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Abstract

The existence of non-linear relationship between study and auxiliary variable may show a false positive or
negative correlation between them. This challenge coupled with nonresponse will lead to bias estimate and
wrong conclusions. Therefore, this study developed an improved estimator for finite population mean when
nonignorable nonresponse is present. With the aid of auxiliary variable, using stratified random sampling,
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the study proposed an estimator using the direct generalized ratio estimator. Statistical properties of the
proposed estimator such as bias and mean square error up to second order of approximation were obtained.
Simulation and empirical studies were performed on the derived statistical properties of the proposed
estimator using linear and nonlinear populations. The simulation and empirical studies indicated that the
proposed estimator (R̂DG,2,i) works better with nonlinear population. The numerical demonstrations further
indicated that proposed estimator was found to be less bias and more consistent but less efficient in terms
of mean square error when compared with that of Ashutosh [1]. Therefore, the referenced estimator may
prove to be useful when the focus is on inference. However, when emphasis shifts to estimation, the proposed
estimator (R̂DG,2,i) is preferred.

Keywords: Nonignorable nonresponse; finite population; product estimator.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 Introduction

Most often, survey practitioners are challenged with nonignorable nonresponse and the possible bias associated
with it. Nonresponse is often recorded in survey sampling as some of the subjects chosen for the sample do
not contribute information or data, either by refusal or unable to reply [2]. Nonresponse can either be missing
data at random, missing data completely at random or missing data not at random. Missing Completely
at random (MCAR) happens when a missing observation does not depend on the observed and unobserved
variable. Whereas Missing at random (MAR) also comes about when the missing data do not depend on the
observed covariates and in such instance, covariate balancing can still be used to produce consistent estimation.
The latter type of nonresponse is of grave concern to survey statisticians. Because the missing data depends
on both the observed and unobserved data and thus termed as nonignorable nonresponse [3, 4]. Deleting
such missingness will lead to biased estimates and wrong conclusion on the population parameters due to the
introduction of complexities such as selection bias, undercoverage, reduced sample size, increased variability,
imputation challenge, nonresponse bias, resource and cost implication [5].

The use of auxiliary variables can remove the complexities and reduce the bias as a result of nonresponse. But
that comes with the challenge of availability and quality of the auxiliary variables and model assumptions [6, 7].
Diverse statistical techniques are available, primarily relying on either model-based or design-based methods,
to address the challenges and complexities presented by nonignorable nonresponse in sample survey. Although,
neither of these fundamental methods can simultaneously provide both robustness and efficiency, the model based
approach is able to yield a superior compromised results [8]. Ratio, product and linear regression estimators are
example of model based approaches available to suitably obtain unbiased or less bias estimators when there is
nonresponse [3]. However, coupled with nonlinearity and nonignorable nonresponse, linear regression is unable
to adequately capture how the study variable and the auxiliary variable are related [9]. The ratio estimator
is beneficial only if the study and auxiliary variables have positive relationship but performs poorly if their
association is negative [10]. And Because there maybe nonlinear relationship between the study variable and the
auxiliary variable, a false positive or negative correlation can occur between them [11]. Joshua and Okon [12]
used calibrations approach with subsampling nonresponse and proposed an estimator. But if the relationship
between the study and the auxiliary variables is nonlinear, calibration approach alone may not fully enhance the
performance of an estimator. The work of Makhdum et al. [13] also proposed a modified regression-cum ratio
estimator. Their estimator might not work well where the the relationship between the study and the auxiliary
variables is highly nonlinear.

The direct ratio estimator frequently used for estimating population mean, assumes there is a linear relationship
between the auxiliary variable and the study variable [2]. And violation of this assumption, coupled with
the presence of nonignorable nonresponse, can result in increased bias and inaccurate results [14]. In many
industries, complex demands such as privacy concerns and the sensitivity of information often cause the presence
of nonignorable nonresponse units within the strata of subpopulations during sample surveys. This situation
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is compounded when the auxiliary variable and the study variable are nonlinearly related. Tikkwal and Ghiya
[15] suggested a generalized direct ratio estimator to get over this restriction of linearity assumption and false
direction of correlation. The Tikkwal and Ghiya [15] estimator used a non-linear function of the auxiliary variable
in their estimation process, thus allowing for a more flexible relationship between the auxiliary variable and the
study variable. Ashutosh [1] revealed that in situation where nonignorable nonresponse is present, the Tikkwal
and Ghiya [15] estimator performed better than other competing estimators. But the estimator of Ashutosh [1]
is unable to overcome the assumption of linearity and hence, will be challenged when the relationship between
the study and auxiliary variable. Furthermore, literature acknowledged heterogeneous population confronted by
sample surveyors introduces bias in the estimation of population parameters [16, 17]. In such instance, the use
of stratification helps reduce variability and improve the accuracy of parameter estimates [6] as suggested by
[17] and Zahid et al. [18]. This article therefore, seeks to propose an improved estimator for finite population
mean where there is high rate of nonignorable nonresponse present.

2 Methodology

2.1 Mean and variance in the presence of nonignorable nonresponse

Nonignorable nonresponse sample mean estimator is defined as the average of a set of sampled data with data
missing not at random present [19].

2.1.1 For the study variable

The mean of the response population of the study variable Y is

Ȳ1 =
1

YN1

YN1∑
i=1

YN1i
,

and that of nonignorable nonrespondents population of the study variable is

Ȳ2 =
1

YN2

YN2∑
i=1

YN2i
.

Where YN1 and YN2 represent response and nonignorable nonresponse population sizes respectively. Therefore,
the population mean of the study variable is

Y = W1Y 1 +W2Y 2 [20]. (2.1)

where; W1 =
YN1
YN

and W2 =
YN2
YN

.

For the sampled population; mean of the response sample of the study variable is

ȳ1 =
1

yn1

yn1∑
i=1

yyi .

Hansen and Hurwitz [21] approach of subsampling to solving the problem of nonresponse is considered and
presented as follows;

1. Simple random sample without replacement of size n is selected.
2. A subsample of size r =

yn2i
k

, where k ≥ 1 from nonignorable nonrespnse sampled population (yn2i) units in
the initial attempt of the survey.
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Because y2r is unbiased for y2 of the yn2 , mean of the nonignorable nonresponse subsample of the study variable
is considered as

y2r =
1

yn2r

yn2r∑
i=1

yn2i . (2.2)

From equation (2.1) the sample mean y∗ of the study variable with nonignorable nonresponse present is written as

y∗ = w1yn1
+ w2y2r (2.3)

with variance var(y∗) =
(1− f)

yn
S2
y −

W2(k − 1)

yn
S2
y2 [20]. (2.4)

2.1.2 For the auxiliary variable

The population mean of the auxiliary variable is given by

X = W1X1 +W2X2[20]. (2.5)

Also, from equations (2.2) and (2.5) the sample mean (x∗) of the auxiliary variable with nonignorable nonresponse
present is written as

x∗ = w1xn1 + w2x2r (2.6)

with variance var(x∗) =
(1− f)

xn
S2
x −

W2(k − 1)

xn
S2
x2 [20]. (2.7)

where; f = xn
Xn

.

3 The Proposed Estimator

The generalized direct ratio estimator for subpopulation mean with nonignorable nonresponse present is given as

RDG,i = y∗i

(
x∗i

Xij

)α
[1]. (3.1)

From equation (3.1) various estimators are obtained as

RDG,i = y∗i if α = 0,

RDG,i = y∗i
x∗i

Xij

if α = 1,

RDG,i = y∗i
Xij

x∗i
if α = −1,

RDG,i = y∗i

(
x∗i

Xij

)2

if α = 2,

RDG,i = y∗i

(
Xij

x∗i

)2

if α = −2. (3.2)
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From equation (3.2), Ashutosh [16] proposed an estimator by considering α = −1. This study considers the case
where α = 2. Hence, the proposed estimator is

RDG,i = y∗i

(
x∗i

Xij

)2

. (3.3)

3.1 Notation

Consider an independent subpopulations from a finite population Ui (i = 1, 2, 3, . . . , Q) of size N . Each of these
subpopulations are stratified into jth strata (j = 1, 2, 3, · · · , q) of ith subpopulations Uij with size Nij . A random
Sample Sij with size nij through simple random sampling without replacement(SRWR) is drawn from the jth

stratum of the ith subpopulation of Uij . Taking (xi, yi) to be the auxiliary and the study variables respectively,

let the population size (YN ) of the study variable be subdivided as YN1 and YN2 for response and nonresponse
population dichotomy.

Where;
Y1i is the response population of the study variable and YN1i is the response population size of the study variable
of the ith subpopulation.
Y2i represents nonignorable nonresponse population of the study variable and YN2i is the nonignorable nonresponse
population size of the study variable of the ith subpopulation.
The auxiliary variable is also presented as:
X1i is the response population of the auxiliary variable and XN1i is the response population size of the auxiliary
variable of the ith subpopulation. X2i is the nonignorable nonresponse population of the auxiliary variable and
XN2i denotes the response population size of the ith subpopulation for the nonignorable nonresponse.

The subpopulation means of the study and auxiliary variables for the response population are;

Ȳ1i : ith subpopulation mean of the YN1i observations.
X̄1i : ith subpopulation mean of the XN1i observations.
Ȳ1ij : mean of the jth stratum of the ith subpopulation of YN1ij observations.

X̄1ij : mean of the jth stratum of the ith subpopulation of XN1ij observations.

x̄1ij : sample mean of the jth stratum of the ith subpopulation of xn1ij observations.

x̄1ij : sample mean of the jth stratum of ith subpopulation of xn1ij observations.
The subpopulation means of the study and auxiliary variables for the nonresponse population are;
Ȳ2i : ith subpopulation mean of the YN2i observations.
X̄2i : ith subpopulation mean of the XN2i observations.
Ȳ2ij :jth stratum mean of the ith subpopulation of YN2ij observations.

X̄2ij : jth stratum mean of the ith subpopulation of XN2ij observations.

ȳ2ij : sample mean of the jth stratum of the ith subpopulation of yn2ij observations.

x̄2ij : sample mean of the jth stratum of the ith subpopulation of xn2ij observations.

A subsample of size r =
yn2ij

k
, where k ≥ 1 from nonignorable nonrespnse sampled population (yn2ij and xn2ij )

units in the initial attempt of the survey on the jth stratum of the ith subpopulation.

Thus,
∑J
j=1W1ijY 1ij = Y 1i,

∑J
j=1WijXij = X1i,W1ij =

YN1ij

YNij
, and∑J

j=1W2ijY 2ij = Y 2i,
∑J
j=1W2ijX2ij = X2i,W2ij =

XN2ij

XNij
.
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3.2 Finite Population Mean using the Proposed Estimator

The population mean of jth stratum of the study and auxiliary variables of the ith subpopulation are

Y i =

J∑
j=1

W1ijY 1ij +

J∑
j=1

W2ijY 2ij . (3.4)

Xi =

J∑
j=1

W1ijX1ij +

J∑
j=1

W2ijX2ij . (3.5)

Using the subsampling together with equations (3.4) and (3.5), the sample mean of the study variable y∗i and
auxiliary variables x∗i with nonignorable nonresponse present is

y∗i =

J∑
j=1

W1ijy1ij +

J∑
j=1

W2ijyn2rij . (3.6)

x∗i =

J∑
j=1

W1ijx1ij +

J∑
j=1

W2ijxn2rij . (3.7)

Substituting equations (3.6) and (3.7) into equation (3.3) gives the ith subpopulation mean as

R̂(DG,2,i) =

( J∑
j=1

W1ijy1ij +

J∑
j=1

W2ijyn2rij

)(∑J
j=1W1ijx1ij +

∑J
j=1W2ijxn2rij

Xij

)2

. (3.8)

3.3 Bias and Mean Squared Error of the Proposed Estimator

Using the large sample approximations, the following are defined:

Let e0 =
y∗i − Y ji
Y ji

, e1 =
x∗i −Xji

Xji

, so that

y∗i = Y ji(1 + e0) and x∗i = Xji(1 + e1),

E(e0) = 0, E(e1) = 0,

E(e20) =
1

Y
2
ij

(y∗ij − Y ij)
2,

=
Nij − nij
Y

2
ijNijnij

S2
ij ,

E(e21) =
1

X
2
ij

(x∗ij −Xij)
2,

=
Nij − nij
X

2
ijNijnij

S2
ij ,

E(e0e1) =
1

XijY ij
(x∗ij −Xij)(y

∗
ij − Y ij),

=
1

XijY ij
(SXijYij ) [22]. (3.9)
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Therefore, substituting equations (2.4) and (2.7) into equation (3.9) gives

E(e20) =
Nij − nij
Njinij

C2
Yij

+
(kij − 1)w2ij

nij
C2
Y2ij

,

E(e21) =
Nij − nij
Nijnij

C2
Xij

+
(kij − 1)w2ij

nij
C2
X2ij

,

E(e0e1) =
Nij − nij
Nijnij

CXYij +
(kij − 1)w2ij

nij
C2XYij . (3.10)

Where;

S2
Yij

=
1

Nij − 1

Nij∑
k=1

(yijk − Y ij)
2,

S2
Xij

=
1

Nij − 1

Nij∑
k=1

(xijk −Xij)
2,

ρSYijSXij = SXijYij ,

CYij =
Syij
yij

,

CXij =
Sxij
xij

,

CXYij =
Sxyij
xijyij

.

Where; ρ is the population correlation coefficient between X and Y , CXij and CYij represent coefficient of
variation related to X and Y respectively.

3.3.1 Bias of the of the Proposed Estimator

Using the large sample approximations, equation (3.3) is now stated as

RDG,2,i = Y ij(1 + e0)

(
Xij(1 + e1)

Xij

)2

= Y ij(1 + e0)(1 + e1)2.

Assuming |e1| < 1 which means

∣∣∣∣ (x−X)

X

∣∣∣∣ < 1, implies, possible estimate x̄ of the population X̄ lies between 0

and 2X̄. This holds if the variation in x̄ is not large. As a result, it is assumed that the sample n is fairly large.
And when the sample size is large, quantities of e0 and e1 are likely to be small and as such terms involving
third and higher power of e0 and e1 will be negligible.
That is, R̂DG,2,i − Y i = Y i(e0 − e1) and E(Y i(e0 − e1)) = 0.

It can be seen that first order approximation produces unbiased ratio estimator of the population mean.
Considering terms involving powers more than two negligible, then the approximation of the estimated mean is
given as:

RDG,2,i = Y ij(e0e
2
1 + 2e0e1 + e21 + e0 + 2e1 + 1). (3.11)

Then the bias of R̂DG,2,i is given by

Bias(R̂DG,2,i) = E(Y ij(e0e
2
1 + 2e0e1 + e21 + e0 + 2e1 + 1))− Y i.
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Taking expectation yields

Bias(R̂DG,2,i) = Y i(2e0e1 + e21). (3.12)

Substituting equation (3.10) into Equation 3.12 gives

Bias(R̂DG, 2, i) =

J∑
j=1

WijY ij

[
2

(
Nij − nij
Nijnij

CXYij +
(kij − 1)w2ij

nij
CXY2ij

)

+
Nij − nij
Nijnij

C2
Xij

+
(kij − 1)w2ij

nij
C2
X2ij

]
. (3.13)

From equation (3.13), bias reduces with an increasing sample size and this holds only with second order
approximation.

3.3.2 Mean Squared Error of the Proposed Estimator

From equation (3.11), the MSE of RDG,2,i is given as

MSE(R̂DG,2,i) = 4Y
2
i e0e1 + 4Y

2
i e

2
1 + Y

2
i e

2
0. (3.14)

Subtituting equation (3.10) into equation (3.14) gives

MSE(R̂DG,2,i) =

J∑
j=1

W 2
ijY

2
ij

[
4

(
Nij − nij
Nijnij

CXYij +
(kij − 1)w2ij

nij
CXY2ij

)

+4

(
Nji − nij
Nijnij

C2
Xij

+
(kij − 1)w2ij

nij
C2
X2ij

)
+

(
Nij − nji
Nijnji

C2
Yij

+
(kij − 1)w2ij

nij
C2
Y2ij

)]
. (3.15)

Equation (3.15) is the mean squared error of the direct generalized ratio estimator when α = 2.

The optimum performance of equation (3.15) is achieved when sample size is fairly large with increased correlation
between x and y.

The large sample representation of the direct generalized ratio estimator is

RDG,α,i = Y ij(1 + e0)(1 + e1)α. (3.16)

Applying Binomial expansion on equation (3.16) up to second order of approximation gives;

RDG,α,i = Y ij + Y ijαe1 +
Y ijα

2e21
2

− Y ijαe
2
1

2
+ Y ije0 + Y ijαe0e1

+
Y ijα

2e31
2

− Y ijαe0e
2
1

2
.

(3.17)

with bias

Bias(R̂DG,α,i) =
Y iα(α− 1)e21

2
+ Y iαe0e1. (3.18)
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with equivalent presentation given by

Bias(R̂DG,α,i) =

J∑
j=1

WijY ij
α(α− 1)

2

[
Nij − nij
Nijnij

C2
Xij

+
(kij − 1)w2ij

nij
C2
X2ij

]

+α

J∑
j=1

WijY ij

[
(Nij − nji)
Nijnij

CXYij +
(kij − 1)w2ij

nij
CXY2ij

]
. (3.19)

and MSE given by

MSE(R̂DG,α,i) =

J∑
j=1

W 2
ijY

2
ij

[(
Nij − nij
Nijnij

C2
Yij

+
(kij − 1)w2ij

nij
C2
Y2ij

)

+α2

(
Nij − nij
Nijnij

C2
Xij

+
(kij − 1)w2ij

nij
C2
X2ij

)
+2α

(
Nij − nij
Nijnij

CXYij +
(kij − 1)w2ij

nij
CXY2ij

)]
.

(3.20)

3.4 The Optimum α

The optimum value of α is obtain by partially differentiating Equation 3.18 with respect to α. Thus,

∂

∂α
Bias(R̂DG,α,i) =

∂

∂α

[
Y iα(α− 1)e21

2
+ Y iαe0e1

]
=
Y i
2

[
2αe21 − e21

]
+ Y ie0e1.

Solving for α gives

Y i
2

[
2αe21 − e21

]
+ Y ie0e1 = 0

=⇒ α = −
[
e0e1
e21

]
+

1

2
. (3.21)

Substituting equation (3.10) into equation (3.21) gives

αopt =
1

2
−

Nij−nij

Nijnij
CXYij +

(kij−1)w2ij

nij
C2XYij

Nij−nij

Nijnij
C2
Xij

+
(kij−1)w2ij

nij
C2
X2ij

. (3.22)

Substituting equation (3.22) into equation (3.19) gives
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Bias(R̂DG,αopt,i) =

J∑
j=1

WijY ij

(
1

2
−

Nij−nij

Nijnij
CXYij +

(kij−1)w2ij

nij
C2XYij

Nij−nij

Nijnij
C2
Xij

+
(kij−1)w2ij

nij
C2
X2ij

)

×

[( 1
2
−

Nij−nij
Nijnij

CXYij
+

(kij−1)w2ij
nij

C2XYij

Nij−nij
Nijnij

C2
Xij

+
(kij−1)w2ij

nij
C2

X2ij

)
− 1

2

]

×
[
Nij − nij
Nijnij

C2
Xij

+
(kij − 1)w2ij

nij
C2
X2ij

]

+

(
1

2
−

Nij−nij

Nijnij
CXYij +

(kij−1)w2ij

nij
C2XYij

Nij−nij

Nijnij
C2
Xij

+
(kij−1)w2ij

nij
C2
X2ij

)

×
J∑
j=1

WijY ij

[
(Nij − nji)
Nijnij

CXYij +
(kij − 1)w2ij

nij
CXY2ij

]
. (3.23)

For optimum MSE, substituting equation (3.22) into equation (3.20) gives

MSE(R̂DG,αopt,i) =

J∑
j=1

W 2
ijY

2
ij

[(
Nij − nij
Nijnij

C2
Yij

+
(kij − 1)w2ij

nij
C2
Y2ij

)

+

(
1

2
−

Nij−nij

Nijnij
CXYij +

(kij−1)w2ij

nij
C2XYij

Nij−nij

Nijnij
C2
Xij

+
(kij−1)w2ij

nij
C2
X2ij

)2

×
(
Nij − nij
Nijnij

C2
Xij

+
(kij − 1)w2ij

nij
C2
X2ij

)

+

(
1− 2

[ Nij−nij

Nijnij
CXYij +

(kij−1)w2ij

nij
C2XYij

Nij−nij

Nijnij
C2
Xij

+
(kij−1)w2ij

nij
C2
X2ij

])

×
(
Nij − nij
Nijnij

CXYij +
(kij − 1)w2ij

nij
CXY2ij

)]
. (3.24)

From equation (3.24), an increase in coefficient of variation of the auxiliary variable will lead to a reduction of
MSE(R̂DG,αopt,i). Whilst in equation (3.15), an increase in the coefficient of variation of the auxiliary variable

causes an increase in MSE(R̂DG,2,i).

To obtain the optimum mean of the ith subpopulation, substituting equations (3.22), (3.6) and (3.7) into equation
(3.1) gives

R̂(DG,αopt,i) =

( J∑
j=1

W1ijy1ij +

J∑
j=1

W2ijyn2rij

)

×
(∑J

j=1W1ijx1ij +
∑J
j=1W2ijxn2rij

Xij

)[ 1
2
−

Nij−nij
Nijnij

CXYij
+

(kij−1)w2ij
nij

C2XYij

Nij−nij
Nijnij

C2
Xij

+
(kij−1)w2ij

nij
C2
X2ij

]
. (3.25)
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4 Simulation Study

A simulation study was conducted to assess the performance of the proposed estimator. The simulation was
performed using linear and nonlinear populations. The linear and nonlinear populations were population I and
Population II respectively each of size 2000. Data for Population I were generated using the linear model.

Yi = 1 + 2(xi − 0.5) + ei. (4.1)

And for Population II, the nonlinear model used in generating the data is given by

Yi = cos(1 + 2(xi − 0.5)2) + ei. (4.2)

The study considered Y as the study variable and X as the auxiliary variable. The auxiliary variable X is
assumed to be uniformly distributed within a range of [0, 1]. The error term ei is assumed as a standard normal
variable, ei ∼ N (0, 1). Each population was divided into four subpopulations based on the 10th, 20th, 30th and
40th percentiles as D10%, D20%, D30% and D40% respectively. The subpopulations were each further divided
into two tiers at the 40th and 60th percentiles as strata 1 and 2 respectively. In addition, the study considered
two cases (case I and case II) of nonignorable nonresponse for each of the populations.

Case I: Approximately 30% of the population consist of nonrespondents and are available in both subpopulations
and then in strata.

Case II: Two categories (20% and 40%) of nonrespondnets are respectively available in strata 1 and 2.

4.1 Population I

Table 1 presents descriptive statistics of various subpopulations under population I. It displays the average
values and variances of the study variable and auxiliary variable of the subpopulation-strata combination.
The covariances and correlation coefficients between the study variable and auxiliary variable of the various
subpopulations-strata combination are also indicated.

Table 1. Summary statistics for subpopulations and strata under population I

Subpopulations Strata Nij nij Wij Y ij Xij S2
Yij

S2
Xij

SXYij ρXYij

D10% 1 80 53.3 0.4 1.0900 0.5400 2.2500 0.0900 0.3092 0.6816

2 120 80.0 0.6 0.9600 0.4900 1.4400 0.2401 0.2209 0.6523

D20% 1 160 80.0 0.4 1.1000 0.5100 1.2321 0.0841 0.1678 0.5207

2 240 120.0 0.6 0.9900 0.5300 1.3689 0.0900 0.1794 0.5105

D30% 1 240 96.0 0.4 0.9400 0.5000 1.2544 0.0841 0.1404 0.4351

2 360 144.0 0.6 1.1000 0.5100 0.0841 1.2996 0.1803 0.5539

D40% 1 320 107.0 0.4 0.9700 0.5100 1.3689 0.0900 0.2058 0.5920

2 480 160.0 0.6 1.0500 0.5100 1.4641 0.0841 0.1795 0.5167

Compared with auxiliary variable in Table 1, the study variable generally presents higher variances for all
subpopulation-strata combination except stratum 2 of subpopulation D30%. Indicating largely that there
is greater variability in the study variable than the auxiliary variable. The covariance values indicate the
joint variability of the two variables. Positive covariance suggests that the variables have a tendency to move in
tandem. In a similar vein, an inverse relationship is indicated by a negative covariance. Generally, the covariance
values as presented are positive indicating the study variable and the auxiliary variable vary together in the
positive direction for the various subpopulations. But the strength of association between the two variables is
not solely indicated by the magnitude of the covariance; therefore, correlation coefficients are necessary. The
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correlation coefficients as presented, indicate generally a moderately high level of linear relationship between the
study variable and the auxiliary variable.

Table 2 presents summary statistics for subpopulations and strata on nonignorable nonresponse case I for
population I. It indicates the average values of nonignorable nonresponse sample and subsample of both the
study and auxiliary variables for the various subpopulations. The table also contains the variances of both the
study variable and auxiliary variable for case I of nonignorable nonresponse. As contained in the table, the
study variable presents generally large variances across all the subpopulations compared with auxiliary variable.
Indicating greater variability in the study variable than the auxiliary variable. the table further presents values
on covariance with their corresponding correlation coefficient between the study variable and auxiliary variable.
It can be observed from the table that there is moderately high linear correlation between the study variable
and the auxiliary variable.

Table 2. Summary statistics for subpopulation and strata for case I under population I

Sub-population Strata N2ij W2ij n2ij Kij n2rij y2ij y2rij x2ij x2rij S2
Y2ij

S2
X2ij

SXY2ij ρXY2ij

D10% 1 24 0.3 20 2 10 0.5700 0.7262 0.5000 0.4703 1.6129 0.0961 0.2713 0.6804

2 36 0.3 28 2 14 0.8900 0.5747 0.5100 0.4805 1.3456 0.0900 0.2504 0.7270

D20% 1 48 0.3 34 2 17 0.8900 1.1907 0.4300 0.4312 1.2996 0.0625 0.1637 0.5761

2 72 0.3 45 2 23 1.0000 0.9470 0.5400 0.5402 1.3456 0.0900 0.1534 0.4441

D30% 1 72 0.3 45 2 23 0.9900 1.0249 0.5100 0.5000 1.5625 0.0784 0.1731 0.4928

2 108 0.3 56 2 28 1.2300 1.2057 0.5300 0.5113 1.3456 0.0961 0.2063 0.5702

D40% 1 96 0.3 53 2 27 0.9000 0.6659 0.4600 0.3784 1.4641 0.0900 0.2172 0.6032

2 144 0.3 65 2 33 1.0400 1.3876 0.4900 0.5374 1.5376 0.7840 0.1914 0.5478

Table 3 presents descriptive statistics for subpopulations and strata on case II of nonignorable nonresponse for
population I. It displays the average values of nonignorable nonresponse samples and sub-samples for both the
study variable and the auxiliary variable. It further provides information on the variances of the nonignorable
nonresponse case II. Concerning variance, the study variable generally exhibits larger values compared to the
auxiliary variable, indicating greater variability in the study variable than in the auxiliary variable. The
covariance and correlation coefficient values between the study variable and auxiliary variable for the case II of
nonignorable nonresponse suggest the study variable varies alongside the auxiliary variable, exhibit moderately
high linear relationship.

Table 3. Summary statistics for subpopulation and strata for case II under population I

Sub-population Strata N2ij W2ij n2ij Kij n2rij y2ij y2rij x2ij x2rij S2
Y2ij

S2
X2ij

SXY2ij ρXY2ij

D10% 1 16 0.2 13 2 7 0.7900 0.6592 0.5600 0.3921 1.7424 0.0784 0.2215 0.6076

2 48 0.4 28 2 14 0.7700 0.8749 0.5000 0.4989 1.4400 0.0900 0.2538 0.7064

D20% 1 32 0.2 23 2 12 0.8300 0.7006 0.3900 0.2970 1.1236 0.0576 0.1297 0.4994

2 96 0.4 60 2 30 1.0001 1.0261 0.5500 0.5370 1.5376 0.0900 0.1979 0.5364

D30% 1 48 0.2 30 2 15 1.0400 1.1330 0.5000 0.5305 0.0784 1.6384 0.1851 0.5091

2 144 0.4 76 2 38 1.2000 1.0886 0.5000 0.4755 1.2100 0.0900 0.1835 0.5424

D40% 1 64 0.2 36 2 18 0.4500 1.1325 0.8100 0.4950 1.5129 0.0900 0.2272 0.6182

2 192 0.4 87 2 44 1.0400 1.3107 0.5000 0.4873 1.5625 0.0784 0.1937 0.5461

Table 4 displays the biases and the mean squared errors of the estimators based on subpopulations.

In Table 4, whilst the estimator by Ashutosh [15] has large negative biases, the proposed estimator (R̂DG,2,i)
exhibits smaller positive biases. Furthermore, it can be observed that the MSES of the estimator by Ashutosh
[15] are generally smaller than that of the proposed estimator (R̂DG,2,i). Suggesting that the estimator by
Ashutosh [15] performs better than the proposed estimator (R̂DG,2,i).
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Table 4. Bias and MSE of Estimators in both Case I and II for Population I Based on
Subpopulation

Case Subpopulation Ni Bias MSE

R̂DG,−1,i R̂DG,2,i R̂DG,−1,i R̂DG,2,i
Case I D10% 200 -1.0022 0.0116 0.0054 0.0356

D20% 400 -1.0286 0.0077 0.0039 0.0159
D30% 600 -1.0130 0.0205 0.0086 0.0479
D40% 800 -1.0130 0.0112 0.0057 0.0238

Case II D10% 200 -1.0019 0.0142 0.0057 0.0281
D20% 400 -1.0280 0.0079 0.0041 0.0166
D30% 600 -1.0196 0.0253 0.0116 0.0549
D40% 800 -1.0130 0.0079 0.0038 0.0162

4.2 Population II

The descriptive statistics of population II obtained using equation (4.2) are contained in Table 5. It indicates
the study variable generally demonstrates greater variability compared to the auxiliary variable across all
subpopulation-stratum combinations.

Table 5. Summary statistics for subpopulations and strata under population II

Subpopulations Strata Nij nij Wij Y ij Xij S2
Yij

S2
Xij

SXYij ρXYij

D10% 1 80 53.3 0.4 0.3800 0.5400 1.4161 0.0900 0.1256 0.3484

2 120 80 0.6 0.4900 0.4900 0.8464 0.0784 0.0610 0.2336

D20% 1 160 80 0.4 0.5100 0.4800 0.9409 0.0841 -0.0030 -0.0108

2 240 120 0.6 0.3100 0.5300 1.0816 0.0900 -0.0093 -0.0300

D30% 1 240 96 0.4 0.3300 0.5000 1.0404 0.0841 -0.0245 -0.0829

2 360 144 0.6 0.4700 0.5100 0.9025 0.0841 0.0115 0.0426

D40% 1 320 107 0.4 0.3400 0.5100 0.9216 0.0900 0.0300 0.1060

2 480 160 0.6 0.4200 0.5100 1.1236 0.0841 0.0098 0.0322

Table 5 further displayed positve covariances for some subpopuation and negative covariances for other subpopula-
tions. Indicating that the study and auxiliary variables tend to vary in positive or negative direction depending
on the subpopulation. Examining the correlation coefficients, there appears to be generally a very low level of
linear relationship between the study variable and auxiliary variable.

Table 6. Summary statistics for subpopulation and strata for case I under population II

Sub-population Strata N2ij W2ij n2ij Kij n2rij y2ij y2rij x2ij x2rij S2
Y2ij

S2
X2ij

SXY2ij ρXY2ij

D10% 1 24 0.3 20 2 10 -0.0600 -0.3156 0.5000 0.4993 0.9801 0.0961 0.0901 0.2902

2 36 0.3 28 2 14 0.2600 0.2936 0.5100 0.4202 0.6724 0.0900 0.0635 0.2598

D20% 1 48 0.3 34 2 17 0.4600 0.1443 0.4300 0.4996 0.9216 0.0625 0.0479 0.1994

2 72 0.3 45 2 23 0.2900 0.0574 0.5400 0.5122 1.2100 0.0900 -0.0334 -0.1018

D30% 1 72 0.3 45 2 23 0.3800 0.4093 0.5100 0.5000 1.2321 0.0784 0.0113 0.0361

2 108 0.3 56 2 28 0.5300 0.6280 0.5300 0.6354 0.9216 0.0961 0.0043 0.0144

D40% 1 96 0.3 53 2 27 0.4600 0.2531 0.3400 0.3784 0.9801 0.0900 0.0430 0.1453

2 144 0.3 65 2 33 0.4700 0.0829 0.4900 0.5144 1.1236 0.0784 0.0317 0.1064

Table 6 displays summary statistics for subpopulations and strata on nonignorable nonresponse case I for
population II. It indicates the average values of nonignorable nonresponse sample and subsample for both
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the study and auxiliary variable. It also indicates the variances of the study variable and the auxiliary after the
nonignorable nonresponse was introduced.

The study variable presents generally large variances across all the subpopulations compared with auxiliary
variable as presented in Table 6. Indicating greater variability in the study variable than in the auxiliary
variable. Values of the covariances and the correlation coefficients as observed indicate the study variable varies
positively with the auxiliary variable but with a weak linear relationship across all subpopulations.

Table 7 presents descriptive statistics for subpopulations and strata on nonignorable nonresponse case II for
population II. It describes the average values of nonignorable nonresponse sample and subsample for both the
study variable and the auxiliary variable. It also indicates the variances of the study variable and the auxiliary
variable under case II of nonignorable nonresponse. Furthermore, the study variable presents generally large
variances across all the subpopulations compared with auxiliary variable. Indicating greater variability in the
study variable than the auxiliary variable.

Table 7. Summary statistics for subpopulation and strata for case II under population II

Sub-population Strata N2ij W2ij n2ij Kij n2rij y2ij y2rij x2ij x2rij S2
Y2ij

S2
X2ij

SXY2ij ρXY2ij

D10% 1 16 0.2 13 2 7 0.0800 -0.0249 0.5600 0.4237 1.2100 0.0784 0.0734 0.2410

2 48 0.4 40 2 20 0.1500 -0.2114 0.5000 0.4566 0.7921 0.0900 0.0727 0.2745

D20% 1 32 0.2 23 2 12 0.4600 0.3090 0.3900 0.4350 0.0576 0.8836 0.0244 0.1062

2 96 0.4 60 2 30 0.2800 0.2267 0.5500 0.5214 1.2100 0.0900 0.0121 0.0371

D30% 1 49 0.2 30 2 15 0.4400 0.5561 0.5000 0.5382 1.2769 0.0784 0.0192 0.0598

2 144 0.4 76 2 38 0.5700 0.4867 0.5000 0.4755 0.9025 0.0900 -0.0038 -0.0133

D40% 1 64 0.2 36 2 18 0.2900 0.5263 0.4500 0.4950 1.0201 0.0900 0.0542 0.1802

2 192 0.4 87 2 44 0.4300 0.7346 0.5000 0.4873 1.1236 0.0784 0.0278 0.0922

As contained in Table 7, values of the covariances and their corresponding correlation coefficients indicate same
pattern of association between the study and the auxiliary variables within subpopulations except stratum 2 of
D30% which revealed that the study variable varies inversely with auxiliary variable.

Table 8 displays the bias and the mean squared errors of the estimators based on subpopulations to help evaluate
the performance of the proposed estimator across the various subpopulations.

Table 8. Bias and MSE of Estimators in both Case I and II for Population II Based on
Subpopulation

Case Subpopulation Ni Bias MSE

R̂DG,−1,i R̂DG,2,i R̂DG,−1,i R̂DG,2,i
Case I D10% 200 -0.4364 0.0045 0.0045 0.0071

D20% 400 -0.2008 0.0011 0.0044 0.0051
D30% 600 -0.4062 0.0010 0.0040 0.0047
D40% 800 -0.3811 0.0016 0.0039 0.0048

Case II D10% 200 -0.4356 0.0045 0.0045 0.0076
D20% 400 -0.3814 0.0029 0.0042 0.0064
D30% 600 -0.4069 0.0009 0.0040 0.0047
D40% 800 -0.3811 0.0016 0.0040 0.0049

In Table 8, it can be observed that the proposed estimator (R̂DG,2,i) presents lower biases across all the
subpopulations compared to the estimator by Ashutosh [1]. An increase in bias may indicate a deviation
from the true values, while a decrease may imply improved accuracy. Implying the proposed estimator with less
biases will present accurate estimates than the estimator by Ashutosh [1] . For the mean squared errors, the
estimator by Ashutosh[1] generally present lower MSE values compared to the proposed estimator (R̂DG,2,i).
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5 Empirical Study

The study considered California Houses datasets [23]. Using California Houses datasets offers heterogeneous
environment and a unique option to assess the performance of the estimator and it generalizability across
diverse populations. The datasets consist of fourteen (14) attributes but this research considered three (3) of
them which include Median house value, Median income and Average household size. From the three selected
attributes, two populations are obtained namely, population I and II each of size 2000. Population I is defined
by considering the median house value as the study variable y and the median income as auxiliary variable x.
And for Population II, the Median house value is considered as the study variable y and the Average household
size as the auxiliary variable x. Each population was divided into four subpopulations based on the 10th, 20th,
30th and 40th percentiles as D10%, D20%, D30% and D40% respectively. The subpopulations were each further
divided into two tiers at the 40th and 60th percentiles as strata 1 and 2 respectively. In addition, the study
considered two cases (case I and case II) of nonignorable nonresponse for each of the populations.

Case I: Approximately 30% of the population consist of nonrespondents and are available in both subpopulations
and then in strata.

Case II: Two categories (20% and 40%) of nonrespondnets are respectively available in strata 1 and 2.

5.1 Population I

The median house value and median income are assumed to be linearly correlated because higher-income areas
often offer amenities such as good schools, lower crime rates, better infrastructure, and access to services. These
factors contribute to increased demand for housing in such areas, which in turn drives up prices.

Table 9 displays the summary statistics of various subpopulations under population I. It shows the average
values for the study variable and auxiliary variable.

Table 9. Summary statistics for subpopulations and strata under population I

Subpopulations Strata Nij nij Wij Y ij Xij S2
Yij

S2
Xij

SXYij ρXYij

D10% 1 80 53.3 0.4 209628.79 3.99 14657115014 3.02 149659.2 0.71

2 120 80.0 0.6 200882.55 3.68 14200164896 4.59 176214.5 0.69

D20% 1 160 80.0 0.4 191030.01 3.61 10364471521 2.87 121352.8 0.70

2 240 120.0 0.6 201145.86 3.71 13482448702 3.59 168479.4 0.77

D30% 1 240 96.0 0.4 204581.71 3.76 13894124262 3.71 166802.4 0.73

2 360 144.0 0.6 211749.49 3.93 14021055089 3.93 166701.9 0.71

D40% 1 320 107.0 0.4 202657.24 3.76 13468845575 3.24 143601.5 0.69

2 480 160.0 0.6 205026.92 3.87 13392510547 3.95 173148.7 0.75

Table 9 demonstrates that the study variable typically exhibits higher variances when contrasted with that of
the auxiliary variable across all subpopulation-strata combinations. This suggests that there is generally greater
variability in the study variable than in the auxiliary variable. Additionally, the covariance values between
the study variable and the auxiliary variable for each stratum are generally positive indicating that the study
variable and the auxiliary variable tend to vary in the same direction. And the correlation coefficients further
showed a strong linear relationship between the study variable and the auxiliary variable.

Table 10 provides descriptive statistics concerning subpopulations and strata regarding nonignorable nonresponse
case I for population I. It outlines the average values of both the study variable and the auxiliary variable for the
nonignorable nonresponse sample and subsample. Additionally, it showcases the variances of the nonignorable
nonresponse.
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Table 10. Summary statistics for subpopulation and strata for case I under population I

Sub-population Strata N2ij W2ij n2ij Kij n2rij y2ij y2rij x2ij x2rij S2
Y2ij

S2
X2ij

SXY2ij ρXY2ij

D10% 1 24 0.3 20 2 10 221979.21 217030.00 4.13 4.17 16247601549 3.38 196476.8 0.84

2 36 0.3 30 2 15 205922.28 225406.73 3.97 4.13 15284200530 6.14 227431.1 0.74

D20% 1 48 0.3 34 2 17 188370.85 207994.12 3.60 3.93 10813136222 3.93 172692.4 0.84

2 72 0.3 46 2 23 206993.08 193895.65 3.77 3.54 15377696599 3.59 171855.9 0.73

D30% 1 72 0.3 45 2 23 215165.35 204160.91 3.78 3.58 14935426360 2.97 152112.5 0.72

2 108 0.3 57 2 29 206615.80 216806.97 3.98 3.99 13133289195 4.15 163677.9 0.70

D40% 1 96 0.3 53.3 2 27 203903.19 221614.89 3.91 3.86 14268535813 3.37 147140.8 0.67

2 144 0.3 65 2 33 204156.99 215463.70 3.94 3.92 13541676468 4.91 195007.8 0.76

Table 10 suggests that the values of the covariances and their corresponding correlation coefficients indicate a
consistent pattern of association between the study and auxiliary variables within subpopulations.

Table 11 provides descriptive statistics regarding subpopulations and strata for nonignorable nonresponse case
II for population II. It outlines the average values for both the study variable and the auxiliary variable for the
nonignorable nonresponse sample and subsample. Additionally, it displays the variances of the nonignorable
nonresponse and presents values for covariance and correlation coefficients between the study variable and
auxiliary variable.

Table 11. Summary statistics for subpopulation and strata for case II under population I

Sub-population Strata N2ij W2ij n2ij Kij n2rij y2ij y2rij x2ij x2rij S2
Y2ij

S2
X2ij

SXY2ij ρXY2ij

D10% 1 16 0.2 13 2 7 238343.81 260200.14 4.42 4.61 18445348179 3.60 213307.0 0.83

2 48 0.4 40 2 20 202377.12 210615.10 3.84 4.04 15029388410 5.29 208927.5 0.74

D20% 1 32 0.2 23 2 12 182606.25 171308.33 3.62 3.53 10131259960 3.00 146198.6 0.84

2 96 0.4 60 2 30 205586.50 202066.67 3.85 3.91 15575029344 3.98 189630.3 0.76

D30% 1 48 0.2 30 2 15 227120.90 1860067.73 3.78 3.51 14440549286 2.64 118967.3 0.61

2 144 0.4 76 2 38 198331.99 181955.29 3.94 3.89 12145440511 3.58 146255.1 0.70

D40% 1 64 0.2 36 2 18 221901.66 233972.28 4.11 4.05 16946820747 4.01 167468.8 0.64

2 192 0.4 87 2 44 202524.00 191004.57 3.89 3.38 13269041934 4.51 187570.5 0.77

Table 11 indicates that the study variable typically demonstrates greater variances across all subpopulations in
comparison to the auxiliary variable, signifying a higher level of variability in the study variable. The covariance
values and their corresponding correlation coefficients consistently revealed a positive pattern of association
between the study and auxiliary variables within subpopulations.

Table 12 displays the bias and the mean squared errors of the proposed estimator (α = 2) based on subpopulations.

Table 12. Bias and MSE of Estimators in both Case I and II for Population I Based on
Subpopulation

Case Subpopulation Ni Bias MSE

R̂DG,−1,i R̂DG,2,i R̂DG,−1,i R̂DG,2,i
Case I D10% 200 -203765.64 1501.91 36475620.19 512502610.95

D20% 400 -196663.38 1079.12 22899882.64 344782432.63
D30% 600 -208444.66 1033.30 27128201.09 351648481.24
D40% 800 -203675.07 995.35 24731577.89 335754074.94

Case II D10% 200 -203752.38 501.85 38324473.58 525148684.22
D20% 400 -196862.96 1077.39 23494759.30 360651325.01
D30% 600 -208613.44 993.57 27743822.89 346649336.67
D40% 800 -203668.73 1012.19 25182027.80 356195394.88
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In Table 12, it is evident that the proposed estimator (R̂DG,2,i) exhibit lower biases across all subpopulations
compared to the estimator by Ashutosh [1]. An increase in bias may signal a deviation from true values, while a
decrease may imply improved accuracy. This suggests that the proposed estimator with lower biases provide more
accurate estimates than the estimator by Ashutosh [1]. Regarding MSE values, the estimator by Ashutosh [1]
generally presents lower MSES compared to the proposed estimator (R̂DG,2,i) as reduced MSE further supports
enhanced accuracy.

5.2 Population II

California is known for its diverse population, with households of varying sizes and compositions. This diversity
can lead to a wide range of housing preferences and choices, making it challenging to establish a strong linear
correlation between house value and household size. Moreover, due to government policies and economic
conditions including demographic dynamics can cause housing market experience fluctuations and trends over
times. These dynamics can influence house prices independently of household size. As a results, while there may
be some relationship between median house value and average household size, it is likely not strong enough to
establish a clear linear correlation due to the complex interplay of various factors influencing housing markets
and individual housing decisions.

Table 13 presents the summary statistics for the various subpopulations within population II. It indicates the
average values for both the study and the auxiliary variables.

Table 13. Summary statistics for subpopulations and strata under population II

Subpopulations Strata Nij nij Wij Y ij Xij S2
Yij

S2
Xij

SXYij ρXYij

D10% 1 80 53.3 0.4 209628.79 513.77 14657115014 96167.7 4954129.0 0.13

2 120 80.0 0.6 200882.50 477.5 14200164896 121208.8 -813996.4 -0.02

D20% 1 160 80.0 0.4 191030.01 517.77 10364471521 104355.5 3133480.0 0.10

2 240 120.0 0.6 201145.86 532.21 13482448702 149952.6 951912.4 0.02

D30% 1 240 96.0 0.4 204581.70 521.4 10813136222 144747.5 -723630.4 -0.02

2 360 144.0 0.6 211749.49 511.41 15377696599 212754.5 5214605.0 0.09

D40% 1 320 107.0 0.4 202657.24 510.38 13468845575 126969.0 -1733606.0 -0.04

2 480 160.0 0.6 205026.92 490.62 13392510547 123877.9 1645440.0 0.04

Compared to the auxiliary variable as illustrated in Table 13, the study variable typically demonstrates higher
variances across all subpopulation-strata combination. This suggests a generally greater variability in the study
variable compared to the auxiliary variable. Additionally, the covariance values exhibit various patterns of
variations, indicating that the study variable and the auxiliary variable tend to vary in the same direction in
certain strata and inversely vary in others. However, the strength of the relationship between the two variables
cannot be solely determined by the magnitude of the covariance; therefore, correlation coefficients are crucial.
And the correlation coefficients generally suggest a weak linear relationship between the study and the auxiliary
variables.

Table 14 displays descriptive statistics concerning subpopulations and strata for nonignorable nonresponse case
I for population II. It presents the mean values of both the study variable and the auxiliary variable for case
I of nonignorable nonresponse sample and subsample. It further showcases the variances of the nonignorable
nonresponse and provides figures for covariance and correlation coefficients between the study variable and
auxiliary variable.
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Table 14. Summary statistics for subpopulation and strata for case I under population II

Sub-population Strata N2ij W2ij n2ij Kij n2rij y2ij y2rij x2ij x2rij S2
Y2ij

S2
X2ij

SXY2ij ρXY2ij

D10% 1 24 0.3 20 2 10 221979.21 217030.00 464.17 499.50 16247601549 59163.7 12099012.0 0.40

2 36 0.3 30 2 15 205922.28 225406.73 516.67 443.47 15284200530 175481.1 1128063.0 0.02

D20% 1 48 0.3 34 2 17 188370.85 207994.12 551.56 579.59 10813136222 144747.5 -723630.4 -0.02

2 72 0.3 45 2 23 206993.08 193895.65 495.69 520.78 15377696599 212754.5 5214605.0 0.09

D30% 1 72 0.3 45 2 23 215165.35 204160.93 521.78 522.17 14935426360 93700.8 1863152.0 0.05

2 108 0.3 57 2 29 206615.80 216806.97 560.99 597.00 13133289195 239836.6 3326667.0 0.06

D40% 1 96 0.3 53.3 2 27 203903.19 221614.89 484.77 507.33 14268535813 107783.0 -1669716.0 -0.04

2 144 0.3 65 2 33 204156.99 215463.70 500.42 500.88 13541676468 144127.9 4218243.0 0.10

Table15 presents descriptive statistics regarding subpopulations and strata for nonignorable nonresponse case
II for population II. It outlines the average values of both the study variable and the auxiliary variable for the
nonignorable nonresponse sample and subsample. It provides the variances together with the covariance and
correlation coefficients between the study variable and auxiliary variable.

Table 15. Summary statistics for subpopulation and strata for case II under population II

Sub-population Strata N2ij W2ij n2ij Kij n2rij y2ij y2rij x2ij x2rij S2
Y2ij

S2
X2ij

SXY2ij ρXY2ij

D10% 1 16 0.2 13 2 7 238343.81 260200.14 443.56 405.14 18445348179 27782.66 14342649 0.63

2 48 0.4 40 2 20 202377.12 210615.10 485.73 574.35 15029388410 138933.8 -104170.4 -0.00

D20% 1 32 0.2 23 2 12 182606.25 171308.33 555.84 659.75 10131259960 167951.9 -3522880 -0.09

2 96 0.4 60 2 30 205586.50 202066.67 493.55 569.9 15575029344 191625.8 1918172 0.04

D30% 1 49 0.2 30 2 15 227120.90 186006.73 530.77 615.47 14440549286 106406.7 5827205 0.15

2 144 0.4 76 2 38 198331.99 181955.29 563.76 486.526 12145440511 222220.6 5817673 0.11

D40% 1 64 0.2 36 2 18 221901.66 233972.28 505.77 428.89 16946820747 133645.3 -3639414 -0.08

2 192 0.4 87 2 44 202524.00 191004.57 495.68 449.21 13269041934 142343.9 5140143 0.12

Table 15 indicates that the study variable typically demonstrates greater variances across all subpopulations
compared to the auxiliary variable, suggesting a higher degree of variability in the study variable. The covariance
values and their corresponding correlation coefficients consistently reveal a distinct pattern of association between
the study and auxiliary variables within the subpopulations.

Table 16 presents bias and mean squared errors of the proposed estimators (α = 2) based on subpopulations.

Table 16. Bias and MSE of Estimators under both Case I and II for Population II Based on
Subpopulation

Case Subpopulation Ni Bias MSE

R̂DG,−1,i R̂DG,2,i R̂DG,−1,i R̂DG,2,i
Case I D10% 200 -203577.06 1068.36 157070996.22 493707767.66

D20% 400 -196447.82 897.87 127830133.44 406184014.56
D30% 600 -208010.64 642.10 157543983.40 528781839.47
D40% 800 -203416.20 753.61 123546824.58 361943686.79

Case II D10% 200 -203566.23 980.88 159475697.11 474920107.78
D20% 400 -196439.50 883.97 137564989.04 414817468.76
D30% 600 -208179.43 1170.08 159146261.42 557542998.86
D40% 800 -203409.86 789.82 127859678.59 365081408.60

Table 16 clearly demonstrates that the proposed estimator (R̂DG,2,i) exhibit lower biases across all subpopulations
compared to the estimator by Ashutosh [1]. Regarding MSE values, the estimator by Ashutosh [1] generally
presents lower MSE values compared to the proposed estimator as reduced MSE further supports enhanced
accuracy.
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6 Discussion

This sections discusses results on the bias and the mean squared error (MSE). Large bias, renders an estimator
poor and an estimator with good MSE properties exhibits minimal combined variance and bias. In this studies,
the referenced estimator is the estimator by Ashutosh [1]. The biases of the proposed estimator (R̂DG,2,i) and
the estimator by Ashutosh [1] for populations I and II of the simulation studies are presented in Table 4 and
Table 8 respectively. The estimator by Ashutosh [15] has large negative biases indicating an average systematic
underestimation. For the proposed estimator (R̂DG,2,i), it exhibits smaller positive biases suggesting small
and likely negligible systematic errors on average. It can be observed that there is reduction in the biases of
the estimator by Ashutosh [1] and the proposed estimator (R̂DG,2,i) as the sample size increases across the
various subpopulations under both cases I and II. Whilst there is fluctuations in the biases of the estimator by
Ashutosh [15] at D20% under both cases I and II of nonresponse, it occurs at D30% for the the proposed estimator
(R̂DG,2,i). This suggest that the accuracy of the estimator is sensitive to changes in sample size. An increase in
bias may indicate a deviation from the true values, while a reduction in bias may suggest an improved accuracy.
Generally, the proposed estimator (R̂DG,2,i) have smaller biases across the various subpopulations compared to
the estimator by Ashutosh [1] suggesting that the proposed estimator is better in terms of bias under population I.
The results for population II is not different from that of population I except that comparing the two populations
under the simulation studies, the biases under Population II appeared more consistent compared to those under
population I as the sample size increase across the various subpopulations for the proposed estimator (R̂DG,2,i).
Tables 12 and 16 respectively present the biases of the proposed estimator (R̂DG,2,i) and that of Ashutosh [1]
under the empirical studies for populations I and II. The results from the empirical studies are not generally
different from the simulation studies. Thus, concerning the bias, proposed estimator (R̂DG,2,i) outperformed
the estimator by Ashutosh [1] under both simulation studies and empirical studies. With regareds to the MSE
values for populations I and II under the simulation studies, it can be observed that the MSE values of the
estimator by Ashutosh [1] are generally smaller than that of the proposed estimator (R̂DG,2,i). Suggesting that
the estimator by Ashutosh [1] performed better than the proposed estimator (R̂DG,2,i). For population I, the
MSE values fluctuate as the sample size increases across the various subpopulations under both cases I and II.
However, for population II, the MSE values get reduced for the proposed estimator (R̂DG,2,i) as the sample size
increases across the various subpopulations. Suggesting that the proposed estimator (R̂DG,2,i) and the estimator
by Ashutosh [1] are consistent under population II. Comparing the reduction in the MSE values, the values under
population II of the proposed estimator (R̂DG,2,i) deteriorate faster than that of the estimator by Ashutosh [1]
as the sample size increases across the various subpopulations. As MSE is the combination of variance and bias,
the MSE values of the the proposed estimator (R̂DG,2,i) are higher than that of Ashutosh [1] because of high
variance in the study variable. For the empirical studies, though the values are generally large, the implications
of the results are not different from that of the simulation studies for both populations I and II.

7 Conclusions

An improved estimator for mean of a finite population in the presence of nonignorable nonresponse has been
developed. Theoretical properties of the proposed estimator were derived. The simulation and empirical studies
revealed that the proposed estimator under the population I and population II performed better compared
to the estimator by Ashutosh [1] in terms of bias. The biases of both the proposed estimator (R̂DG,2,i) and
the estimator by Ashutosh [1] were found to be generally consistent for both population I and population II
under both simulation and empirical studies. However, the MSE values indicated that the the estimator by
Ashutosh [1] is marginally efficient than the proposed estimator (R̂DG,2,i). And this could be as a result of large
variances in the study variable across the subpopulations. Moreover, the MSE values suggest that the proposed
estimator (R̂DG,2,i) may be less bias and more efficient at higher sample sizes for nonlinear population when
there is nonignorable nonresponse present. Therefore, when the focus is on estimation, the proposed estimator
is preferred. However, when the emphasis shifts to inference, the estimator by Ashutosh [1] may prove to be
beneficial. The large variance in the study variable contributed to the low efficiency of the proposed estimator
and hence, the study suggest calibrating the generalized direct ratio estimator to minimize the variability in the
study variable.
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