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ABSTRACT

The prediction of total energy consumption is crucial across various domains including the economy,
environment, market, and geopolitics. Accurate forecasts can guide policy-making, investment decisions, and
international strategies, contributing to sustainable development and energy security. Fractional models have
been proven to better capture the long-term memory effects and complex dynamic characteristics of systems,
with time delay playing a crucial role in capturing dynamic behaviors. Such models enhance the accuracy and
reliability of predicting future trends and behaviors. For the prediction of primary energy consumption in South
and Central America, the Middle East, and Africa, this study opts for the existing fractional time delayed grey
model, optimizing the fractional order using the particle swarm optimization algorithm. Experimental results
demonstrate that in most cases, the predictive capability of the fractional time delayed grey model surpasses
that of other grey models. This indicates the effectiveness and reliability of the model in forecasting energy
consumption, providing valuable references and foundations for decision-making in relevant fields.
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1 INTRODUCTION

The increasing global emphasis on sustainable
development and environmental protection underscores
the growing importance of predicting total primary
energy consumption. Present-day society is
confronted with multiple challenges such as climate
change, energy supply security, and economic
stability. Therefore, accurately understanding the
trends and scale of energy consumption is crucial for
formulating comprehensive energy policies. This not
only helps ensure adequate and stable energy supply
but also fosters the development of renewable energy,
reduces reliance on fossil fuels, lowers greenhouse
gas emissions, and thus contributes to achieving global
sustainable development goals.

In the field of energy consumption forecasting, the
prediction time span is typically divided into three
categories: long-term, medium-term, and short-term.
Long-term [1, 2] forecasts usually encompass annual
predictions and are utilized for formulating long-range
energy policies and planning. Medium-term [3, 4, 5]
forecasts include monthly and quarterly predictions,
offering more flexible decision support. Short-term [6,
7, 8] forecasts, on the other hand, involve intervals such
as sub-hourly, hourly, daily, and weekly, playing a crucial
role in adjusting real-time energy supply and demand.
Regarding the selection of prediction models, there are
primarily three types: statistical (or empirical) models,
machine learning models, and grey system models.
Statistical models are based on linear assumptions and,
although simple and user-friendly, are susceptible to
overfitting or underfitting. Machine learning models
can handle nonlinear time series but demand high
quantities and quality of training data and require high-
performance hardware. Moreover, complex parameter
tuning is necessary to avoid overfitting issues. In
addition to these common prediction models, there are
alternative methods such as system dynamics [9, 10],
Granger causality analysis[12], and hybrid forecasting
systems[11]. While these methods may offer more
accurate predictions in specific circumstances, they
also require reliable data support. Due to limited
data collection and the need to rely on recent years’
data to ensure prediction reliability, researchers typically
opt for small-sample prediction models (grey prediction
models) when forecasting primary energy consumption.
Grey prediction theory is an effective method for

modeling and forecasting in situations where data is
insufficient and information is incomplete. Proposed by
Professor Deng Julong [13] in 1982, it is particularly
suitable for scenarios with small sample sizes,
nonlinearity, and high uncertainty. The core idea of grey
prediction theory is to divide known data sequences
into known (white) and unknown (grey) parts, and then
use the regularity of known data to predict the trend
of unknown data. Grey prediction commonly employs
grey differential equations or grey models to describe
the development patterns of data sequences. Professor
Deng Julong subsequently introduced the grey first-
order (GM(1, 1)) [13] model and the grey first-order
cumulative (GM(1, N )) [13] model. Many models based
on Deng’s ideas have since been proposed. Wang [14]
combined seasonal factors with the GM(1, 1) model
to develop the DSGM(1, 1) model, which was used to
forecast solar energy consumption data, demonstrating
its effectiveness in identifying dynamic changes caused
by seasonal factors. Xia [15] improved the accumulated
generating operator (AGO) to the cyclic accumulated
generating operator (CAGO) to develop the SDGM
model. Building upon Xia’s work, Wang [16] introduced
a spatial weighting matrix to create the SDGM(1, 1,
m) model. As research progresses, it becomes evident
that such models struggle to effectively handle nonlinear
data in the real world.

Wu et al. [17] were the first to integrate fractional orders
into grey models, providing a thorough discussion on
its characteristics alongside comprehensive numerical
examples. These examples underscored that fractional
grey models outperform traditional ones, yielding
more precise forecasts for real-world scenarios. In
2019, Wu et al. [18] introduced a groundbreaking
Fractional Accumulated Nonlinear Grey Bernoulli Model
(FANGBM(1, 1) model), which proved effective in
addressing nonlinear sequences. Following this, Ma
et al. [19] proposed a fractional time delayed grey model
(FTDGM(1, 1)), demonstrating that fractional time delay
terms offer enhanced modeling flexibility and accuracy.
These models exemplify the pivotal role of fractional
orders and time delay terms in refining the accuracy of
grey model predictions, thereby advancing the precision
of grey prediction model modeling.

Accurately predicting primary energy consumption
holds significant real-world importance, as primary
energy serves as the foundation for various industries
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and societal functions. Precisely forecasting trends
in primary energy consumption aids governments
in formulating long-term energy policies, planning
energy supply structures, and ensuring national
energy security and economic stability. Additionally,
accurate predictions of primary energy consumption
can drive the development and utilization of renewable
energy sources, reduce reliance on fossil fuels,
mitigate greenhouse gas emissions, and thus
address the challenges of climate change while
promoting environmental sustainability. Moreover,
precise forecasts of primary energy consumption
assist businesses in formulating production plans
and energy management strategies, enhancing
energy efficiency, lowering production costs, and
bolstering competitiveness. In summary, accurate
prediction of primary energy consumption holds
significant economic, social, and environmental
significance, playing a crucial role in advancing
sustainable development, achieving energy security,
and environmental conservation.

Fractional models have been shown to exhibit stronger
adaptability when dealing with nonlinear and uncertain
problems compared to traditional integer-order models.
Fractional models are better equipped to capture
long-term memory effects and complex dynamic
characteristics of systems. Therefore, they possess
greater expressive power and applicability in modeling
and predicting data with nonlinear features and time
delays. Additionally, time-delay terms play a crucial role

in capturing the dynamic behavior of systems, enabling
models to more accurately forecast future trends and
behaviors. Consequently, in this study, the FTDGM(1,
1) model proposed by Ma 2 is chosen to predict the
primary energy consumption in South and Central
America, the Middle East, and the Africa. The particle
swarm optimization algorithm is utilized to optimize the
fractional order.

The rest of this article is arranged as follows. In
Section 2, the fractional order delay gray model is
briefly introduced. Section 3 introduces fractional-order
optimization problems and algorithms for optimizing
models using particle swarm optimization algorithms.
Three predictive examples are given in Section 4 and
conclusions are drawn in Section 5.

2 THE FRACTIONAL TIME
DELAYED GREY MODEL

From Ref.[19], the basic form of the fractional time
delayed grey model can be expressed as

dx(r)(t)

dt
+ ax(r)(t) = bt(r) + c, r > 0, (2.1)

where

t(r) =

k∑
η=1

(
k − η + r − 1

k − η

)
η. (2.2)

Eq.(2.1) is called as the whitening equation of the model, and the discretized difference equation can be expressed
as

x(r)(k)− x(r)(k − 1) + az(r)(k) =
b

2

[
(k)(r) + (k − 1)(r)

]
+ c, (2.3)

where
z(r)(k) =

1

2
[x(r)(k) + x(r)(k − 1)], k = 2, 3, . . . , n (2.4)

is the blackground value of the FTDGM(1, 1) model.

Given the fractional order r, we need to solve for the parameters a, b and c using the least squares method or the
least norm method,

u = [a, b, c]T =

{
(BTB)

−1
BTY, ϑ ≥ 4

BT (BTB)
−1
Y, ϑ < 4

, (2.5)

where

B =


−zr(2) r+3

2
1

−zr(3) r2+7r+10
4

1
...

...
...

−zr(ϑ) ϑ(r)+(ϑ−1)(r)

2
1

 , Y =


x(r)(2)− x(r)(1)

x(r)(3)− x(r)(2)
...

x(r)(ϑ)− x(r)(ϑ− 1)

 , (2.6)
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and ϑ represents the number of modeling points.

Set initial condition x(r)(1) = x(0)(1), and then combine the constant variation method and the trapezoid formula,
the discrete response function of the solution can be written as

x̂(r)(k) = x(0)(1)e−a(k−1) +

k∑
τ=2

{
e−a(k−τ+

1
2
) 1

2
[f(τ) + f(τ − 1)]

}
, k = 2, . . . , n, (2.7)

where f(τ) = bτ (r) + c.

Therefore, the restored values x̂(0) can be easily obtained as

x̂(0)(k) =

k∑
η=1

(
k − η − r − 1

k − η

)
x̂(r)(η). (2.8)

3 OPTIMIZATION OF FRACTIONAL ORDER BY THE PARTICLE
SWARM OPTIMIZATION

The previous section introduced the FTDGM(1, 1) model. Since the fractional order r directly influences the
accuracy and predictive capability of the model, it plays a crucial role in both model establishment and solution.
Therefore, this section focuses on addressing the nonlinear constrained optimization problem aimed at optimizing
the fractional order r.

3.1 Establishing an Optimization Problem

In the quest for the optimal fractional order r, the primary objective is to minimize the fractional time delayed
grey model’s error. The choice of error evaluation criteria significantly impacts the performance of optimization
algorithms and the overall quality of the model. For the fractional time delayed grey model (FTDGM(1, 1)),
commonly used error evaluation methods include Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), among others. Given MAPE’s
interpretability and its resilience to outliers, this study selects it as the primary evaluation criterion. MAPE, utilized
during both fitting and prediction phases, is expressed by the following formulas to comprehensively assess the
model’s fitting and predictive performance. The adoption of MAPE not only offers a clear metric for model accuracy
but also provides a reliable foundation for further analysis to optimize model parameters and enhance predictive
outcomes.

MAPEfit =
1

ϑ

ϑ∑
k=1

∣∣∣∣ x̂(0)(k)− x(0)(k)

x(0)(k)

∣∣∣∣× 100%, (3.1)

MAPEpred =
1

n− ϑ

n−ϑ∑
k=1

∣∣∣∣ x̂(0)(k)− x(0)(k)

x(0)(k)

∣∣∣∣× 100%, (3.2)

where, ϑ represents the number of modeling points, and n represents the total number of data points.
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min J(r) =
1

ϑ

ϑ∑
k=1

∣∣∣∣ x̂(0)(k)− x(0)(k)

x(0)(k)

∣∣∣∣× 100%

s.t.



(a, b, c)T = (BTB)
−1
BTY, ϑ ≥ 4

(a, b, c)T = BT (BTB)
−1
Y, ϑ < 4

B =


−zr(2) r+3

2
1

−zr(3) r2+7r+10
4

1
...

...
...

−zr(ϑ) ϑ(r)+(ϑ−1)(r)

2
1


Y =

[
x(r)(2)− x(r)(1), x(r)(3)− x(r)(2), . . . , x(r)(ϑ)− x(r)(ϑ− 1)

]T
z(r)(k) = 1

2
[x(r)(k) + x(r)(k − 1)], k = 2, . . . , n

x̂(r)(k) = x(0)(1)e−a(k−1) +
∑k
τ=2

{
e−a(k−τ+

1
2
) 1
2
[f(τ) + f(τ − 1)]

}
f(τ) = bτ (r) + c

x̂(0)(k) =
∑k
η=1 C

k−η
k−η−r−1x̂

(0)(η), k = 2, . . . , n

, (3.3)

The objective of this study is to iteratively adjust the fractional order r within a specified range to minimize the
discrepancy between model predictions and actual observations. The optimization problem outlined above is
evidently a complex nonlinear optimization problem characterized by multiple nonlinear constraints, owing to the
complexity of the underlying system dynamics. To address this challenge, advanced optimization techniques are
employed in this study, utilizing the particle swarm optimization algorithm (PSO) to handle the nonlinear constraints
effectively.

3.2 The Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is an optimization algorithm based on swarm intelligence, inspired by
the collective behavior of organisms such as bird flocks or fish schools. The algorithm was initially proposed by
Kennedy and Eberhart in 1995, based on the simulation of foraging behavior in bird flocks.

The core idea of the PSO is to simulate the cooperation and competition among individuals within a bird flock,
continuously updating the positions and velocities of particles to search for the optimal solution to a problem.
In PSO, each candidate solution is represented as a particle, which moves in the solution space and adjusts
its movement based on its individual experience and the collective experience of the group. The movement of
particles is governed by two important information update rules. Firstly, the Personal Best (Local Optimum), where
each particle remembers the best position it has encountered during its search process. Secondly, the Global
Best (Global Optimum), which represents the position of the best solution among all particles. The key aspect of
the PSO algorithm lies in how to update the velocities and positions of particles. One common updating method
is based on the following formula,{

vt+1
i = w · vti + c1 · rand1 · (pbesti − xti) + c2 · rand2 · (gbest− xti)

xt+1
i = xti + vt+1

i

, (3.4)

where vti is the velocity of particle i at time t, xti is the position of particle i at time t, pbesti is the personal best
position of particle i, gbest is the global best position of the entire group, w is the inertia weight, c1 and c2 are
acceleration factors, and rand1 and rand2 are random numbers between 0 and 1. By continuously updating
the velocities and positions of particles, the PSO algorithm is able to effectively search and converge to the
optimal solution in the solution space. This algorithm is characterized by its simplicity, ease of implementation,
and efficiency, hence it has been widely applied in various optimization problems.
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3.3 Algorithm Procedure
Appropriate parameter configuration is crucial for accurately fitting empirical data. The constrained optimization
problem 3.3 is evidently a complex nonlinear problem, with the explicit formulation of its constraints posing a
challenge. Therefore, ths study choose to validate the constraints in the particle swarm optimization algorithm, as
detailed in algorithm ??. The implementation of algorithm ?? is based on Python source code using the pyswarm
library, which can be accessed at https://github.com/tisimst/pyswarm.

Algorithm 1: The algorithm for solving the optimization problem

input : The initial sequence x(0) =
(
x(0)(1), x(0)(2), . . . , x(0)(n)

)
output: The fractional oreder (r∗)

1 Set max iteration = 100
2 Initialize (MAPEfit)min = inf, the best agent of r
3 for r in agent, len = max iteration do
4 Construst B and Y by the Eq.(2.6)
5 Compute a, b, c by the Eq.(2.5)
6 for k = 1 to n, step = 1 do
7 Compute x̂(r)(k) by the Eq.(2.7)
8 Compute x̂(0)(k) by the Eq.(2.8)
9 end

10 Compute MAPEfit using the objective function in Eq.(3.1)
11 if MAPEfit < (MAPEfit)min then
12 (MAPEfit)min ← MAPEfit

13 r∗ ← r

14 end
15 end

4 APPLICATIONS IN
FORECASTING PRIMARY
ENERGY CONSUMPTION

4.1 Preparation

Accurately predicting primary energy consumption is
crucial for South and Central America, the Middle
East, and the Africa. Primary energy plays a vital
role in the economies, industries, and daily lives
of these regions. In South and Central America,
as well as in the Middle East and Africa, primary
energy consumption is closely tied to industrialization,
urbanization, and transportation. Accurate forecasts
of energy consumption trends can assist governments
and businesses in planning energy supply and

transitions, thereby promoting sustainable development
and environmental protection. The Middle East, being
a significant global energy exporter, relies heavily on
primary energy sources such as oil and natural gas,
which serve as the backbone of the region’s economy.
Accurately predicting the consumption trends of these
energy sources is crucial for maintaining energy stability
and fostering economic development. In Africa, primary
energy consumption is closely linked to issues of energy
scarcity and poverty. Accurately forecasting primary
energy consumption trends can help address energy
security issues, stimulate economic development, and
improve people’s quality of life. Therefore, accurate
predictions of primary energy consumption in South
and Central America, the Middle East, and Africa are
essential for energy security, economic development,
and sustainable growth in these regions.
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For this research, raw data has been sourced from
the Energy Institute (EI) Statistical Review of World
Energy, accessible at https://www.energyinst.org/

statistical-review (accessed on 28 March 2024).
Data on annual primary energy consumption in South
and Central America, the Middle East, and the Africa
were collected, covering the period from 2000 to 2022.
The reasons for selecting data from these regions for
analysis are as follows.

1. Importance of the Regions: South America,
Central America, the Middle East, and
Africa are among the densely populated and
geographically extensive regions in the world.
They play a significant role in the global energy
market, exerting a substantial influence on both
global energy supply and demand.

2. Economic Development and Energy
Consumption: These regions exhibit high
levels of economic development and population
growth rates, leading to a continuous increase
in energy demand. Accurately predicting energy
consumption trends is crucial for governments
and businesses in these regions to effectively
plan energy supply and transitions, thereby
promoting sustainable economic development.

3. Abundance of Energy Resources: The Middle
East is renowned for its abundant traditional
energy resources such as oil and natural gas,
making it a key region for global energy supply.
Similarly, South America, Central America, and
Africa possess rich energy resources, including
oil, natural gas, coal, and renewable energy
sources. Therefore, accurately forecasting
energy consumption trends in these regions is
essential for maintaining energy stability and
fostering economic development.

4. Energy Security and Sustainable
Development: These regions face challenges
related to energy security and sustainable
development. Accurately predicting energy
consumption trends can help address issues
such as energy supply shortages, improve
energy efficiency, promote the development
of renewable energy sources, and ultimately
achieve goals of energy security and sustainable
development.

And the data from 2000 to 2015 were designated as the
sample set for constructing the grey model. Meanwhile,
data from 2016 to 2022 were used to test the out-of-
sample performance of the model, effectively verifying

the model’s generalization ability. This approach allows
for a more comprehensive evaluation of the model’s
predictive performance regarding future trends.

To assess the effectiveness of the fractional time
delayed grey model (FTDGM(1, 1)), comprehensive
comparisons of model performance were conducted
against eight established benchmark grey system
models. Additionally, thirteen evaluation metrics were
applied to provide a thorough assessment, as shown
in Table 1, offering quantitative measurements and
analysis of various aspects of model performance.
The benchmark grey system models involved the
classical grey model (GM(1, 1)) [13], the discrete
grey model (DGM(1, 1)) [20], the nonlinear grey
Bernoulli model (NGBM(1, 1)) [21], the fractional-
order grey model (FGM(1, 1)) [17], the fractional
nonlinear grey Bernoulli model (FANGBM(1, 1)) [18],
the fractional order discrete grey model (FDGM(1, 1))
[22], the fractional grey model (FAGM(1, 1, tα)) [23],
and the Simpson fractional grey model (SFAGM(1,
1))[24]. Furthermore, models incorporating external
input parameters underwent parameter optimization
using the Particle Swarm Optimization algorithm (PSO).

4.2 Forecasting Results and Analysis

4.2.1 Case I: Forecasting primary energy
consumption in the South and
Central America

Using the primary energy consumption data from 2000
to 2022 in South and Central America, the grey model
was built using data from 2000 to 2015, while data from
2016 to 2022 were utilized to test its out-of-sample
performance. Fig. 2 displays all predicted values
of total primary energy consumption in the region.
Table 2 provides the evaluation metrics of the sample
population, and Table 3 lists detailed results of the
model predictions. In this process, the particle swarm
optimization algorithm was employed to optimize the
parameters of the eight models, with the optimization
results shown in Fig. 1.

From Fig. 1, it can be observed that after using the
particle swarm optimization algorithm to establish the
models, the MAPEfit of all parameter-containing grey
models reached optimal values, with the FAGM(1, 1,
tα) model exhibiting a smaller MAPEfit. As depicted in
Fig. 2, the FTDGM(1, 1) model demonstrated excellent
performance in out-of-sample predictions. It can be
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seen that other competing models deviated significantly
from the actual data, whereas only the FTDGM(1,
1) model accurately captured subtle data changes,
resulting in a prediction trend that closely matched
the original data. Special points observed in Fig. 2
reveal that starting from 2016, particularly in 2020, the
FTDGM(1, 1) model accurately captured subtle data
changes, making the prediction trend even closer to the
original data, while other models exhibited larger errors.

Table 2 illustrates that the evaluation metrics of the
FTDGM(1, 1) model are significantly smaller than those
of other models. Particularly, FTDGM(1, 1)’s MSE
is the only one among all models that is less than
1. When out-of-sample MAPEpre was used as an
evaluation metric, the FTDGM(1, 1) model performed
the best in the prediction phase, with its MAPEpre
significantly smaller than those of other competing
models. The out-of-sample MAPEpre of the FTDGM(1,
1) model is 4.496%, the only model with an MAPE
less than 5%. Table 3 clearly shows that the in-
sample MAPEfit of the FAGM(1, 1) model is smaller
than that of the FTDGM(1, 1), indicating better in-
sample predictive performance, but its performance in
out-of-sample prediction is poor, indicating overfitting.
Therefore, in this case, the prediction results of the
FTDGM(1, 1) model are closer to the original data
curve, demonstrating better predictive performance.

4.2.2 Case II: Forecasting primary energy
consumption in the Middle East

The primary energy consumption data from 2000 to
2022 in Africa were utilized. The first 16 data points
were used for constructing the grey model, while
the remaining data were employed to test its out-
of-sample performance. All predicted values of the
primary energy consumption in Africa are illustrated in
Fig. 4. Table4 provides the evaluation metrics of the
sample population. Table 5 presents detailed results
of the model predictions. The results of optimizing
model parameters using the particle swarm optimization
algorithm are shown in Fig. 3.

From Fig. 3, it can be observed that the MAPEfit of
the grey model optimized using the particle swarm
optimization algorithm reached the optimal values.
Similarly, the FAGM(1, 1, tα) model exhibited a smaller
MAPEfit, while the FDGM(1, 1) model’s MAPEfit was
close to that of the FTDGM(1, 1) model. According to
Fig. 4, the predictive performance of the nine models

was similar in-sample, but in out-of-sample predictions,
the FTDGM(1, 1) model clearly demonstrated better
trends, closely resembling the original data.

Table 4 shows that the evaluation metrics of the
FTDGM(1, 1) model are significantly lower than those
of other models. Interestingly, the FTDGM(1, 1) model’s
metrics are almost over five times smaller than the
maximum metric value among other models. When out-
of-sample MAPEpre is used as an evaluation metric,
the FTDGM(1, 1) model has the smallest MAPEpre
value, at 3.179%. From Table 4, it can be seen that
the out-of-sample MAPEpre of GM(1, 1) and DGM(1, 1)
are 17.11% and 17.14%, respectively, which are much
larger than that of the FTDGM(1, 1) model, indicating
that linear models do not accurately capture the turning
points in the data. Although the FAGM(1, 1, tα) model
has a smaller in-sample MAPE than the FTDGM model,
its out-of-sample MAPEpre is greater than that of the
FTDGM(1, 1) model, indicating overfitting. Therefore, in
this case, the FTDGM(1, 1) model performs better.

4.2.3 Case III: Forecasting primary
energy consumption in the Africa

The energy consumption data in the Middle East from
2000 to 2022 were utilized. Among them, data from
2000 to 2015 were employed to construct the grey
model and perform parameter estimation, while data
from 2016 to 2022 were used to test its out-of-sample
performance. All predicted values of the primary energy
consumption in the Middle East are illustrated in Fig. 6.
Table 6 provides the evaluation metrics of the sample
population. Table 7 lists the detailed results of the model
predictions. The particle swarm optimization algorithm
was employed to optimize the model parameters, and
the optimization results are shown in Fig. 5.

From Fig. 5, it can be observed that after parameter
optimization, the MAPEfit of the model reached optimal
values, with the FAGM(1, 1, tα) model having the
lowest MAPEfit, while the FTDGM(1, 1) model’s
MAPEfit was close to that of FDGM(1, 1), SFAGM(1,
1), and FGM(1, 1) models. As shown in Fig. 6,
the original data exhibited certain fluctuations. In
out-of-sample predictions, all eight competing models
gradually diverged from the original data, but the
FTDGM(1, 1) model consistently maintained good
performance, closely tracking the original data trend.
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Fig. 1. Optimal MAPEfit of model in Case I under PSO algorithm.

Table 1. Model performance metrics

Metrics Abbreviation Formula

Average Relative Error ARE 1
n

∑n
k=1

∣∣∣x(0)(k)−x̂(0)(k)x(k)

∣∣∣
Mean Absolute Error MAE 1

n

∑n
k=1

∣∣∣x(0)(k)− x̂(0)(k)
∣∣∣

Mean Absolute Percentage Error MAPE 1
n

∑n
k=1

∣∣∣x(0)(k)−x̂(0)(k)x(k)

∣∣∣× 100%

Mean Percentage Error MPE 1
n

∑n
k=1

x(0)(k)−x̂(0)(k)
x(k)

× 100%

Mean Arctangent Absolute Percentage Error MAAPE 1
n

∑n
k=1 arctan

(∣∣∣x(0)(k)−x̂(0)(k)x(k)

∣∣∣)
Mean Square Error MSE 1

n

∑n
k=1

(
x(0)(k)− x̂(0)(k)

)2
Root Mean Square Error RMSE

√
1
n

∑n
k=1 (x

(0)(k)− x̂(0)(k))
2

Root Mean Square Percentage Error RMSPE
√

1
n

∑n
k=1

∣∣∣x(0)(k)−x̂(0)(k)x(k)

∣∣∣2
Symmetric Mean Absolute Percentage Error SMAPE 1

n

∑n
k=1

∣∣∣ x(0)(k)−x̂(0)(k)
0.5x(0)(k)+0.5x̂(0)(k)

∣∣∣× 100%

Theil U Statistic 1 U1
√

1
n

∑n
k=1 (x(0)(k)−x̂(0)(k))

2√
1
n

∑n
k=1 (x(0)(k))

2
+
√

1
n

∑n
k=1 (x̂(0)(k))

2

Theil U Statistic 2 U2
√

1
n

∑n
k=1 (x(0)(k)−x̂(0)(k))

2√
1
n

∑n
k=1 (x(0)(k))

2

Average Error AE 1
n

∑n
k=1

(
x(0)(k)− x̂(0)(k)

)
Percent Bias Pidas

∑n
k=1(x

(0)(k)−x̂(0)(k))∑n
k=1

x̂(0)(k)
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Fig. 2. Predicted values of all models in Case I.

Table 2. Overall-sample forecasting metrics for all models in Case I.

ARE MAE MAPE MPE MAAPE MSE RMSE RMSPE SMAPE U1 U2 AE Pibas

GM(1, 1) 0.06371 1.799968 6.371049 -5.41735 0.062847 9.364971 3.060224 0.107555 5.861564 0.055813 0.115388 -1.54664 -0.05548
DGM(1, 1) 0.063722 1.800156 6.372203 -5.42278 0.062859 9.364384 3.060128 0.107553 5.862666 0.05581 0.115385 -1.54796 -0.05553

NGBM(1, 1) 0.053256 1.493998 5.325643 -4.40444 0.05275 6.378239 2.525518 0.089183 4.971726 0.046353 0.095227 -1.25958 -0.04565
FGM(1, 1) 0.03078 0.85553 3.077973 -2.26995 0.030671 2.005255 1.41607 0.050904 2.961998 0.026346 0.053394 -0.63828 -0.02367

FANGBM(1, 1) 0.051435 1.442209 5.14347 -4.2542 0.050978 5.909647 2.430977 0.085907 4.813632 0.044667 0.091662 -1.212 -0.04401
FDGM(1, 1) 0.03331 0.93598 3.331018 -2.69505 0.033161 2.561162 1.600363 0.057161 3.182015 0.029696 0.060343 -0.76226 -0.02814

FAGM(1, 1, tα) 0.034555 0.971874 3.455523 -2.91333 0.034392 2.759566 1.661194 0.059273 3.294236 0.030782 0.062637 -0.82747 -0.03047
SFAGM(1, 1) 0.03655 1.024424 3.655033 -3.14589 0.036366 3.018208 1.737299 0.061922 3.479137 0.032158 0.065506 -0.88461 -0.03251
FTDGM(1, 1) 0.019769 0.545107 1.976882 -1.10286 0.019736 0.795232 0.891758 0.032585 1.932415 0.016706 0.033624 -0.30768 -0.01155

39



He and Hau; J. Energy Res. Rev., vol. 16, no. 5, pp. 30-46, 2024; Article no.JENRR.116029

Table 3. Detailed results of sample predictions for all models in Case I.

original data GM(1, 1) DGM(1, 1) NGBM(1, 1) FGM(1, 1) FANGBM(1, 1) FDGM(1, 1) FAGM(1, 1, tα) SFAGM(1, 1) FTDGM(1, 1)

value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%)

2000 20.94000 20.94000 0.00000 20.94000 0.00000 20.94000 0.00000 20.94000 0.00000 20.94000 0.00000 20.94000 0.00000 20.94000 0.00000 20.94000 0.00000 20.94000 0.00000
2001 20.87000 20.92804 0.27811 20.93088 0.29169 20.27872 2.83316 20.57534 1.41188 20.39803 2.26146 20.82511 0.21510 20.87000 0.00000 21.11739 1.18540 20.87000 0.00000
2002 21.13000 21.50043 1.75309 21.50318 1.76611 21.23822 0.51215 21.12358 0.03036 21.27015 0.66326 21.04416 0.40623 21.06929 0.28733 21.24272 0.53347 21.07863 0.24310
2003 21.44000 22.08847 3.02458 22.09113 3.03699 22.04690 2.83071 21.86987 2.00501 22.07000 2.93846 21.71577 1.28626 21.72130 1.31205 21.79248 1.64401 21.67272 1.08546
2004 22.55000 22.69259 0.63235 22.69516 0.64372 22.78627 1.04775 22.66597 0.51428 22.81140 1.15918 22.55000 0.00000 22.50234 0.21137 22.55000 0.00000 22.40898 0.62538
2005 23.19000 23.31324 0.53144 23.31570 0.54206 23.48850 1.28718 23.46135 1.17011 23.51566 1.40431 23.40375 0.92173 23.31654 0.54566 23.36856 0.76999 23.20335 0.05758
2006 24.25000 23.95086 1.23355 23.95321 1.22386 24.16979 0.33077 24.23499 0.06190 24.19667 0.21990 24.22416 0.10655 24.12553 0.51329 24.18062 0.28610 24.01580 0.96577
2007 25.34000 24.60593 2.89690 24.60815 2.88810 24.83951 1.97510 24.97744 1.43079 24.86340 1.88082 24.99643 1.35584 24.91184 1.68968 24.96015 1.49903 24.82321 2.03941
2008 25.88000 25.27890 2.32263 25.28100 2.31451 25.50361 1.45437 25.68452 0.75532 25.52188 1.38377 25.71979 0.61905 25.66716 0.82239 25.69956 0.69723 25.61024 1.04237
2009 25.52000 25.97029 1.76445 25.97225 1.77215 26.16614 2.53188 26.35473 3.27087 26.17637 2.57199 26.39799 3.44042 26.38769 3.40005 26.39876 3.44340 26.36540 3.31270
2010 26.83000 26.68058 0.55691 26.68240 0.55013 26.83000 0.00000 26.98794 0.58867 26.83000 0.00001 27.03581 0.76708 27.07196 0.90182 27.06037 0.85863 27.07931 0.92920
2011 27.74000 27.41030 1.18853 27.41196 1.18254 27.49738 0.87462 27.58485 0.55931 27.48515 0.91870 27.63781 0.36840 27.71981 0.07280 27.68777 0.18828 27.74364 0.01311
2012 28.63000 28.15998 1.64171 28.16148 1.63648 28.16997 1.60680 28.14656 1.68858 28.14369 1.69861 28.20805 1.47382 28.33181 1.04152 28.28430 1.20747 28.35060 0.97590
2013 29.26000 28.93016 1.12727 28.93148 1.12275 28.84915 1.40414 28.67443 2.00125 28.80712 1.54779 28.75001 1.74295 28.90898 1.19964 28.85303 1.39087 28.89258 1.25572
2014 29.57000 29.72141 0.51203 29.72254 0.51587 29.53603 0.11488 29.16994 1.35291 29.47669 0.31556 29.26669 1.02573 29.45256 0.39717 29.39667 0.58616 29.36188 0.70382
2015 29.53000 30.53430 3.40093 30.53523 3.40411 30.23158 2.37582 29.63461 0.35426 30.15346 2.11126 29.76062 0.78098 29.96389 1.46931 29.91759 1.31254 29.75059 0.74702

MAPEfit 1.42903 1.43069 1.32371 1.07472 1.31719 0.90688 0.86651 0.97516 0.87478
2016 29.24000 31.36942 7.28254 31.37014 7.28503 30.93662 5.80241 30.06997 2.83846 30.83833 5.46625 30.23399 3.39942 30.44439 4.11898 30.41787 4.02827 30.05043 2.77166
2017 29.52000 32.22738 9.17133 32.22788 9.17305 31.65190 7.22187 30.47751 3.24360 31.53211 6.81610 30.68868 3.95894 30.89549 4.65952 30.89929 4.67241 30.25264 2.48185
2018 29.29000 33.10880 13.03791 33.10908 13.03884 32.37806 10.54305 30.85871 5.35579 32.23552 10.05640 31.12631 6.26942 31.31859 6.92588 31.36345 7.07905 30.34789 3.61177
2019 29.01000 34.01434 17.25038 34.01436 17.25047 33.11572 14.15276 31.21498 7.60075 32.94921 13.57878 31.54832 8.74979 31.71507 9.32461 31.81173 9.65782 30.32618 4.53698
2020 26.81000 34.94464 30.34180 34.94440 30.34092 33.86542 26.31639 31.54767 17.67128 33.67377 25.60151 31.95594 19.19409 32.08625 19.68016 32.24536 20.27362 30.17678 12.55791
2021 28.93000 35.90038 24.09395 35.89987 24.09219 34.62771 19.69483 31.85808 10.12127 34.40976 18.94145 32.35027 11.82257 32.43342 12.11000 32.66541 12.91189 29.88810 3.31178
2022 36.88226 22.49174 36.88146 22.48909 35.40308 17.57914 32.14746 6.76672 35.15772 16.76425 32.73229 8.70905 32.75781 8.79378 33.07286 9.84011 29.44765 2.19978

MAPEpre 17.66709 17.66708 14.47292 7.65684 13.88925 8.87190 9.37327 9.78045 4.49596

Table 4. Overall-sample forecasting metrics for all models in Case II.

ARE MAE MAPE MPE MAAPE MSE RMSE RMSPE SMAPE U1 U2 AE Pibas

GM(1, 1) 0.065247 2.284591 6.524715 -5.37058 0.064369 16.21278 4.02651 0.108046 6.014672 0.063958 0.133375 -1.96353 -0.06268
DGM(1, 1) 0.065315 2.286991 6.531529 -5.39568 0.064434 16.24908 4.031015 0.108171 6.020016 0.064022 0.133524 -1.97089 -0.0629

NGBM(1, 1) 0.045935 1.637137 4.593466 -3.91014 0.045543 9.20039 3.033214 0.081174 4.297273 0.048716 0.100473 -1.44814 -0.047
FGM(1, 1) 0.022487 0.78411 2.248686 -1.77504 0.022436 2.213049 1.487632 0.040222 2.173547 0.024303 0.049277 -0.65577 -0.02185

FANGBM(1, 1) 0.041798 1.486509 4.179794 -3.4045 0.041489 7.776134 2.788572 0.074696 3.929889 0.044956 0.092369 -1.26224 -0.04122
FDGM(1, 1) 0.019966 0.692741 1.996601 -1.49923 0.01993 1.740282 1.319197 0.035749 1.93753 0.021587 0.043697 -0.57006 -0.01904

FAGM(1, 1, tα) 0.018479 0.646758 1.847864 -1.61898 0.018449 1.516952 1.231646 0.03344 1.794831 0.020155 0.040797 -0.58704 -0.0196
SFAGM(1, 1) 0.020642 0.712899 2.064175 -1.90946 0.020603 1.836923 1.355331 0.036863 1.999436 0.022149 0.044894 -0.66625 -0.02219
FTDGM(1, 1) 0.013824 0.461265 1.382396 -0.91617 0.013813 0.710082 0.842664 0.023439 1.357643 0.013859 0.027913 -0.3381 -0.01138

Table 5. Detailed results of sample predictions for all models in Case II.

original data GM(1, 1) DGM(1, 1) NGBM(1, 1) FGM(1, 1) FANGBM(1, 1) FDGM(1, 1) FAGM(1, 1, tα) SFAGM(1, 1) FTDGM(1, 1)

value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%)

2000 17.16000 17.16000 0.00000 17.16000 0.00000 17.16000 0.00000 17.16000 0.00000 17.16000 0.00000 17.16000 0.00000 17.16000 0.00000 17.16000 0.00000 17.16000 0.00000
2001 18.06000 18.82005 4.20845 18.82585 4.24060 17.86657 1.07106 17.88208 0.98514 17.97555 0.46760 18.01160 0.26797 18.05600 0.02217 18.38095 1.77714 17.88691 0.95841
2002 19.09000 19.71342 3.26571 19.71940 3.29701 19.28682 1.03103 19.02757 0.32701 19.28981 1.04670 18.79021 1.57038 19.04868 0.21642 19.13100 0.21476 18.99752 0.48446
2003 19.87000 20.64921 3.92154 20.65535 3.95247 20.53576 3.35058 20.27518 2.03915 20.53240 3.33365 19.97212 0.51393 20.18861 1.60347 20.22175 1.77027 20.21783 1.75051
2004 21.50000 21.62942 0.60195 21.63574 0.63133 21.71814 1.01459 21.55442 0.25312 21.72064 1.02622 21.32322 0.82222 21.43146 0.31877 21.50000 0.00000 21.48390 0.07487
2005 22.84000 22.65616 0.80492 22.66265 0.77650 22.87573 0.15642 22.84000 0.00000 22.88042 0.17697 22.71382 0.55246 22.73486 0.46032 22.84088 0.00384 22.77050 0.30429
2006 24.03000 23.73163 1.24164 23.73830 1.21389 24.03000 0.00000 24.12059 0.37698 24.03000 0.00000 24.09185 0.25740 24.06636 0.15133 24.18552 0.64720 24.06443 0.14329
2007 25.09000 24.85816 0.92402 24.86501 0.89673 25.19380 0.41373 25.39045 1.19750 25.18206 0.36692 25.43852 1.38907 25.40245 1.24531 25.50950 1.67198 25.35728 1.06529
2008 27.03000 26.03817 3.66938 26.04520 3.64337 26.37572 2.42059 26.64648 1.41887 26.34580 2.53127 26.74806 1.04305 26.72650 1.12284 26.80358 0.83768 26.64270 1.43284
2009 27.48000 27.27419 0.74896 27.28140 0.72271 27.58195 0.37101 27.88692 1.48079 27.52822 0.17548 28.01985 1.96452 28.02706 1.99075 28.06501 2.12886 27.91522 1.58376
2010 29.34000 28.56888 2.62822 28.57628 2.60301 28.81736 1.78133 29.11078 0.78124 28.73494 2.06224 29.25521 0.28899 29.29650 0.14825 29.29383 0.15735 29.16958 0.58083
2011 30.53000 29.92503 1.98156 29.93261 1.95672 30.08590 1.45463 30.31753 0.69593 29.97062 1.83223 30.45619 0.24175 30.53000 0.00000 30.49123 0.12698 30.40042 0.42444
2012 31.75000 31.34556 1.27384 31.35333 1.24936 31.39101 1.13069 31.50691 0.76564 31.23932 1.60844 31.62504 0.39359 31.72476 0.07949 31.65885 0.28710 31.60190 0.46645
2013 32.68000 32.83351 0.46975 32.84148 0.49411 32.73574 0.17056 32.67883 0.00358 32.54467 0.41411 32.76393 0.25684 32.87948 0.61041 32.79844 0.36241 32.76755 0.26790
2014 33.89000 34.39211 1.48157 34.40025 1.50562 34.12292 0.68729 33.83333 0.16721 33.89000 0.00000 33.87495 0.04440 33.99392 0.30664 33.91174 0.06416 33.89000 0.00000
2015 34.96000 36.02468 3.04543 36.03302 3.06928 35.55523 1.70261 34.97052 0.03009 35.27845 0.91091 34.96000 0.00000 35.06858 0.31058 35.00042 0.11563 34.96079 0.00226

MAPEfit 1.89168 1.89079 1.04726 0.65764 0.99705 0.60041 0.53667 0.63533 0.59622
2016 36.20000 37.73476 4.23966 37.74328 4.26321 37.03524 2.30729 36.09056 0.30232 36.71305 1.41726 36.02081 0.49500 36.10448 0.26388 36.06601 0.37013 35.97011 0.63505
2017 36.77000 39.52601 7.49526 39.53472 7.51895 38.56547 4.88297 37.19364 1.15214 38.19671 3.88010 37.05896 0.78585 37.10298 0.90558 37.10993 0.92447 36.90653 0.37132
2018 36.91000 41.40229 12.17092 41.41118 12.19503 40.14842 8.77382 38.27999 3.71169 39.73235 7.64657 38.07588 3.15870 38.06567 3.13105 38.13348 3.31475 37.75671 2.29398
2019 37.25000 43.36763 16.42318 43.37671 16.44756 41.78659 12.17875 39.34982 5.63711 41.32284 10.93379 39.07286 4.89359 38.99424 4.68253 39.13784 5.06803 38.50500 3.36914
2020 36.26000 45.42627 25.27930 45.43554 25.30484 43.48249 19.91861 40.40340 11.42690 42.97108 18.50821 40.05109 10.45530 39.89046 10.01229 40.12412 10.65670 39.13309 7.92357
2021 37.52000 47.58264 26.81940 47.59208 26.84455 45.23867 20.57215 41.44095 10.45029 44.68000 19.08314 41.01164 9.30607 40.75607 8.62491 41.09330 9.52372 39.61944 5.59552
2022 39.13000 49.84136 27.37378 49.85097 27.39835 47.05774 20.26000 42.46273 8.51706 46.45257 18.71344 41.95548 7.22075 41.59280 6.29389 42.04630 7.45285 39.93878 2.06692

MAPEpre 17.11450 17.13893 12.69909 5.88536 11.45465 5.18789 4.84487 5.33010 3.17936
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Fig. 3. Optimal MAPEfit of model in Case II under PSO algorithm.

Table 6 shows that the evaluation metrics of the
FTDGM(1, 1) model are significantly lower than those of
other models. Specifically, the Pibas of the FTDGM(1,
1) model is 0.00054, which is the only value with
an absolute magnitude less than 0.001, and other
indicator values are also much lower than those of other
competing models. From Table 7, it can be seen that
the out-of-sample MAPEpre of the FTDGM model is
the lowest at 1.77%, and it is the only model with an
out-of-sample MAPE value less than 2%. Similarly, the
FAGM(1, 1, tα) model suffers from overfitting issues.
Upon observing Table 7, it is apparent that at certain
times, the point error of the FTDGM(1, 1) model is
greater than that of other models, but its point error
remains stable within a certain range, while the point
errors of other models fluctuate greatly, leading to larger
final out-of-sample MAPEpre values. Therefore, in this
case, the FTDGM(1, 1) model demonstrates excellent
out-of-sample predictive performance.

4.3 Discussion
Through in-depth discussion of three cases, it is evident
that the FTDGM(1, 1) model excels in maintaining
close alignment with the original data. This implies
its capability to effectively capture features and
patterns within the data, thus enabling more accurate
predictions. Compared to other models, FTDGM(1,
1) model consistently outperforms in out-of-sample
predictions, showcasing its strong generalization ability

to maintain robust predictive performance when faced
with new data. Across the entire sample, FTDGM(1,
1) model exhibits superior evaluation metrics compared
to other grey models. This underscores its prowess
in predictive accuracy and overall performance. The
following analysis will delve deeper into the predictive
capacity and practical performance of this model.

4.3.1 Comparison between the FTDGM(1,
1) model and some linear models

In all three cases, the FTDGM(1, 1) model consistently
demonstrates superior predictive performance
compared to other linear grey system models, both
in-sample and out-of-sample. Taking Case 4.2.1 as
an example, the GM(1, 1) model exhibits fitting errors
(MAPEfit) and prediction errors (MAPEpre) of 1.429%
and 17.667% respectively, while the DGM(1, 1) model
shows fitting errors (MAPEfit) and prediction errors
(MAPEpre) of 1.431% and 17.667%. In contrast, the
FTDGM(1, 1) model displays significantly lower fitting
errors (MAPEfit) and prediction errors (MAPEpre)
of 0.875% and 4.496% respectively. Similarly, in
Case 4.2.2 and Case 4.2.3, the FTDGM(1, 1) model
also demonstrates lower fitting errors (MAPEfit) and
prediction errors (MAPEpre), ranging from 0.596% to
0.792% for fitting errors (MAPEfit) and from 1.770% to
3.179% for prediction errors (MAPEpre).
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Fig. 4. Predicted values of all models in Case II.

Table 6. Overall-sample forecasting metrics for all models in Case III.

ARE MAE MAPE MPE MAAPE MSE RMSE RMSPE SMAPE U1 U2 AE Pibas

GM(1, 1) 0.026219 0.475659 2.621928 -1.89501 0.026154 0.708965 0.842 0.043555 2.539706 0.025202 0.051097 -0.36782 -0.02215
DGM(1, 1) 0.026254 0.47626 2.625419 -1.90357 0.026189 0.709948 0.842584 0.043585 2.543001 0.025219 0.051132 -0.36918 -0.02223

NGBM(1, 1) 0.021788 0.39498 2.178826 -1.55648 0.021745 0.52372 0.723685 0.037522 2.117887 0.021713 0.043917 -0.30281 -0.01831
FGM(1, 1) 0.012369 0.212056 1.236891 -0.50396 0.012362 0.138126 0.371653 0.020309 1.223195 0.011235 0.022554 -0.09933 -0.00608

FANGBM(1, 1) 0.021133 0.383099 2.113254 -1.41045 0.021091 0.509964 0.714118 0.037023 2.05492 0.021443 0.043336 -0.27818 -0.01684
FDGM(1, 1) 0.013202 0.228679 1.320176 -0.70533 0.013191 0.196389 0.443158 0.023746 1.298794 0.013378 0.026893 -0.13737 -0.00839

FAGM(1, 1, tα) 0.013036 0.230944 1.303585 -0.58376 0.013026 0.180938 0.425368 0.022661 1.284073 0.012851 0.025814 -0.11558 -0.00707
SFAGM(1, 1) 0.013626 0.236582 1.362569 -0.72118 0.013613 0.209839 0.458082 0.024468 1.339685 0.013826 0.027799 -0.1414 -0.00863
FTDGM(1, 1) 0.010894 0.183889 1.089439 0.038339 0.010892 0.077783 0.278896 0.015979 1.087835 0.008465 0.016925 0.00875 0.000539
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Fig. 5. Optimal MAPEfit of model in Case III under PSO algorithm.

Table 7. Detailed results of sample predictions for all models in Case III.

original data GM(1, 1) DGM(1, 1) NGBM(1, 1) FGM(1, 1) FANGBM(1, 1) FDGM(1, 1) FAGM(1, 1, tα) SFAGM(1, 1) FTDGM(1, 1)

value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%) value error(%)

2000 11.50000 11.50000 0.00000 11.50000 0.00000 11.50000 0.00000 11.50000 0.00000 11.50000 0.00000 11.50000 0.00000 11.50000 0.00000 11.50000 0.00000 11.50000 0.00000
2001 11.92000 12.06322 1.20148 12.06466 1.21356 11.92000 0.00000 11.81459 0.88434 11.91693 0.02573 11.89789 0.18550 11.92000 0.00000 11.89087 0.24439 11.92000 0.00000
2002 12.07000 12.43098 2.99071 12.43243 3.00270 12.37542 2.53042 12.23968 1.40579 12.35478 2.35940 12.31042 1.99187 12.10275 0.27134 12.31355 2.01783 12.26622 1.62571
2003 12.65000 12.80995 1.26444 12.81140 1.27593 12.80290 1.20872 12.69480 0.35414 12.78484 1.06596 12.74237 0.73016 12.67084 0.16476 12.74717 0.76815 12.68897 0.30808
2004 13.59000 13.20048 2.86624 13.20194 2.85550 13.22278 2.70211 13.16087 3.15767 13.20830 2.80871 13.18356 2.99073 13.19371 2.91606 13.18665 2.96801 13.14242 3.29345
2005 13.63000 13.60291 0.19875 13.60437 0.18801 13.64281 0.09395 13.63061 0.00449 13.63000 0.00000 13.63000 0.00000 13.68399 0.39613 13.63000 0.00000 13.60951 0.15032
2006 13.89000 14.01761 0.91873 14.01908 0.92929 14.06688 1.27341 14.10055 1.51582 14.05373 1.17875 14.07974 1.36603 14.15270 1.89126 14.07626 1.34098 14.08189 1.38148
2007 14.42000 14.44496 0.17306 14.44642 0.18324 14.49732 0.53618 14.56880 1.03187 14.48221 0.43141 14.53171 0.77466 14.60716 1.29792 14.52490 0.72744 14.55472 0.93426
2008 15.28000 14.88533 2.58293 14.88680 2.57332 14.93568 2.25339 15.03425 1.60832 14.91747 2.37260 14.98524 1.92908 15.05237 1.48976 14.97558 1.99230 15.02486 1.66975
2009 15.54000 15.33913 1.29263 15.34059 1.28319 15.38311 1.00960 15.49622 0.28173 15.36107 1.15142 15.43991 0.64409 15.49182 0.31006 15.42809 0.72015 15.49006 0.32138
2010 16.02000 15.80676 1.33111 15.80822 1.32196 15.84049 1.12053 15.95426 0.41033 15.81428 1.28412 15.89543 0.77759 15.92808 0.57377 15.88229 0.85960 15.94856 0.44597
2011 16.15000 16.28864 0.85848 16.29011 0.86754 16.30857 0.98189 16.40809 1.59810 16.27818 0.79370 16.35160 1.24829 16.36310 1.31952 16.33808 1.16461 16.39891 1.54122
2012 16.80000 16.78522 0.08795 16.78668 0.07928 16.78801 0.07138 16.85751 0.34234 16.75370 0.27561 16.80826 0.04919 16.79839 0.00957 16.79539 0.02743 16.83984 0.23716
2013 17.27000 17.29694 0.15600 17.29839 0.16440 17.27938 0.05429 17.30240 0.18758 17.24167 0.16402 17.26531 0.02714 17.23516 0.20173 17.25416 0.09171 17.27020 0.00114
2014 17.74000 17.82426 0.47497 17.82570 0.48310 17.78323 0.24367 17.74266 0.01500 17.74289 0.01628 17.72266 0.09772 17.67440 0.36976 17.71435 0.14457 17.68887 0.28823
2015 18.18000 18.36765 1.03220 18.36908 1.04007 18.30008 0.66049 18.17826 0.00957 18.25807 0.42944 18.18025 0.00137 18.11695 0.34680 18.17594 0.02235 18.09478 0.46873

MAPEfit 1.08936 1.09132 0.92125 0.80044 0.89732 0.80084 0.72240 0.81809 0.79168
2016 18.66000 18.92761 1.43416 18.92903 1.44176 18.83043 0.91334 18.60917 0.27240 18.78793 0.68561 18.63802 0.11781 18.56351 0.51708 18.63889 0.11315 18.48688 0.92776
2017 19.14000 19.50465 1.90515 19.50605 1.91248 19.37478 1.22662 19.03538 0.54660 19.33316 1.00919 19.09592 0.23028 19.01470 0.65463 19.10319 0.19234 18.86408 1.44160
2018 19.56000 20.09927 2.75699 20.10066 2.76409 19.93360 1.91002 19.45690 0.52711 19.89442 1.70971 19.55394 0.03098 19.47107 0.45466 19.56882 0.04509 19.22528 1.71125
2029 20.02000 20.71202 3.45664 20.71339 3.46347 20.50739 2.43450 19.87374 0.73059 20.47239 2.25967 20.01204 0.03977 19.93309 0.43411 20.03578 0.07881 19.56935 2.25098
2020 18.96000 21.34345 12.57094 21.34480 12.57804 21.09662 11.26912 20.28592 6.99325 21.06773 11.11672 20.47019 7.96515 20.40122 7.60136 20.50405 8.14373 19.89513 4.93212
2021 20.20000 21.99413 8.88183 21.99545 8.88838 21.70180 7.43467 20.69348 2.44295 21.68112 7.33230 20.92839 3.60588 20.87585 3.34579 20.97363 3.82987 20.20138 0.00685
2022 20.26000 22.66465 11.86894 22.66594 11.87534 22.32342 10.18469 21.09644 4.12851 22.31325 10.13450 21.38661 5.56075 21.35737 5.41642 21.44452 5.84659 20.48684 1.11963

MAPEpre 6.12495 6.13194 5.05328 2.23449 4.89253 2.50723 2.63201 2.60708 1.77003

These results underscore the FTDGM(1, 1)
model’s advantage in maintaining robust predictive
performance, particularly in out-of-sample predictions.
It is noteworthy that the linear models exhibit larger
and less stable point errors in-sample, leading to
relatively poorer out-of-sample predictive performance.
Therefore, compared to linear grey system models, the
FTDGM(1, 1) model showcases stronger generalization
capabilities and more accurate predictive performance,
providing reliable support for practical applications.

4.3.2 Comparison between the FTDGM(1,
1) model and some nonlinear
models

In terms of out-of-sample predictive performance,
the FTDGM(1, 1) model consistently demonstrates
outstanding predictive capability across three different
cases. Examining the convergence curves of MAPEfit
in these cases, it is evident that the MAPEfit values
of the FAGM(1, 1, tα) model are consistently lower
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Fig. 6. Predicted values of all models in Case III.

than those of the FTDGM(1,1) model. However, it is
noteworthy that despite the lower fitting error exhibited
by the FAGM(1, 1, tα) model, the FTDGM(1, 1) model
outperforms it in terms of out-of-sample MAPEpre.
This phenomenon strongly suggests the possibility of
overfitting in the FAGM(1, 1, tα) model.

In the three cases, the out-of-sample MAPEpre for the
FTDGM(1, 1) model are 4.496%, 3.179%, and 1.770%,
respectively. Compared to other nonlinear grey system
models, the FTDGM(1, 1) model exhibits relatively

stable errors at each point, avoiding sudden spikes in
error, which is a significant advantage. Interestingly,
for data with certain fluctuation characteristics, the
FTDGM(1, 1) model consistently captures trends more
accurately, resulting in predicted values that closely
align with the original data, a feat that other competing
models struggle to achieve. Therefore, the FTDGM(1,
1) model stands out in terms of out-of-sample predictive
performance, particularly in stability and adaptability to
data with fluctuating patterns.
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5 CONCLUSIONS AND
RECOMMENDATION

5.1 Conclusions
This study employed the fractional time delayed
grey model (FTDGM(1, 1)) to forecast the primary
energy consumption in South and Central America,
the Middle East, and the Africa. By utilizing thirteen
comprehensive evaluation criteria, the performance
of eight different grey system models was compared,
and model parameters were optimized using the
particle swarm optimization algorithm. The results
clearly indicate that most linear grey system models
perform poorly in these scenarios. While some
nonlinear grey models outperform linear ones in terms
of performance, their out-of-sample errors (MAPEpre)
are still significantly higher than those of the FTDGM(1,
1) model.

In comparison to the other eight grey models, the
FTDGM(1, 1) model exhibited superior performance,
further validating the feasibility of this modeling
approach in constructing accurate grey system models.
The findings suggest that the FTDGM(1, 1) model
holds promise as a reliable decision support tool for
future energy forecasting. The potential applications
of this achievement are extensive, as it can contribute
to advancing decision-making and management in
the energy sector, providing robust support for the
development of related industries.

5.2 Recommendation
Based on the analysis and findings of this study, the
following recommendations are proposed:

1. Decision-makers in South America, Central
America, the Middle East, and Africa should
prioritize accurately predicting the major trends
in energy consumption, formulate effective
long-term energy policies, and ensure energy
security.

2. Enterprises and industries in these regions
should utilize accurate energy consumption
forecasts to optimize production plans, enhance
energy efficiency, and reduce operational costs.

3. Researchers should continue to explore and
develop advanced modeling techniques to
improve the accuracy and reliability of energy
consumption forecasts.
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