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Abstract: Voice conversion is the task of changing the speaker characteristics of input speech while
preserving its linguistic content. It can be used in various areas, such as entertainment, medicine, and
education. The quality of the converted speech is crucial for voice conversion algorithms to be useful
in these various applications. Deep learning-based voice conversion algorithms, which have been
showing promising results recently, generally consist of three modules: a feature extractor, feature
converter, and vocoder. The feature extractor accepts the waveform as the input and extracts speech
feature vectors for further processing. These speech feature vectors are later synthesized back into
waveforms by the vocoder. The feature converter module performs the actual voice conversion; there-
fore, many previous studies separately focused on improving this module. These works combined
the separately trained vocoder to synthesize the final waveform. Since the feature converter and
the vocoder are trained independently, the output of the converter may not be compatible with the
input of the vocoder, which causes performance degradation. Furthermore, most voice conversion
algorithms utilize mel-spectrogram-based speech feature vectors without modification. These feature
vectors have performed well in a variety of speech-processing areas but could be further optimized
for voice conversion tasks. To address these problems, we propose a novel wave-to-wave (wav2wav)
voice conversion method that integrates the feature extractor, the feature converter, and the vocoder
into a single module and trains the system in an end-to-end manner. We evaluated the efficiency of
the proposed method using the VCC2018 dataset.

Keywords: end-to-end; generative adversarial network; vocoder; voice conversion

1. Introduction

Voice conversion aims to convert the speaker-specific characteristics of input speech
into the target speaker’s characteristics while preserving the linguistic content of the input
speech. The application areas of voice conversion include entertainment [1], education [2],
and medicine [3] domains. With advances in deep learning, many studies on voice con-
version using deep neural network (DNN) models have been attempted. In particular,
generative models, such as variational autoencoders (VAEs) [4] and generative adversarial
networks (GANs) [5], have shown promising results in many voice conversion tasks [6–11].
Recently proposed flow-based voice conversion [12] and diffusion model-based voice
conversion [13] also showed good performance.

Most of these works on voice conversion generally consist of three steps: analysis,
mapping, and reconstruction [14]. In the analysis step, feature vectors are extracted, which
are easy to process while retaining relevant information from the input waveform. The
mapping step is the actual voice conversion process that changes only the identity of the
speaker while preserving the linguistic content of the input feature vectors. Finally, the
reconstruction step uses a vocoder to synthesize a waveform using the converted feature
vectors from the previous step. Figure 1 illustrates this process.
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Figure 1. Analysis–mapping–reconstruction steps of a conventional voice conversion system. 𝑤  
and 𝑠  represent the waveform and the feature vectors of speaker 𝐴, respectively. Similarly, 𝑤 →  
and 𝑠 →  represent the waveform and the feature vectors of the converted speech from speaker 𝐴 
to speaker 𝐵. 

The analysis steps of the conventional approaches use fixed feature extraction 
methods, such as Fourier transform and mel-scale filtering. Traditionally, these feature 
vectors have been widely adopted in various speech-processing areas, such as speech 
recognition, speaker identification, and text-to-speech. However, it could be further 
optimized [15,16] for voice conversion tasks, as the importance of each frequency can vary 
across conversion pairs. Additionally, most of the existing approaches focus on improving 
the feature converter model itself, as it performs the actual voice conversion task and 
provides its output to a pre-trained vocoder. This approach may lead to poor performance 
because the vocoder model is not explicitly trained to process the output feature vectors 
from the feature converter model. Therefore, some unnatural speech characteristics that 
arise from the feature converter model are not sufficiently compensated for by the vocoder 
model, resulting in poor speech quality. Recent studies [17–22] that proposed to jointly 
train feature converter models and vocoder models showed promising results. In this 
study, we extend the work in [22] and propose an architecture that integrates all three 
stages of analysis–mapping–reconstruction to optimize the quality of converted speech. 
Table 1 summarizes the existing voice conversion methods. 

Table 1. Summary of the conventional voice conversion methods. 

Authors Year Ref. Dataset Method Model 
P. L. Tobing et al. 2019 [6] VCC2018 VAE with cycle loss RNNT 
D. Yook et al. 2020 [7] VCC2018 Ref. [6] with multiple decoders CNN 
T. Kaneko et al. 2018 [8] VCC2016 GAN with cycle loss CNN 
T. Kaneko et al. 2019 [9] VCC2018 Improved [8] by modifying loss and models CNN 
T. Kaneko et al. 2020 [10] VCC2018 Improved [9] by applying TFAN norm CNN 
T. Kaneko et al. 2021 [11] VCC2018 Improved [9] by masking input feature CNN 
M. Proszewska et al. 2022 [12] In-house Flow-based model LSTM  
K. Kobayashi et al. 2016 [17] VCC2016 Direct waveform modification Diff VC 
Y. Kurita et al. 2019 [18] In-house Applied [17] to a singing voice conversion task Diff VC 
K. Kobayashi et al. 2018 [19] VCC2018 Open-source implementation of [17] Diff VC 
J.-W. Kim et al. 2020 [20] TIDIGITS Translation-based method using a transformer Transformer 
B. Nguyen et al. 2022 [21] VCTK Content and speaker disentanglement CNN 

The proposed method enables wave-to-wave (wav2wav) voice conversion by jointly 
training the entire analysis–mapping–reconstruction steps in an end-to-end manner. This 
allows the model to flexibly adjust model parameters to achieve high-quality speech 
output. However, training from scratch consumes too much training time and data, as it 
is difficult to find optimal feature representations. Furthermore, training the GAN-based 
models used in the mapping and reconstruction steps is known to be inherently difficult. 
Our proposed method overcomes these difficulties in two ways. The first is that the 
analysis step uses two-layer convolutional networks (CNNs) initialized with a discrete 
Fourier transform (DFT) matrix and mel-filterbank coefficients. This allows the analysis 

Figure 1. Analysis–mapping–reconstruction steps of a conventional voice conversion system. wA

and sA represent the waveform and the feature vectors of speaker A, respectively. Similarly, wA→B

and sA→B represent the waveform and the feature vectors of the converted speech from speaker A to
speaker B.

The analysis steps of the conventional approaches use fixed feature extraction meth-
ods, such as Fourier transform and mel-scale filtering. Traditionally, these feature vectors
have been widely adopted in various speech-processing areas, such as speech recognition,
speaker identification, and text-to-speech. However, it could be further optimized [15,16]
for voice conversion tasks, as the importance of each frequency can vary across conver-
sion pairs. Additionally, most of the existing approaches focus on improving the feature
converter model itself, as it performs the actual voice conversion task and provides its
output to a pre-trained vocoder. This approach may lead to poor performance because
the vocoder model is not explicitly trained to process the output feature vectors from the
feature converter model. Therefore, some unnatural speech characteristics that arise from
the feature converter model are not sufficiently compensated for by the vocoder model,
resulting in poor speech quality. Recent studies [17–22] that proposed to jointly train
feature converter models and vocoder models showed promising results. In this study,
we extend the work in [22] and propose an architecture that integrates all three stages of
analysis–mapping–reconstruction to optimize the quality of converted speech. Table 1
summarizes the existing voice conversion methods.

Table 1. Summary of the conventional voice conversion methods.

Authors Year Refs. Dataset Method Model

P. L. Tobing et al. 2019 [6] VCC2018 VAE with cycle loss RNNT
D. Yook et al. 2020 [7] VCC2018 Ref. [6] with multiple decoders CNN
T. Kaneko et al. 2018 [8] VCC2016 GAN with cycle loss CNN
T. Kaneko et al. 2019 [9] VCC2018 Improved [8] by modifying loss and models CNN
T. Kaneko et al. 2020 [10] VCC2018 Improved [9] by applying TFAN norm CNN
T. Kaneko et al. 2021 [11] VCC2018 Improved [9] by masking input feature CNN
M. Proszewska et al. 2022 [12] In-house Flow-based model LSTM
K. Kobayashi et al. 2016 [17] VCC2016 Direct waveform modification Diff VC
Y. Kurita et al. 2019 [18] In-house Applied [17] to a singing voice conversion task Diff VC
K. Kobayashi et al. 2018 [19] VCC2018 Open-source implementation of [17] Diff VC
J.-W. Kim et al. 2020 [20] TIDIGITS Translation-based method using a transformer Transformer
B. Nguyen et al. 2022 [21] VCTK Content and speaker disentanglement CNN

The proposed method enables wave-to-wave (wav2wav) voice conversion by jointly
training the entire analysis–mapping–reconstruction steps in an end-to-end manner. This
allows the model to flexibly adjust model parameters to achieve high-quality speech output.
However, training from scratch consumes too much training time and data, as it is difficult
to find optimal feature representations. Furthermore, training the GAN-based models
used in the mapping and reconstruction steps is known to be inherently difficult. Our
proposed method overcomes these difficulties in two ways. The first is that the analysis
step uses two-layer convolutional networks (CNNs) initialized with a discrete Fourier
transform (DFT) matrix and mel-filterbank coefficients. This allows the analysis step to
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start from the traditional mel-spectrogram extraction method and gradually optimize
the parameters, thereby achieving efficient learning and flexible parameter adjustment.
Second, the difficulties of training the GAN models in the proposed wav2wav method
are addressed using pre-training and two-phase training techniques. This allowed us to
train the proposed wav2wav model reliably on small datasets, such as VCC2018 [23]. To
verify the performance of the proposed method, objective and subjective evaluations were
performed using the mel-cepstral distance (MCD) metric and the mean opinion score (MOS)
metric, respectively.

The contributions of this paper are as follows:

• We propose a novel wave-to-wave voice conversion architecture that jointly trains
analysis–mapping–reconstruction modules for high-quality voice conversion.

• We provide an efficient training algorithm so that the proposed GAN-based integrated
model can be reliably trained with very small amounts of training data, such as
VCC2018.

• The supervised learning process of standalone vocoders were modified to accommo-
date unsupervised learning in the end-to-end learning of the integrated model.

• We demonstrate the usefulness of the proposed method using both objective and
subjective measures.

The rest of the paper is organized as follows. In Section 2, relevant previous studies
are reviewed. Section 3 describes the proposed wav2wav model. Section 4 analyzes the
experimental results. Finally, Section 5 concludes the paper.

2. Related Works

In this section, we describe the CycleGAN-based voice conversion and a HiFi-GAN-
based vocoder. CycleGAN-based algorithms are used as the mapping stage in many voice
conversion systems due to the excellent quality of the converted speech. Recently, HiFi-
GAN vocoders have been widely adopted because of the high quality of the synthesized
speech and stability in training, while many other deep neural network-based vocoders
exhibit high quality but are difficult to train.

2.1. CycleGAN-Based Voice Conversion

One way of training voice conversion systems requires the use of parallel training data
consisting of identical transcription utterances from different speakers. However, collecting
such data is expensive. The CycleGAN-based voice conversion algorithm uses two pairs
of generator and discriminator for training without such parallel data. One pair converts
the spectral feature from a source speaker to that of a target speaker and the other pair
converts vice versa. Using both generators, it is possible to convert the spectral feature
from the source speaker into that of the target speaker and then to convert it back to that of
the original source speaker. Two constraints are given in the training process so that the
speaker identity of the spectral feature is changed to the target speaker while the linguistic
content of the utterance is preserved. The first constraint is that the spectral features before
and after the cyclic conversion must have the same linguistic content, which is enforced
by a cycle consistency loss [24]. The second constraint is that the speaker identity of the
resulting spectral features from each generator must be indistinguishable from that of the
target speaker, which is enforced by an adversarial loss from the discriminators [5].

Figure 2 illustrates the training process of the CycleGAN-based mapping model.
Source speaker A’s waveform wA is converted to spectral feature sA using spectral analysis,
and the spectral feature is used as input into the generator model:

sA = F
(

wA
)

, (1)
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where F represents the spectral analysis model. The resulting spectral feature sA is con-
verted into sA→B through the generator model where the identity of the speaker is changed
from speaker A to speaker B:

sA→B = GA→B

(
sA

)
, (2)

where GA→B represents the generator model that converts the speaker identity of the input
spectral feature from speaker A to speaker B. The spectral feature sA of the source speaker
A is converted to sA→B; then, it is converted back to sA→B→A. The cycle consistency loss is
measured between sA and sA→B→A to ensure the linguistic content preservation. Similarly,
spectral feature sB from the target speaker B is converted to sB→A; then, it is converted back
again to sB→A→B, which provides another cycle consistency loss. The discriminators DA
and DB provide the adversarial losses of sB→A and sA→B, respectively.
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The recently proposed MaskCycleGAN-VC [11], which is a variant of CycleGAN-
based voice conversion, achieved a state-of-the-art performance by using masked spectral
features. The generator learns to restore the masked spectral parts, which improves the
robustness of the generator. However, it should be noted that MaskCycleGAN-VC is a
standalone mapping method that is not jointly optimized with the analysis stage nor with
the reconstruction stage.

2.2. HiFi-GAN Vocoder

A vocoder reconstructs waveforms by synthesizing them from input spectral features.
Rule-based vocoders, such as Griffin-Lim [25] and WORLD [26] vocoders, were widely
used because of their simplicity, but the quality of the resulting speech was not satisfactory.
Recently, many deep learning-based neural vocoders with excellent sound quality have
been proposed. One such neural vocoder, WaveNet [27], produces high-quality speech
signals, but is slow to train and inference due to its autoregressive structure. Many works
attempted to minimize the computational overhead of WaveNet while maintaining high-
quality outputs [28–32].

The recently proposed MelGAN [33] and HiFi-GAN [34] are GAN-based vocoders
that can obtain high-quality speech at a much faster speed due to their non-autoregressive
characteristics. HiFi-GAN uses two types of discriminators: multi-scale discriminator
(MSD) [33] and multi-period discriminator (MPD) [34]. These two discriminators enable
HiFi-GAN to produce state-of-the-art performance when generating high quality speech
signals. However, it should be noted that the spectral feature conversion model and the
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vocoder model are trained independently in the conventional voice conversion approaches,
which means that the vocoder is not trained to handle any residual characteristics of the
source speakers that may remain in the outputs of the spectral conversion model, leading
to degradation of the output waveform for voice conversion.

3. Proposed Method

As discussed in the previous section, traditional voice conversion approaches train the
spectral feature conversion models and vocoder models separately and use a fixed feature
extraction scheme, leading to the degraded quality of converted speech. The proposed
method, depicted in Figure 3, adopts a wave-to-wave approach, which uses waveforms
directly as the input and output of the system and jointly trains the analysis, mapping, and
reconstruction modules in an end-to-end manner, enabling more flexible feature analysis
and natural speech generation.
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in an end-to-end manner.

However, training the feature extraction module from scratch in this end-to-end
learning may require too much data and training time. Since the mel-spectral features are
widely used in various speech-processing tasks, we decided to improve their performance
further by learning detailed parameters suitable for voice conversion based on them.
We first reproduced the mel-spectral feature extraction process with a two-layer CNN
initialized with a DFT matrix and mel-filterbank coefficients; then, each weight was adjusted
during training. Figure 4 shows the feature extraction network. The output of the first
convolution layer, which initially consisted of real and imaginary components extracted
using conventional feature extraction methods, was converted to magnitude vectors via
square, summation, and square root operations. The resulting magnitude vectors were fed
into the second convolutional layer, followed by rectified linear unit (ReLU) and logarithm
operations. The CNN parameters were shared between the two generators and updated
during training.
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By including the feature-extracting CNN and vocoder into a generator, the proposed
voice conversion model enables waveform inputs and waveform outputs, resulting in
wave-to-wave voice conversion, shown as follows:

wA→B = GA→B

(
wA

)
, (3)

where GA→B is the generator model that converts the speaker identity of the input speech
from speaker A to speaker B, and wA→B is the converted waveform from speaker A’s
waveform wA to match speaker B’s voice characteristics.

The loss function of the proposed method consists of adversarial loss [5], cycle consis-
tency loss [35], identity-mapping loss [36], and feature-matching loss [34], similar to other
CycleGAN-based methods, as shown below:

Ladv1(GA→B, DB) = EwB

[
log DB

(
F
(

wB
))]

+EwA

[
log

(
1− DB

(
F
(

GA→B

(
wA

))))]
, (4)

Ladv2(GA→B, DB) = EwB

[
log DB

(
F
(

wB
))]

+EwB→A

[
log

(
1− DB

(
F
(

GA→B

(
wB→A

))))]
, (5)

Lcyc(GA→B) = EwB

[∥∥∥F
(

GA→B

(
GB→A

(
wB

)))
− F

(
wB

)∥∥∥
1

]
, (6)

Lid(GA→B) = EwB

[∥∥∥F
(

GA→B

(
wB

))
− F

(
wB

)∥∥∥
1

]
, (7)

Lfm(GA→B) = EwB

[
∑

i

∥∥∥Di
B

(
F
(

GA→B

(
GB→A

(
wB

))))
− Di

B

(
F
(

wB
))∥∥∥

1

]
, (8)

where E stands for the expectation operation, GB→A is the generator model that converts
the speaker identity of the input speech from speaker B to speaker A, and Di

B represents
the i-th layer of the discriminator. Since the output of the generator model is waveforms,
they need to be converted to spectral features to calculate the losses. The losses for the other
conversion direction, i.e., Ladv1(GB→A, DA), Ladv2(GB→A, DA), Lcyc(GB→A), Lid(GB→A),
and Lfm(GB→A), are similarly defined.

In the conventional analysis–mapping–reconstruction approaches, such as in Figure 1,
the discriminator of the spectral feature conversion model and the vocoder model serve
different purposes. The discriminator in the spectral feature conversion model aims to dis-
tinguish the speaker’s identity from the target speaker’s spectral feature and the converted



Appl. Sci. 2024, 14, 4251 7 of 14

spectral feature. On the other hand, the discriminator in the vocoder model aims to distin-
guish the original and synthesized waveforms. Since the generator in the proposed method
includes the function of a vocoder, the loss in the proposed method is calculated by using
the discriminator of the spectral feature conversion model and the vocoder model together.
Through this, the proposed voice conversion model can generate waveforms similar to
those from the target speaker while maintaining the quality of the original waveforms. We
used a modified version of HiFi-GAN as the generator of the proposed method. Therefore,
the discriminators of the proposed method utilize the HiFi-GAN discriminator, as well as
the conventional GAN discriminator.

One important limitation of GAN-based models is that they are difficult to train,
especially for complex models like the proposed one, where the HiFi-GAN-style vocoder
is used as the generator in the CycleGAN-style training. Since it is not easy to stabilize
the training process and to avoid the collapsing problem, we applied two techniques to
alleviate this problem. The first technique was to pre-train the generators using the speech
data of the source and target speakers in the training data. Since the supervised training
of the generator was relatively easy to converge, we first trained them to bootstrap the
training in the CycleGAN-style training process. The second technique was to use a phase-
wise model update method. The generator and discriminator models were trained in two
alternating phases. The first phase used the following loss function:

Lphase1 = Ladv1(GA→B, DB) + Ladv1(GB→A, DA) + λid (Lid(GA→ B) + Lid(GB→ A)) , (9)

where λid is the weight for the identity-mapping loss. The second phase utilized the
following loss function:

Lphase2 = Ladv2(GA→B, DB) + Ladv2(GA→B, MSDB) + Ladv2(GA→B, MPDB)
+Ladv2(GB→A, DA) + Ladv2(GB→A, MSDA) + Ladv2(GB→A, MPDA)
+λcyc

(
Lcyc(GA→B) + Lcyc(GB→A)

)
+λfm(Lfm(GA→B) + Lfm(GB→A))

(10)

where λcyc and λfm are the weights for the cycle consistency loss and feature-matching loss,
respectively; MSDA, MPDA, MSDB, and MPDB are the MSD and MPD of speaker A and
speaker B, respectively.

Algorithm 1 summarizes the alternating phase-wise training process of the pro-
posed method. The parameters of the two generators are initialized with the pre-trained
vocoder using the speech data from the source and target speakers. The parameters of
the feature-extracting CNN are also initialized with the coefficients of the DFT matrix and
mel-filterbanks. In the first training phase, speaker A’s waveform was fed into the generator
GA→B to generate speaker B’s speech. Using this converted waveform wA→B, the generator
GA→B and discriminator DB were trained. Also, the generator GB→A and discriminator DA
were trained in a similar fashion by swapping the source and target speakers.

In the second phase, the converted waveform wB→A from the first phase was fed into
the generator GA→B to generate waveform wB→A→B. Then, the generator GA→B, discrimi-
nator DB, MSDB, and MPDB were trained. Similarly, the generator GB→A, discriminator
DA, MSDA, and MPDA were trained by swapping the source and target speakers. These
two phases were repeated until the model converged. It should be noted that the first phase
was completely unsupervised learning using non-parallel data, that is, wA and wB were
not the same transcription utterances. On the other hand, since the second phase required
parallel data to compute the feature-matching loss, the pseudo-parallel data, that is, wA

and wA→B (as well as wB and wB→A), which were the same transcription utterances from
different speakers, were utilized.
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Algorithm 1 wav2wav

1 Initialization: load pretrained parameters.
2 repeat
3 Select wA and wB from the training data randomly.

/* Phase 1 */
4 wA→B ← GA→B

(
wA)

5 wB→A ← GB→A
(
wB)

6 Compute ∇Lphase1 using wA, wB→A, wB, and wA→B.
7 GA→B ← GA→B − η∇Lphase1
8 DB ← DB + η∇Lphase1
9 GB→A ← GB→A − η∇Lphase1
10 DA ← DA + η∇Lphase1

/* Phase 2 */
11 wB→A→B ← GA→B

(
wB→A)

12 wA→B→A ← GB→A
(
wA→B)

13 Compute ∇Lphase2 using wA, wA→B, wA→B→A, wB, wB→A, and wB→A→B.
14 GA→B ← GA→B − η∇Lphase2
15 DB ← DB + η∇Lphase2
16 MSDB ← MSDB + η∇Lphase2
17 MPDB ← MPDB + η∇Lphase2
18 GB→A ← GB→A − η∇Lphase2
19 DA ← DA + η∇Lphase2
20 MSDA ← MSDA + η∇Lphase2
21 MPDA ← MPDA + η∇Lphase2
22 until convergence

4. Experiments

In the experiments, we used a subset of the VCC2018 [35] dataset used in many
existing voice conversion studies to show that the proposed method can be effective, even
with a small amount of data. Two female speakers (SF3, TF1) and two male speakers (SM3,
TM1) were used as both source speakers and target speakers. We denote these speakers as
F1, F2, M1, and M2, respectively. We used 81 training sentences and 35 test sentences for
each speaker. A preliminary experiment was conducted to decide the optimal values of the
hyperparameters λid, λcyc, and λfm, which were found to be 30, 45, and 0.5, respectively.
We used MaskCycleGAN [11] as a baseline for comparison since it was the state-of-the-art
among the CycleGAN-based voice conversion methods. For fair comparison, we trained a
MelGAN to synthesize the waveforms from the output of MaskCycleGAN using the two
speakers, i.e., the source and target speakers, for each conversion direction.

4.1. Objective Evaluation

We used MCD [37] as a measure for the objective evaluation. MCD measures the
distance between a pair of spectral features. MCD is calculated as follows:

MCD =
10

ln 10

√
2∑N

i=1

(
mt

k,i −mc
k,i

)2
, (11)

where N, mt, mc, and k denote the mel-cepstral coefficient (MCC) dimension, target speech
MCC, converted speech MCC, and the frame index, respectively. We used a 16-dimensional
MCC. Since the converted spectral features may have different lengths from the target,
the dynamic time warping (DTW) algorithm was applied to compensate for the length
difference. A lower MCD value between the converted speech and the target speech
indicates a better voice conversion performance.

Table 2 summarizes the average MCDs and 95% confidence intervals of the converted
speeches by MaskCycleGAN and the proposed wav2wav. The proposed method outper-
formed MaskCycleGAN in both intra-gender and inter-gender cases, with an average MCD
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of 6.06 and a 95% confidence interval of ±0.08, demonstrating superior performance and
more stable learning than the baseline method.

Table 2. Average MCDs and 95% confidence intervals of the speeches converted by MaskCycleGAN
and wav2wav.

Conversion
Direction MaskCycleGAN wav2wav

Intra-gender

F1→F2 7.68 ± 0.29 6.08 ± 0.26
F2→F1 7.44 ± 0.23 6.01 ± 0.26

M1→M2 7.96 ± 0.27 6.04 ± 0.22
M2→M1 7.04 ± 0.17 5.88 ± 0.18

Average 7.53 ± 0.13 6.01 ± 0.11

Inter-gender

F1→M2 8.48 ± 0.21 5.86 ± 0.16
M2→F1 8.58 ± 0.21 5.75 ± 0.16
M1→F2 8.70 ± 0.28 6.47 ± 0.24
F2→M1 8.36 ± 0.23 6.38 ± 0.22
Average 8.53 ± 0.12 6.12 ± 0.11

Average 8.03 ± 0.10 6.06 ± 0.08

An ablation experiment was performed to analyze the proposed method further. First,
we replaced the MelGAN with the HiFi-GAN for the baseline MaskCycleGAN, which
we call “spec2spec” in Table 3. The same amount of training data was used to train both
vocoders. Using the HiFi-GAN vocoder improved the MCD over the baseline MelGAN
vocoder. Next, we replaced the analysis module of the “spec2spec” with the feature
extracting CNN (Figure 4), which is called “wav2spec” in the table. That is, “wav2spec”
took waveforms as input and outputs spectral features; then, it reconstructed waveforms
using a separately trained HiFi-GAN vocoder. By integrating the analysis and mapping
modules, the voice conversion performance was improved further. The third variant,
called “spec2wav”, did not use the feature extracting CNN, but used the vocoder as the
generator. That is, only the mapping and reconstruction modules were integrated, leaving
the analysis module standalone. It can be seen in the table that “spec2wav” showed a better
performance than “wav2spec”, indicating that merging the mapping and reconstruction
modules was more effective than merging the analysis and mapping modules. The last row
of Table 3 represents the proposed wav2wav that integrates all three modules: analysis,
mapping, and reconstruction, which achieved the best performance among all the variants.

Table 3. Average MCDs and 95% confidence intervals for MaskCycleGAN, spec2spec, wav2spec,
spec2wav, and wav2wav.

Method Feature
Extractor Vocoder MCD

MaskCycleGAN DFT MelGAN 8.03 ± 0.10
spec2spec DFT HiFi-GAN 7.88 ± 0.12
wav2spec CNN HiFi-GAN 7.52 ± 0.11
spec2wav DFT N/A 6.82 ± 0.10
wav2wav CNN N/A 6.06 ± 0.08

To analyze the spec2wav and wav2wav further, we looked into the learned weights of
the feature-extracting CNN. The weights of the first CNN layer were not changed much
from the initial weights. However, the second CNN layer, which initially corresponded to
the mel-filterbanks, changed a lot. Figure 5 shows the learned weights of the second CNN
layer after the training was completed. The learned weights were quite different from the
original filterbank coefficients, where they covered wider frequency bands for each filter.
Also, they were different from speaker to speaker.



Appl. Sci. 2024, 14, 4251 10 of 14

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 14 
 

spec2wav DFT N/A 6.82 ± 0.10 
wav2wav CNN N/A 6.06 ± 0.08 

To analyze the spec2wav and wav2wav further, we looked into the learned weights 
of the feature-extracting CNN. The weights of the first CNN layer were not changed much 
from the initial weights. However, the second CNN layer, which initially corresponded to 
the mel-filterbanks, changed a lot. Figure 5 shows the learned weights of the second CNN 
layer after the training was completed. The learned weights were quite different from the 
original filterbank coefficients, where they covered wider frequency bands for each filter. 
Also, they were different from speaker to speaker. 

 
Figure 5. Mel-filterbank coefficients (top) and the learned weights of the feature-extracting CNN 
(the rest). The larger weight values are displayed in a darker color. 

4.2. Subjective Evaluation 
Subjective evaluations of the sound quality and similarity for the proposed wav2wav 

and the baseline MaskCycleGAN were conducted using the MOS and XAB tests, 
respectively. A total of 80 utterances (4 utterances × 8 conversion directions × 2 methods + 
16 original utterances) were used for the sound quality test, and 96 utterances (8 utterances 
× 4 conversion directions × 2 methods + 32 original utterances) were used for the similarity 
test. A total of 10 listeners participated in the experiment. For the sound quality test, the 
participants were asked to rate each utterance on a scale of 1 to 5, with 1 being “very bad” 
and 5 being “very good.” For the similarity test, the participants were asked to indicate 
which of the two converted speeches from the two methods sounded more similar to the 
target speaker’s utterance. Each time, a target speaker’s utterance was played first, then 
the two converted speeches were played in random order. 

Figure 6 summarizes the sound quality test results. It shows that the proposed 
method significantly improved the sound quality of the converted voice compared with 
the baseline method, regardless of the conversion directions and conversion pairs. The 
proposed method achieved an average MOS of 3.82, which was significantly higher than 
the baseline score of 2.76. Figure 7 shows how similar the converted voice was to the target 
speaker’s voice. The numbers in the graph indicate the proportion chosen as more similar 
to the target speaker’s voice. On average, 92% of the utterances converted by the proposed 
method were selected as being more similar to the target speakers’ voices. Some sample 
speech waveforms produced by wav2wav are available online at 
https://wav2wav.github.io/wav2wav (accessed on 20 April 2024). 

Figure 5. Mel-filterbank coefficients (top) and the learned weights of the feature-extracting CNN (the
rest). The larger weight values are displayed in a darker color.

4.2. Subjective Evaluation

Subjective evaluations of the sound quality and similarity for the proposed wav2wav
and the baseline MaskCycleGAN were conducted using the MOS and XAB tests, respec-
tively. A total of 80 utterances (4 utterances × 8 conversion directions × 2 methods + 16
original utterances) were used for the sound quality test, and 96 utterances (8 utterances ×
4 conversion directions × 2 methods + 32 original utterances) were used for the similarity
test. A total of 10 listeners participated in the experiment. For the sound quality test, the
participants were asked to rate each utterance on a scale of 1 to 5, with 1 being “very bad”
and 5 being “very good”. For the similarity test, the participants were asked to indicate
which of the two converted speeches from the two methods sounded more similar to the
target speaker’s utterance. Each time, a target speaker’s utterance was played first, then
the two converted speeches were played in random order.

Figure 6 summarizes the sound quality test results. It shows that the proposed
method significantly improved the sound quality of the converted voice compared with
the baseline method, regardless of the conversion directions and conversion pairs. The
proposed method achieved an average MOS of 3.82, which was significantly higher than
the baseline score of 2.76. Figure 7 shows how similar the converted voice was to the target
speaker’s voice. The numbers in the graph indicate the proportion chosen as more similar
to the target speaker’s voice. On average, 92% of the utterances converted by the proposed
method were selected as being more similar to the target speakers’ voices. Some sample
speech waveforms produced by wav2wav are available online at https://wav2wav.github.
io/wav2wav (accessed on 20 April 2024).

https://wav2wav.github.io/wav2wav
https://wav2wav.github.io/wav2wav
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converted speeches by the baseline MaskCycleGAN and the proposed wav2wav.
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5. Conclusions

In this paper, we introduce wav2wav, a wave-to-wave voice conversion approach
enabling end-to-end training, which overcomes the limitations of traditional analysis–
mapping–reconstruction methods. By incorporating a feature-extracting CNN into the
existing vocoder and by modifying it to act as the generator of the CycleGAN-style voice
conversion, the proposed method enables direct conversion from waveform to waveform.
Since the proposed algorithm does not depend on any language-specific characteristics, it
can be used for voice conversion for languages other than English. Moreover, the proposed
method demonstrates the ability to learn effectively, even with a small-sized dataset of
just 10 min. Both the objective and subjective evaluations confirmed that the proposed
approach significantly improved the quality of converted speech and generated speech
that closely resembled the target speech. Due to these characteristics, the proposed method
can be used in a variety of applications, such as entertainment [1], education [2], and
medicine [3] domains.

In future research, the proposed method may be extended to singing voice conversion.
The method proposed in this study extracts global characteristics encompassing the entire
voice of each speaker. Although this method is effective for converting general everyday
conversational speech, it is expected that performance may deteriorate in cases where
the pitch and rhythm change dynamically within a sentence, such as in a singing voice.
Therefore, it will be possible to improve the performance of singing voice conversion by de-
veloping a new modeling method that takes into account the fact that speech characteristics
can change even in a single sentence.
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