝑖,Υ𝜃𝑖+1)|

1+|𝜏∗(Υ𝜃𝑖−1,Υ𝜃𝑖)|
 

             = 𝜆1[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)||] + 𝜆2|𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|  (3.30) 

                                                                                                                             

 

If |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| < |𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1)| for some 𝑖, from (3.30), we have 

 

        |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆1[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|] + 𝜆2|𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| 
                                   = (𝜆1 + 𝜆2)|𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|    
                

which is a contradiction. Hence, |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| ≥ |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| and so from (3.30), we have 

 

        |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆1[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|] + 𝜆2|𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|     
                                   = 𝜆1[2|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|] + 𝜆2|𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1)|. 
 

The last inequality gives 

 

                      |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤
2𝜆1

1+𝜆1−𝜆2
|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| = 𝒸|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)|. 

where 𝒸 =
2𝜆1

1+𝜆1−𝜆2
. From this, we can write, 

                        |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝒸|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| 
                                                   ≤ 𝒸2|𝜏∗(Υ𝜃𝑖−2, Υ𝜃𝑖−1)| 
                                                   ≤ ⋯ ≤ 𝒸𝑖|𝜏∗(Υ𝜃0, Υ𝜃1)|.                                                                               (3.31) 

 

Now, consider the self-distance 

 

    |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| ≤ 𝜆1[|𝜏∗(∆𝜃𝑖, ∆𝜃𝑖)| + ||𝜏∗(∆𝜃𝑖, Υ𝜃𝑖)| − |𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)||] + 𝜆2
[1+|𝜏∗(∆𝜃𝑖,Υ𝜃𝑖)|]|𝜏∗(∆𝜃𝑖,Υ𝜃𝑖)|

1+|𝜏∗(∆𝜃𝑖,∆𝜃𝑖)|
 

                     = 𝜆1[|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)||] + 𝜆2|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| 

                    = (𝜆1 + 𝜆2)|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| = 𝜆|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)|                                                                (3.32)   

  

where 𝜆 = 𝜆1 + 𝜆2. The inequality (3.31) implies that 

 

                                     |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| ≤ 𝜆𝒸𝑖−1|𝜏∗(Υ𝜃0, Υ𝜃1)|  
                                            

The equation implies (2.2) that 

 

              𝑑𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1) ≤ |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| − 𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖) 

                                        ≤ |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| + |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| 
                                        ≤ 𝒸𝑖|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆𝒸𝑖−1|𝜏∗(Υ𝜃0, Υ𝜃1)| 
 

Now, for 𝑗 > 𝑖, we have 

 

 𝑑𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗) ≤ 𝑑𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1) + 𝑑𝜏∗(Υ𝜃𝑖+1, Υ𝜃𝑖+2) + ⋯ + 𝑑𝜏∗(Υ𝜃𝑗−1, Υ𝜃𝑗) 

                        ≤ 𝒸𝑖|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆𝒸𝑖−1|𝜏∗(Υ𝜃0, Υ𝜃1)| 
                        +𝒸𝑖+1|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆𝒸𝑖|𝜏∗(Υ𝜃0, Υ𝜃1)| 
                        + ⋯ + 𝒸𝑗−1|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆𝒸𝑗−2|𝜏∗(Υ𝜃0, Υ𝜃1)|                          
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                        = (𝒸𝑖 + 𝒸𝑖+1 + ⋯ + 𝒸𝑗−1)|𝜏∗(Υ𝜃0, Υ𝜃1)| 
                        +𝜆(𝒸𝑖−1 + 𝒸𝑖 + ⋯ + 𝒸𝑗−2)|𝜏∗(Υ𝜃0, Υ𝜃1)| 

                        ≤
𝒸𝑖

1−𝒸
|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆

𝒸𝑖−1

1−𝒸
|𝜏∗(Υ𝜃0, Υ𝜃1)|    

 

The last inequality gives 

 

                𝑑𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗) ≤
𝒸𝑖

1−𝒸
|𝜏∗(Υ𝜃0, Υ𝜃1)| + 𝜆

𝒸𝑖−1

1−𝒸
|𝜏∗(Υ𝜃0, Υ𝜃1)|                                                            (3.33)   

 

We conclude that lim
𝑖,𝑗→∞

𝑑𝜏∗
𝑠 (Υ𝜃𝑖, Υ𝜃𝑗) = lim

𝑖,𝑗→∞
max{𝑑𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗), 𝑑𝜏∗(Υ𝜃𝑗, Υ𝜃𝑖)} = 0,  thus, {Υ𝜃𝑖}  is a Cauchy 

sequence in (𝒞, 𝑑𝜏∗
𝑠 ). Since (𝒞, 𝜏∗) is a complete DPM space, by Lemma 2.7(2), (𝒞, 𝑑𝜏∗

𝑠 ) is a complete metric 

space. Consequently, there exists an element 𝜔 ∈ Υ(𝒞) ⊂ 𝒞  such that such that Υ𝜃𝑖 → 𝜔  as  𝑖 → ∞ , that is 

lim
𝑖→∞

𝑑𝜏∗(Υ𝜃𝑖 , 𝜔) = 0 and by Lemma 2.7(3), we know that 

 

                                  𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(Υ𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗).                                                          (3.34) 

                       

Since, lim
𝑖→∞

𝑑𝜏∗(𝜃𝑖, 𝜔) = 0, by (2.2) and (3.34), we have 

 

                            𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(Υ𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗) = 0.                                                        (3.35)  

 

This shows that {Υ𝜃𝑖} is a Cauchy sequence converging to 𝜔 ∈ (𝒞, 𝜏∗). As 𝜔 ∈ Υ(𝒞) ⊂ ∆(𝒞), there exists 𝜎 ∈ 𝒞 

such that 𝜔 = ∆𝜎 and by (3.35), we have 𝜏∗(∆𝜎 , ∆𝜎 ) = 0. By condition (3.22), we have   

             

              |𝜏∗(∆𝜃𝑖+1, Υ𝜎)| = |𝜏∗(Υ𝜃𝑖 , Υ𝜎)| 

                                        ≤ 𝜆1[|𝜏∗(∆𝜃𝑖 , ∆𝜎)| + ||𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(∆𝜎, Υ𝜎)||] 

                                        +𝜆2
[1+|𝜏∗(∆𝜃𝑖,Υ𝜃𝑖)|]|𝜏∗(∆𝜎,Υ𝜎)|

1+|𝜏∗(∆𝜃𝑖,∆𝜎)|
 

                                        = 𝜆1[|𝜏∗(Υ𝜃𝑖−1, ∆𝜎)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(∆𝜎, Υ𝜎)||] 

                                         +𝜆2
[1+|𝜏∗(Υ𝜃𝑖−1,Υ𝜃𝑖)|]|𝜏∗(∆𝜎,Υ𝜎)|

1+|𝜏∗(Υ𝜃𝑖−1,∆𝜎)|
 

 

Applying limit as 𝑖 → ∞ and using equation (3.35), we have  
 

       |𝜏∗(∆𝜎, Υ𝜎)| ≤ 𝜆1[|𝜏∗(∆𝜎, ∆𝜎)| + ||𝜏∗(∆𝜎, ∆𝜎)| − |𝜏∗(∆𝜎, Υ𝜎)||] + 𝜆2|𝜏∗(∆𝜎, Υ𝜎)|,  

                              = 𝜆2|𝜏∗(∆𝜎, Υ𝜎)| 
 

which implies that |𝜏∗(∆𝜎, Υ𝜎)| = 0, because 𝜆2 < 1 and then 𝜏∗(∆𝜎, Υ𝜎) = 0. Again from (3.22), we have  
  

                                  |𝜏∗(Υ𝜎, Υ𝜎)| ≤ 𝜆1|𝜏∗(∆𝜎, ∆𝜎)| 
 

Since 𝜆1 < 1, we get |𝜏∗(Υ𝜎, Υ𝜎)| = 0. Hence, 𝜏∗(Υ𝜎, Υ𝜎) = 0, and  

 

                                        𝜏∗(∆𝜎, ∆𝜎) = 𝜏∗(Υ𝜎, Υ𝜎) = 𝜏∗(∆𝜎, Υ𝜎)     

                                                                            

By using axiom (𝜏1
∗), we have ∆𝜎 = Υ𝜎. Thus, 𝜔 = ∆𝜎 = Υ𝜎 is a point of coincidence of Υ and ∆. Since Υ and 

∆ are weakly compatible mappings, 𝜔 = ∆𝜎 = Υ𝜎 implies Υ𝜔 = Υ∆𝜎 = ∆Υ𝜎 = ∆𝜔. By (3.22), we get 

 

              |𝜏∗(Υ𝜎, Υ𝜔)| ≤ 𝜆1|𝜏∗(Υ𝜎, Υ𝜔)| 
 

Thus, 𝜏∗(Υ𝜎, Υ𝜔) = 0 = 𝜏∗(Υ𝜎, Υ𝜎) = 𝜏∗(Υ𝜔, Υ𝜔).  Hence, 𝜔 = ∆𝜔 = Υ. To prove the uniqueness of 𝜔 , 

suppose that there exists another common fixed point 𝜔∗ of Υ and ∆;  we prove that 𝜔 = 𝜔∗. By (3.22), we 

obtain 

 

                 |𝜏∗(𝜔, 𝜔∗)| = |𝜏∗(Υ𝜔, Υ𝜔∗)| 
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                                    ≤ 𝜆1[|𝜏∗(∆𝜔, ∆𝜔∗)| + ||𝜏∗(∆𝜔, Υ𝜔)| − |𝜏∗(∆𝜔∗, Υ𝜔∗)||] + 𝜆2
(1+|𝜏∗(∆𝜔,Υ𝜔)|)|𝜏∗(∆𝜔∗,Υ𝜔∗)|

1+|𝜏∗(∆𝜔,∆𝜔∗)|
 

              = 𝜆1|𝜏∗(𝜔, 𝜔∗)|                 
 

which implies that (1 − 𝜆1)|𝜏∗(𝜔, 𝜔∗)| ≤ 0. This is possible only when |𝜏∗(𝜔, 𝜔∗)| = 0, since 𝜆 < 1. Hence, 

𝜏∗(𝜔, 𝜔∗) = 0 and then, 

 

                                                𝜏∗(𝜔, 𝜔∗) = 𝜏∗(𝜔, 𝜔) = 𝜏∗(𝜔∗ , 𝜔∗ ) 

 

By (𝜏1
∗), we have 𝜔 = 𝜔∗. Consequently, Υ and ∆ have a unique common fixed point 𝜔.   

 

Theorem 3.13 Let (𝒞, 𝜏∗) be a complete DPM space and Υ, ∆: 𝒞 → 𝒞 be two mappings such that 

 

(1) Υ(𝒞) ⊂ ∆(𝒞), 
(2) Υ is a dualistic generalized 𝐸∆-contraction.  

 

If Υ(𝒞) or ∆(𝒞) is a complete subspace of 𝒞, then Υ and ∆ have a coincidence point. Further, if Υ, ∆ are weakly 

compatible mappings, then Υ and ∆ have a unique common fixed point. 

 

Proof Following the steps of proof of Theorem 3.11, we construct the sequence {𝜃𝑖} by iterating 

 

     Υ𝜃0 = ∆𝜃1, Υ𝜃𝑖 = ∆𝜃𝑖+1 for 𝑖 = 0,1,2, ….  

 

where 𝜃0 ∈ 𝒞 is arbitrary point. By the dualistic rational 𝐸∆-contraction condition (3.23), we obtain 

  

 |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆 max {|𝜏∗(∆𝜃𝑖 , ∆𝜃𝑖+1)| + ||𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(∆𝜃𝑖+1, Υ𝜃𝑖+1)||,
|𝜏∗(∆𝜃𝑖,Υ𝜃𝑖)|+|𝜏∗(∆𝜃𝑖+1,Υ𝜃𝑖+1)|

2
} 

                            = 𝜆 max {|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)||,
|𝜏∗(Υ𝜃𝑖−1,Υ𝜃𝑖)|+|𝜏∗(Υ𝜃𝑖,Υ𝜃𝑖+1)|

2
} 

                       (3.36) 

If |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| < |𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1)| for some 𝑖, from (3.36), we have 

 

      |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆 max{|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|, |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|}      

                                 = 𝜆|𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1)|                   
which is a contradiction. Hence, |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| ≥ |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| and so from (3.36), we have 

 |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝜆 max {|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| + |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖, Υ𝜃𝑖+1)|,
|𝜏∗(Υ𝜃𝑖−1,Υ𝜃𝑖)|+|𝜏∗(Υ𝜃𝑖,Υ𝜃𝑖+1)|

2
} 

               ≤ 𝜆 max{2|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|, |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)|} 

                             = 𝜆[2|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)|]. 
 

The last inequality gives 

 

                      |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤
2𝜆

1+𝜆
|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| = 𝒸|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)|. 

 

where 𝒸 =
2𝜆

1+𝜆
. From this, we can write, 

 

                        |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖+1)| ≤ 𝒸|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| 
                                                   ≤ 𝒸2|𝜏∗(Υ𝜃𝑖−2, Υ𝜃𝑖−1)| 
                                                   ≤ ⋯ ≤ 𝒸𝑖|𝜏∗(Υ𝜃0, Υ𝜃1)|.                                                                              (3.37) 

 

Now, consider the self-distance 

 

    |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| ≤ 𝜆 max {|𝜏∗(∆𝜃𝑖 , ∆𝜃𝑖)| + ||𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)||,
|𝜏∗(∆𝜃𝑖,Υ𝜃𝑖)|+|𝜏∗(∆𝜃𝑖,Υ𝜃𝑖)|

2
} 

                           = 𝜆 max {
|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)||,

|𝜏∗(Υ𝜃𝑖−1,Υ𝜃𝑖)|+|𝜏∗(Υ𝜃𝑖−1,Υ𝜃𝑖)|

2

}    

                           = 𝜆 max{|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖−1)|, |𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)|} 
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                            ≤ 𝜆|𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)|                                                                                                            (3.38)    

 

Above inequality implies that 

 

                                     |𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑖)| ≤ 𝜆𝒸𝑖−1|𝜏∗(Υ𝜃0, Υ𝜃1)|       
                                       

As already elaborated in the proof of Theorem 3.12, the classical procedure leads to {Υ𝜃𝑖} is a Cauchy sequence 

in (𝒞, 𝑑𝜏∗
𝑠 ). Since (𝒞, 𝜏∗) is a complete DPM space, by Lemma 2.7(2), (𝒞, 𝑑𝜏∗

𝑠 ) is a complete metric space. 

Consequently, there exists an element 𝜔 ∈ Υ(𝒞) ⊂ 𝒞  such that such that Υ𝜃𝑖 → 𝜔  as  𝑖 → ∞ , that is 

lim
𝑖→∞

𝑑𝜏∗(Υ𝜃𝑖 , 𝜔) = 0 and by Lemma 2.7(3), we know that 

 

                                  𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(Υ𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗).                                                          (3.39)  

                      

Since, lim
𝑖→∞

𝑑𝜏∗(𝜃𝑖, 𝜔) = 0, by (2.2) and (3.39), we have 

 

                            𝜏∗(𝜔, 𝜔) = lim
𝑖→∞

𝜏∗(Υ𝜃𝑖 , 𝜔) = lim
𝑖,𝑗→∞

𝜏∗(Υ𝜃𝑖 , Υ𝜃𝑗) = 0.                                                        (3.40)  

 

This shows that {Υ𝜃𝑖} is a Cauchy sequence converging to 𝜔 ∈ (𝒞, 𝜏∗). As 𝜔 ∈ Υ(𝒞) ⊂ ∆(𝒞), there exists 𝜎 ∈ 𝒞 

such that 𝜔 = ∆𝜎 and by (3.40), we have 𝜏∗(∆𝜎 , ∆𝜎 ) = 0. By condition (3.23), we have     

           

      |𝜏∗(∆𝜃𝑖+1, Υ𝜎)| = |𝜏∗(Υ𝜃𝑖 , Υ𝜎)| 

                                ≤ 𝜆 max {|𝜏∗(∆𝜃𝑖 , ∆𝜎)| + ||𝜏∗(∆𝜃𝑖 , Υ𝜃𝑖)| − |𝜏∗(∆𝜎, Υ𝜎)||,
|𝜏∗(∆𝜃𝑖,Υ𝜃𝑖)|+|𝜏∗(∆𝜎,Υ𝜎)|

2
} 

       = 𝜆 max {|𝜏∗(Υ𝜃𝑖−1, ∆𝜎)| + ||𝜏∗(Υ𝜃𝑖−1, Υ𝜃𝑖)| − |𝜏∗(∆𝜎, Υ𝜎)||,
|𝜏∗(Υ𝜃𝑖−1,Υ𝜃𝑖)|+|𝜏∗(∆𝜎,Υ𝜎)|

2
} 

 

Applying limit as 𝑖 → ∞ and using equation (3.40), we have  

 

           |𝜏∗(∆𝜎, Υ𝜎)| ≤ 𝜆 max {|𝜏∗(∆𝜎, ∆𝜎)| + ||𝜏∗(∆𝜎, ∆𝜎)| − |𝜏∗(∆𝜎, Υ𝜎)||,
|𝜏∗(∆𝜎,∆𝜎)|+|𝜏∗(∆𝜎,Υ𝜎)|

2
} 

                                 = 𝜆|𝜏∗(∆𝜎, Υ𝜎)| 
 

which implies that  |𝜏∗(∆𝜎, Υ𝜎)| = 0,  because 𝜆 < 1 and then 𝜏∗(∆𝜎, Υ𝜎) = 0 . Again from (3.23), we have  

  

                                  |𝜏∗(Υ𝜎, Υ𝜎)| ≤ 𝜆1|𝜏∗(∆𝜎, ∆𝜎)| 
 

Since 𝜆 < 1, we get |𝜏∗(Υ𝜎, Υ𝜎)| = 0. Hence, 𝜏∗(Υ𝜎, Υ𝜎) = 0, and  

 

                                        𝜏∗(∆𝜎, ∆𝜎) = 𝜏∗(Υ𝜎, Υ𝜎) = 𝜏∗(∆𝜎, Υ𝜎)                                                                                

 

By using axiom (𝜏1
∗), we have ∆𝜎 = Υ𝜎. Thus, 𝜔 = ∆𝜎 = Υ𝜎 is a point of coincidence of Υ and ∆. Since Υ and 

∆ are weakly compatible mappings, 𝜔 = ∆𝜎 = Υ𝜎 implies Υ𝜔 = Υ∆𝜎 = ∆Υ𝜎 = ∆𝜔. By (3.23), we get 

 

           |𝜏∗(Υ𝜎, Υ𝜔)| ≤ 𝜆 max {|𝜏∗(∆𝜎, ∆𝜎)| + ||𝜏∗(∆𝜎, Υ𝜎)| − |𝜏∗(∆𝜎, Υ𝜎)||,
|𝜏∗(∆𝜎,Υ𝜎)|+|𝜏∗(∆𝜎,Υ𝜎)|

2
} 

                                 = 𝜆|𝜏∗(∆𝜎, ∆𝜎)| 
 

Thus, 𝜏∗(Υ𝜎, Υ𝜔) = 0 = 𝜏∗(Υ𝜎, Υ𝜎) = 𝜏∗(Υ𝜔, Υ𝜔). Hence, 𝜔 = ∆𝜔 = Υ𝜔, that is 𝜔 is common fixed point of 

Υ and ∆. To prove the uniqueness of 𝜔, suppose that there exists another common fixed point 𝜔∗ of Υ and ∆;  

we prove that 𝜔 = 𝜔∗. By (3.23), we obtain 

 

                 |𝜏∗(𝜔, 𝜔∗)| = |𝜏∗(Υ𝜔, Υ𝜔∗)| 

                                    ≤ 𝜆 max {|𝜏∗(∆𝜔, ∆𝜔∗)| + ||𝜏∗(∆𝜔, Υ𝜔)| − |𝜏∗(∆𝜔∗, Υ𝜔∗)||,
|𝜏∗(∆𝜔,Υ𝜔)|+|𝜏∗(∆𝜔∗,Υ𝜔∗)|

2
} 

         = 𝜆|𝜏∗(𝜔, 𝜔∗)|                 
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which implies that (1 − 𝜆)|𝜏∗(𝜔, 𝜔∗)| ≤ 0. This is possible only when |𝜏∗(𝜔, 𝜔∗)| = 0, since 𝜆 < 1. Hence, 

𝜏∗(𝜔, 𝜔∗) = 0 and then, 

 

                                      𝜏∗(𝜔, 𝜔∗) = 𝜏∗(𝜔, 𝜔) = 𝜏∗(𝜔∗ , 𝜔∗ ) 
 

By (𝜏1
∗), we have 𝜔 = 𝜔∗. Consequently, Υ and ∆ have a unique common fixed point 𝜔.   

 

Example 3.14 If we take Υ𝜃 =
𝜃

4
, ∀ 𝜃 ∈ 𝒞 and ∆𝜃 =

𝜃

2
, ∀ 𝜃 ∈ 𝒞 in Example 3.7. Then, for all 𝜃, 𝜗 ∈ 𝒞 with 𝜃 ≥

𝜗 and 𝜆 =
1

2
,  conditions (3.21) and (3.23) are satisfied. In view of Theorem 3.11 and 3.13, Υ and ∆ have a 

unique common fixed point 0.  
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