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Osteoarthritis (OA) is an intricate pathological condition that primarily affects the

entire synovial joint, especially the hip, hand, and knee joints. This results in

inflammation in the synovium and osteochondral injuries, ultimately causing

functional limitations and joint dysfunction. The key mechanism responsible for

maintaining articular cartilage function is chondrocyte metabolism, which

involves energy generation through glycolysis, oxidative phosphorylation, and

other metabolic pathways. Some studies have shown that chondrocytes in OA

exhibit increased glycolytic activity, leading to elevated lactate production and

decreased cartilage matrix synthesis. In OA cartilage, chondrocytes display

alterations in mitochondrial activity, such as decreased ATP generation and

increased oxidative stress, which can contribute to cartilage deterioration.

Chondrocyte metabolism also involves anabolic processes for extracellular

matrix substrate production and energy generation. During OA, chondrocytes

undergo considerable metabolic changes in different aspects, leading to articular

cartilage homeostasis deterioration. Numerous studies have been carried out to

provide tangible therapies for OA by using various models in vivo and in vitro

targeting chondrocyte metabolism, although there are still certain limitations.

With growing evidence indicating the essential role of chondrocyte metabolism

in disease etiology, this literature review explores the metabolic characteristics

and changes of chondrocytes in the presence of OA, both in vivo and in vitro. To

provide insight into the complex metabolic reprogramming crucial in

chondrocytes during OA progression, we investigate the dynamic interaction

between metabolic pathways, such as glycolysis, lipid metabolism, and

mitochondrial function. In addition, this review highlights prospective future

research directions for novel approaches to diagnosis and treatment. Adopting

a multifaceted strategy, our review aims to offer a comprehensive understanding

of the metabolic intricacies within chondrocytes in OA, with the ultimate goal of

identifying therapeutic targets capable of modulating chondrocyte metabolism

for the treatment of OA.
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1 Introduction

Osteoarthritis (OA) is a complex medical condition that

impacts the entire synovial joint system, particularly the hip,

hand, and knee joints (1, 2). It is characterized by cartilage and

meniscus degradation, inflammation and fibrosis of the

infrapatellar fat pat and synovial membrane, and subchondral

bone remodeling (3–5). OA is the primary origin of pain-related

impairment and has the highest prevalence of all types of arthritis

worldwide (6). Several risk factors have been associated with the

evolution of OA. These risk factors can be categorized into

individual-level factors, such as age, gender, obesity, genetics, and

diet, as well as joint-level factors, like injuries and abnormal joint

loading (7). Age is considered the most important factor in OA (8).

Although the exact mechanism causing joint damage is not well

understood, it is likely due to multiple factors such as cartilage

thinning, oxidative damage, muscle weakness, and decreased

proprioception (9). Currently, most treatment methods used

today are only successful in relieving pain instead of healing the

cartilage damage (1, 10). Physical modalities, pharmacologic

treatments, and surgical treatments are the main types of OA

clinical therapies. Presently, non-steroidal anti-inflammatory

drugs (NSAIDs), opioids, glucocorticoids, chondroprotective

substances, and symptomatic and anti-cytokines are the

medication classes utilized to treat OA (11). Surgical treatment is

usually chosen to treat the advanced stages of OA (12).

Despite the limited therapeutic options available, OA remains a

challenging disease due to the incomplete understanding of the

molecular processes and pathways involved in the disease, as well as

the inherent regenerative limitations of cartilage (13). Articular

cartilage comprises the cartilage matrix and chondrocytes, and its

function is principally maintained by normal chondrocyte
Abbreviations: ROS, Reactive oxygen species; OA, osteoarthritis; ECM,

extracellular matrix; GLUTs, glucose transporters; OXPHOS, oxydative

phosphorylation; ATP, adenosine triphosphate; NADH, nicotinamide adenine

dinucleotide; FADH, flavin adenine dinucleotide; GTP, guanosine triphosphate;

HK, hexokinase; PK, pyruvate kinase; PFK, phosphofructokinase; LDHA, lactate

dehydrogenase; IL, interlokin; MMPs, matrix metalloproteinases; COL, collagen;

SOX9, sry-box transcription factor9; PFKFB3, phosphofructokinase-2/fructose-

2,6-biphosphate3; TNF, tumor necrosis factor; TGF, tumor growth factor; FAs,

fatty acids; TGs, triglycerides; HDL, high-density lipoprotein; PUFA,

polyunsaturated fatty acids; SFAs, saturated fatty acids; NADPH, nicotinamide

adenine dinucleotide phosphate; ABCA1, ATP-binding cassette A1; TCA,

tricarboxylic acid cycle; MARK, mitogen activated protein kinase; ERK,

extacellular signal-regulated kinase; AKT, protein kinase B; mtDNA,

mitochondrial DNA; AGEs, advanced glycation end products; PPARg,

peroxisome proliferator-activated receptor gamma; RT-PCR, reverse

transcription polymerase chain transcription; ELISA/EIA, enzyme-linked

immunosorbent assay/enzyme immunoassay; KO, knockout; WTD, western-

type diet; LCAT, lecithin cholesterol acyltransferase; ApoA, apolipoprotein A;

LDL, low-density lipoprotein; HDL, high-density lipoprotein; CCCP, carbonyl

cyanide 3-chlorophenylhydrazone; ADAMTS, a desintegrin and

metalloproteinase with thrombospondin motifs; ICA, icariin; SIRT1/FoxO1,

sirtuin 1/forkhead transcription factor1; TIMPs, tissue inhibitors of MMPs;

SODs, dismutases; GPX, glutathione peroxidase; 3D, 3-dimentionel.
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metabolism (14). Chondrocyte metabolism generates energy

through glycolysis, oxidative phosphorylation, and other

metabolic pathways. Chondrocyte metabolism can utilize various

substrates in the joint synovial fluid, ranging from simple sugars to

amino acids and fatty acids (15).

In OA, biomechanical changes occur within the cartilage and

chondrocytes, including cartilage degeneration, mechanical loading,

and alteration in the cartilage matrix (16). This leads chondrocytes

to respond with an increased generation of matrix-degrading

enzymes and inflammatory mediators, contributing to the

progressive deterioration of OA cartilage and joint function (16).

OA is characterized by major metabolic modifications in

chondrocytes, including substantial increases in their anabolic

activity (17), leading to the generation of type I and III collagens

instead of the usual type II collagen (18). Furthermore, OA-affected

chondrocytes may exhibit altered phenotypes due to the abnormal

expression of types I and III collagen, which are typically absent in

normal cartilage. This shift in collagen production away from the

norm is a hallmark of OA (18, 19).

Metabolic syndromes, including obesity, impact the cellular

metabolism of joint tissue cells, particularly chondrocytes (20). In

OA chondrocytes, the glycolytic process undergoes a shift, with

glucose transports (GLUTs) and multiple enzymes playing a role in

the disease’s development (21, 22). In individuals with type 2

diabetes, chondrocytes express various isoforms of the GLUT/

SLC2A glucose transporters during glycolysis (23). GLUT1 is

considered insulin-insensitive and responsible for basal glucose

uptake; while GLUT4 has a high affinity for glucose, it is

responsive to insulin (24). According to previous studies, healthy

human chondrocytes limit glucose uptake by destroying GLUT1 in

high glucose culture conditions, whereas chondrocytes affected by

OA do not suppress GLUT1 (25). This suggests that OA alters

glucose regulation. Additionally, obesity has been shown to increase

the production of oxidative stress mediators and pro-inflammatory

cytokines like IL-1b, which can affect mitochondrial activity and

glucose uptake (26). Additionally, inflammatory mediators such as

IL-1b and TNF-a, along with the progression of OA disease,

enhance cholesterol uptake by chondrocytes and facilitate the

production of oxysterol metabolites. These metabolites trigger the

expression of pro-catabolic matrix-degrading enzymes, including

matrix metalloproteinases (MMPs) and aggrecanases (27). The

metabolic syndrome can directly influence OA development by

promoting the generation of pro-inflammatory and catabolic

factors, as well as indirectly by interfering with autophagy and

senescence (28). Therefore, the metabolism of chondrocytes is

intricately linked to the treatment of OA.

This literature review’s main purpose is to summarize the

metabolic characteristics and changes of chondrocytes in vivo

and in vitro in OA. The review begins with a basic overview of

chondrocyte metabolism in normal cartilage and describes the

role of various metabolic pathways within OA chondrocytes. In

addition, this review also investigates potential therapeutic

targets that can modulate chondrocyte metabolism. This

literature review utilizes a comprehensive search strategy that

includes databases such as Pubmed, ScienceDirect, and

Google Scholar.
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2 Chondrocyte metabolism and
changes during OA

In normal conditions, the chondrocytes in the articular cartilage

are quiescent, showing minimal metabolic activity and matrix

component turnover (29). When articular cartilage is moderately

damaged, it usually involves an injury that allows a temporary

aggregation of ECMmolecules and chondrocytes, facilitating a brief

period of cell growth and ECM formation. Chondrocytes respond to

this damage by temporarily increasing their activity to repair and

restore the ECM (30). Chondrocytes respond to this damage by

temporarily increasing their activity to repair and restore the ECM.

Following the deterioration of the articular cartilage, the capacity of

chondrocytes to regenerate in a pathological state rapidly declines.

Additionally, the limited blood supply to the cartilage matrix

hinders its ability to recover and regain integrity (31). This

process leads to poor chondrocyte vitality, exceptionally high

levels of apoptosis, and ultimately an imbalance of chondrocyte

metabolism, which in turn causes articular cartilage degradation

and synthetic remodeling of the ECM (32).

In healthy circumstances, chondrocyte anabolism and

catabolism are balanced to preserve the structure of articular

cartilage. Matrix resorption is accelerated during the degenerative

process, causing degradation to occur more quickly than the

chondrocytes’ anabolic attempt to create a new matrix (33).

Various metabolic processes are involved in chondrocytes, such

as glycolysis, oxidative phosphorylation, and lipid metabolism.

These metabolic pathways maintain chondrocyte homeostasis and

cartilage integrity, and their alteration contributes to cartilage

degradation, inflammation, and apoptosis.
2.1 Glycolysis

In chondrocytes, the hypoxic environment of cartilage leads to

the generation of over 75% of total cellular ATP through glycolysis

and the remaining energy through oxidative phosphorylation

(OXPHOS). Glucose is considered the main metabolic fuel and

structural precursor in this process (2). During glycolysis, a single

molecule of glucose can generate two molecules of pyruvate while

producing two molecules of ATP (34). Pyruvate can then reach the

mitochondria in aerobic circumstances, where pyruvate

dehydrogenase complexes convert it into acetyl-CoA, thus
Frontiers in Endocrinology 03
integrating it into the tricarboxylic acid cycle (TCA). This cycle

produces GTP, which is the energy equivalent of ATP, as well as

NADH and FADH2, crucial electron carriers in the electron

transport chain for oxidative phosphorylation. This process

ultimately leads to the generation of ATP (35). In the cytosol,

pyruvate is converted to lactate to restore the NAD+ levels essential

for the continuous synthesis of ATP by phosphorylation of the

substrate via anaerobic glycolysis (31). OA chondrocytes exhibit an

elevated anaerobic glycolysis rate (36). In Table 1, the key targets in

the pathophysiology of glycolysis-related OA and their subtypes are

summarized. The metabolic function of each process and its role in

OA pathogenesis are outlined.

In OA chondrocytes, the glycolytic process undergoes a shift,

and the GLUTs and multiple enzymes are considered to be involved

in the pathogenesis. Various types of the GLUTs family, including

GLUTs-1, -3, -6, -8, -9, and -10, have been identified in human

chondrocytes through protein analysis (21, 22). GLUT-1 is

essentially responsible for basal glucose transfer in chondrocytes,

glycolysis’s first rate-limiting phase (41), which is indispensable for

chondrogenesis, embryonic development, and skeletal system

development (42). However, the expression of GLUT-1 is

increased during hypoxia and glucose deficiency but

downregulated in high-glucose circumstances (40). When glucose

levels increase, chondrocytes that cannot adapt may exhibit

heightened glucose absorption and subsequently generate elevated

levels of reactive oxygen species (40). The disruption of cellular

growth and matrix synthesis in the growth plate and articular

cartilage occurs due to GLUT1 gene deletion, leading to long-

term bone dysplasia and cartilage fibrosis (43, 44). Conversely,

prolonged elevation of GLUT1 expression can detrimentally impact

cartilage by promoting excessive glucose absorption and the

accumulation of advanced glycation end-products (37–39). Thus,

in the presence of pro-inflammatory cytokines, chondrocyte

GLUT1 expression is remarkably elevated (41), suggesting that

GLUT-1 may serve as a potential therapeutic target to treat OA.

Glycolysis is a highly regulated process wherein a multitude of

enzymes play relevant roles (45). These enzymes include hexokinase

(HK), pyruvate kinase (PK), phosphofructokinase (PFK), and lactate

dehydrogenase A (LDHA). The subtype HK2 is an important

regulator that facilitates the passage of glucose metabolism from

oxidative phosphorylation to aerobic glycolysis (46). The glycolysis

initial rate-limiting enzyme, HK2, is capable of catalyzing the

conversion of glucose to glucose-6-phosphate (G-6-P) and is
TABLE 1 The key targets in the pathogenesis of glycolysis-related OA.

Targets Subtypes Metabolic role Role in OA pathophysiology

Glucose transporters GLUT-1 Responsible for glucose transport
to the cell

Transport glucose in chondrocytes, when GLUT-1 is upregulated induces cartilage
damage by enhancing glucose absorption and creating excessive AGEs (37–39)

Pyruvate kinase PKM2 Generates ATP by converting
phosphoenolpyruvate to pyruvate

Inhibiting PKM2 can limit OA chondrocyte growth, induce cell apoptosis, and diminish
COL21 and SOX9 expression levels (2)

Phosphofructokinase PFKFB3 Essential for glycolysis stimulation Increases chondrocyte cell vitality, inhibits caspase-3 activation and stimulates the
production of aggrecan and type II collagen (40)

Lactate
dehydrogenase

LDHA Yields lactate from pyruvate Enhances ROS production in chondrocytes in inflammatory condition (40)
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implicated in the primary glycolysis pathways (47). In OA

chondrocytes, transforming growth factor beta 1 (TGF-b1)
promotes HK2 expression (48). Compared to the group with

healthy synovial tissue, OA synovial tissue (FLS) had a greater

HK2 level of expression. In OA FLS, overexpression of HK2

increases RNA expression levels of pro-inflammatory cytokines

such as IL-6, IL-8, and MMPs (49). PK catalyzes the final and

rate-limiting glycolytic process to transform phosphoenolpyruvate

to pyruvate and produce ATP. The isoenzyme PKM2 is increased

while ATP generation is reduced in human OA chondrocytes.

PKM2 inhibition can limit OA chondrocyte growth, induce cell

apoptosis, and diminish COL21 and SOX9 expression levels. PKM2

overexpression causes lactate accumulation and creates an acidic

microenv i ronment in OA chondrocytes . The ac id ic

microenvironment impairs the production of chondrocyte matrix

and may increase cartilage deterioration in OA (50), indicating that

PK might play a key function in OA progression and could be an

essential target to reverse OA pathogenesis.

The enzyme PFK, notably Phosphofructokinase-2/Fructose-2, 6-

Bisphosphatase 3 (PFKFB3), is important for glycolysis stimulation.

When chondrocytes are activated with tumor necrosis factor (TNF)

or IL-1, PFKFB3 is decreased. In addition, PFKFB3 can increase

chondrocyte vitality, inhibit caspase-3 activation, and stimulate the

expression of aggrecan and type II collagen, which could serve as a

target for treating and preventing OA (51).

LDHA is required for lactate synthesis (52, 53). Some synovial

fluid studies revealed that OA patients have higher levels of lactic

acid in the absence of sepsis, which suggests that LDHA is likely to

play a pathogenic role in human OA (54). LDH activity and

expression are greatly increased in IL-1-treated primary

chondrocytes. In an inflammatory condition, LDHA can enhance

the production of ROS in chondrocytes (40). Therefore, LDHA

could be another therapeutic vision for OA treatment.

Additionally, glyceraldehyde 3-phosphate dehydrogenase

(GAPDH), which is primarily responsible for glucose breakdown

in glycolysis, participates in a variety of cell functions, such as

phosphotransferase activity, RNA export, DNA replication, gene

transcription activation, and gene translocation regulation. The

study revealed that the expression of GAPDH is influenced by

hypoxic conditions in 3-dimensional (3D) culture (55). This

association observed in 3D culture could be related to hypoxia-

induced extracellular matrix formation (55). This indicates that

hypoxia might contribute to the development of OA.

Chondrocyte GLUTs exhibit sensitivity to mechanical pressure

or loading. Pressure loading reduces glucose transport via GLUTs.

Glucose transport in chondrocytes may also be influenced by

several growth factors and cytokines. Interleukin-1, transforming

growth factor-1 (TGF-1), insulin-like growth factor-1, TNF, and

others can enhance glucose absorption by chondrocytes via several

pathways (56).
2.2 Lipid metabolism

Lipids, characterized by their intricate structures such as fatty

acids, glycerol, and numerous functional groups, are among the
Frontiers in Endocrinology 04
most important molecules in biology. They are essential for

maintaining biological activities by performing functions

including energy storage, cell membrane structure, and signaling

(57). Within the human body, there are four major types of lipids:

cholesterol, fatty acids (FAs), triglycerides (TGs), and

phospholipids. Despite constituting less than 1% of the wet

weight of adult articular cartilage, lipids are present in both the

chondrocytes and matrix (58, 59).

Several studies have found that dysregulated lipid metabolism

contributes to the susceptibility to OA by promoting inflammation,

cartilage deterioration, and imbalances in joint tissue homeostasis

(60). Specifically, elevated blood cholesterol levels have been related

to generalized OA, implying that cholesterol may contribute as a

risk factor for OA (61). Moreover, abnormal HDL and higher levels

of total cholesterol and TG in the bloodstream have been associated

with the progression of bone marrow lesions (62, 63). Bone marrow

lesions can cause discomfort and may accelerate cartilage loss in the

knees of OA patients (64–67).

Dyslipidemia, particularly reduced HDL levels, can impair

cartilage homeostasis and contribute to OA progression (63).

Decreased HDL levels result in cholesterol accumulation within

the cartilage tissue, compromising the regular metabolic functions

of chondrocytes and the structural integrity of the extracellular

matrix. This may lead to low-grade inflammation, oxidative stress,

and cartilage deterioration (68, 69). Therefore, controlling

dyslipidemia and maintaining normal HDL levels may prevent or

reduce the progression of OA.

However, in osteoarthritic chondrocytes, important lipid

deposit reserves have been noted (58). A positive correlation

exists between the gravity of OA and the quantity of intracellular

lipid deposit reserves (58). The downregulation of cholesterol efflux

genes such as APOA1 and ABCA1 in OA cartilage contributes to

lipid buildup in chondrocytes. This disruption of cholesterol

metabolism may disturb the normal lipid balance within the joint,

resulting in increased inflammation and oxidative stress, both of

which are known to contribute to the progression of OA. Thus, the

impaired expression of lipid-regulating genes appears to have a

significant impact on the etiology of OA by contributing to lipid

buildup and its negative effects on cartilage health (70). According

to the research of Lippiello (1991), the distribution profile of

individual fatty acids in both healthy and osteoarthritic cartilage

was kept at a specific level, with 85% of the total fatty acids being

composed of palmitic, oleic, and linoleic acids. The study also

revealed that there were no changes in cholesterol content.

However, OA samples had significantly greater levels of total fatty

acids and arachidonic acid, and these raised levels were linked to

increasing histological severity (58). Baker (2012) discovered in the

Multicenter OA Study that there is a positive correlation between

synovitis and omega-6 PUFA, suggesting that higher omega-6

PUFA intake may worsen inflammation in OA. In contrast, they

found an adverse association between total omega-3 PUFA levels

and patellofemoral cartilage loss, indicating that a higher intake of

omega-3 PUFA may have a preventive effect on cartilage health in

OA (71). These findings suggest that maintaining a balance of

omega-3 and omega-6 PUFA in the diet may influence the

progression of OA.
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The synovium consists of macrophages, fibroblasts, and

endothelial cells (72). In OA, these cells can trigger the release of

cartilage substances such as IL-1 and TNF-a, which generateMMPs

and inhibit the production of collagen and proteoglycan, leading to

low-grade synovitis (73). Inflammatory conditions may result in

LDL oxidation, which is subsequently absorbed by synovial cells via

scavenger receptors (72). An elevated level of LDL could trigger

synovial cell activation, potentially resulting in increased synovial

thickness (72). Thus, lipid metabolism is related to synovitis during

OA (Figure 1).

Also, cholesterol levels in OA chondrocytes are higher due to

the increased synthesis of oxysterol metabolites and the activation

of cholesterol hydroxylase (27).

2.2.1 Hypercholesterolemia
Hypercholesterolemia exacerbates OA via various mechanisms.

Several studies have confirmed a link between higher levels of

cholesterol oxidation products (oxysterols) and mitochondrial-

derived oxidative stress, which in turn generally increases

mitochondrial reactive oxygen species (mtROS) (74). Therefore,

higher levels of cholesterol oxidation products can disrupt

mitochondrial function, leading to increased ROS production and

oxidative stress, ultimately contributing to cellular dysfunction and

disease development (75). In normal conditions, enzymes such as

superoxide dismutases (SODs) and glutathione peroxidase (GPX)

normally remove ROS (76). Human chondrocytes regularly

produce GPX, cytosolic Cu/Zn, and mitochondrial SOD. The

SODs convert superoxide to hydrogen peroxide, which is

removed by GPX and catalases (76). Increased ROS can surpass

the protective mechanisms against oxidative stress in mitochondria,

causing irreversible harm to sensitive cells and permanent damage

to adjacent tissues. The excessive production of ROS, especially

superoxide and related radicals, has been linked with cellular failure

in both human and animal studies (77). Meanwhile, ROS

overproduction is associated with human cartilage dysfunction (78).

Mito Tempo, a targeted antioxidant, reduces oxidative stress in

cells by scavenging mitochondrial superoxide, which helps prevent

the generation of harmful ROS like cytosolic hydrogen peroxide
Frontiers in Endocrinology 05
(79). This mechanism may alleviate OA symptoms caused by

hypercholesterolemia, allowing cells to eliminate excess oxidative

stress (77), suggesting that mitochondrial-targeted antioxidants are

a promising therapy for OA-caused hypercholesterolemia (80).

Studies have demonstrated that Mito Tempo treatment can

reduce cartilage degradation, inhibit inflammatory cytokines

production, and improve joint function in OA animal models

(29). However, further clinical trials are needed to determine the

complete effectiveness of Mito Tempo in treating OA.

ABCA1, an ATP-binding cassette transporter, is a plasma

membrane protein that removes excess free cholesterol and

phospholipids from the tissues (81, 82). This process involves

transporting cellular cholesterol and phospholipids to lipid-free

apolipoprotein AI, leading to the generation of nascent HDL

particles (81, 82). Furthermore, recent investigations highlight the

significant connection between inflammation and cholesterol

homeostasis in the context of OA. ABCA1 emerges as a crucial

player in these pathways, influencing OA progression through its

impact on inflammation and joint tissue health (83).

Overall, hypercholesterolemia influences oxidative stress and

inflammation in OA by promoting the production of ROS,

increasing levels of inflammatory mediators, and disrupting lipid

metabolism (84). These interconnected mechanisms contribute to

the progression of OA in patients with elevated cholesterol levels.

However, these mechanisms need further investigation to suggest

a therapy.

2.2.2 Fatty acids
The variations in fatty acids (FAs), including polyunsaturated

fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), and

saturated fatty acids (SFAs) (85), may affect the inflammatory

responses caused by FAs. These responses are critical to the

progression of OA (86). In chondrocytes, TLR-4 is the most

expressed TLR subtype (87). FAs such as SFAs can activate TLR-

4-mediated inflammatory responses, which, via its downstream

molecule myeloid differentiation factor (MyD)88, activate the NF-

kB pathway, leading to the production of inflammatory cytokines

(88). Additionally, SFAs activate inflammasomes in immune cells
FIGURE 1

Dyslipidemia and osteoarthritis share a complex relationship with potential implications for joint health.
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and elevate IL-1b (89), ultimately contributing to OA progression

(90). Targeting these pathways may provide potential therapeutic

strategies for preventing and treating OA.

Substantial evidence shows that FAs are generally pro-

inflammatory (91, 92). They stimulate adipose tissue

macrophages to release TNFa and IL-1 (93). In addition to SFAs,

omega-6 polyunsaturated fatty acids (n-6 PUFAs) exhibit a pro-

inflammatory influence. N-6 PUFAs not only favor ROS generation

and chondrocyte death via the NADPH oxidase 4 (NOX-4)

signaling pathway, but they can also be converted into bioactive

substances such as pro-inflammatory prostaglandins and

leukotrienes, which are essential in joint inflammation, the

breakdown of cartilage matrix, and bone resorption in OA (48,

94–96). Compared to SFAs and n-6 PUFAs’ pro-inflammatory

effects, n-3 PUFAs abrogate inflammation. For example, the

interaction between n-3 PUFAs and G-protein coupled receptor

120 (GPR 120) results in the creation of protectins and resolvins,

which mediate anti-inflammatory actions in several types of cells

(97, 98).

Fatty acids contribute to promoting OA through several

mechanisms, with the production of pro-inflammatory molecules

being one of the most significant factors.
2.3 Mitochondrial dysfunction

To carry out their normal activity, chondrocytes need to be

supplied with energy (99). The mitochondria produce ATP via the

TCA, also known as the Krebs cycle or citric acid cycle, and

OXPHOS (99). OXPHOS is essential for ATP generation in

chondrocytes. The electron transport chain (ETC) establishes an

imbalance of protons across the inner mitochondrial membrane

(IMM) and generates mitochondrial membrane potential, which

leads to complex V (also known as ATP synthase) producing ATP

(100). Additionally, several protein complexes located within the

inner mitochondrial membrane promote the movement of

electrons and the pumping of protons along the mitochondrial

respiratory chain to produce ATP (80). These complexes include

NADH dehydrogenase (complex I), succinate dehydrogenase

(complex II), Cyt-C reductase (complex III), and Cyt-C oxidase

(complex IV). Mitochondrial dysfunction in OA can result in

decreased activity of respiratory chain complexes I, II, III, and V,

loss of MMP, and decreases in OXPHOS (101), leading to

inflammation and IL-1b production (102).

2.3.1 Reactive oxygen species production
As well as generating ATP, mitochondria exercise a crucial

function in other physiological processes within the cells, including

the generation and modulation of ROS, the detection and regulation

of hypoxic conditions by hypoxia-inducible factor-1 (HIF-1),

mitochondria-mediated apoptosis, and the accommodation of

intracellular calcium ions (103–107). Moreover, mitochondria

play a crucial function in the pathophysiology and development

of OA. Therefore, an overabundance of ROS can lead to both

oxidative damage and involvement in redox-regulated cell signaling
Frontiers in Endocrinology 06
pathways like Akt and MAPK signaling (29). To maintain the

balance of the cellular redox reaction, ROS is a sensitive signaling

element of cell physiology. Signaling pathways like mitogen-

activated protein kinase/extracellular signal-regulated kinase

(MAPK/ERK) and insulin phosphatidylinositol-3-kinase-protein

kinase B (PI3K/Akt) are triggered by excessive ROS (108). ROS

may stimulate the MAPK/ERK pathway by oxidizing and activating

upstream kinases, including Raf, MEK, and ERK. ROS can

potentially activate the PI3K/Akt pathway by oxidizing and

inhibiting phosphatases that generally inhibit Akt activation.

Furthermore, ROS can activate signaling pathways through

cysteine residues in key signaling molecules, causing

conformational changes and activating downstream targets.

Additionally, ROS can influence signaling pathways by activating

transcription factors such as NF-kB and AP1, which regulate gene

expression for cell survival and growth (109). ROS disrupts the

production of glycosaminoglycans and type II collagen fibers while

increasing the expression of col lagen type I , matrix

metalloproteinases, and pro-inflammatory cytokines via the

MAPK and MAPK/ERK signaling pathways (110). ROS activates

the PI3K/Akt and caspase pathways and can lead to chondrocyte

apoptosis during the early stages of OA (111). In addition to

affecting chondrocyte function, an overabundance of ROS induces

mitochondrial DNA (mtDNA) damage and can also decrease the

mtDNA repair capacity (Figure 2) (112–114).

2.3.2 Mitochondria and the
inflammatory response

ROS enhances the inflammatory response in OA by stimulating

signaling pathways, including NF-kB, MAPK, and PI3K/Akt (111).

This stimulation upregulates pro-inflammatory cytokines

(including TNFa, IL-1b, and IL-6) and MMPs, which damage the

cartilage matrix (Figure 3) (115). Moreover, ROS increases the

expression of tissue inhibitors ofMMPs (TIMPs), which function as

endogenous MMP inhibitors (116). An imbalance among MMPs

and TIMPs leads to increased extracellular matrix breakdown in OA

chondrocytes. Ultimately, ROS-mediated stimulation of these

pathways leads to inflammation and MMP overexpression in OA

chondrocytes , resu l t ing in car t i lage breakdown and

OA progression.

OA leads to increased ROS synthesis by chondrocytes in

cartilage. The mitochondrial respiratory chain (MRC) is a

significant source of ROS production (117). ROS exacerbated the

inflammatory response and upregu la t ion o f mat r ix

metalloproteinases in OA chondrocytes due to the reduced

activity of mitochondrial complexes II and III (118, 119). In

addition, inhibiting complexes III or IV in these cells can cause

the generation of various pro-inflammatory stimuli such as

cytokines IL-1, IL-6, and IL-18, prostaglandin e2 (PGe2),

chemokines IL-8 and monocyte chemotactic protein 1, and

proteases MMP1, MMP3, and MMP13 (26, 120).

2.3.3 Apoptosis and cell death
Furthermore, whenever mitochondria change their

morphology, structure, or function, chondrocytes manifest
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themselves in a pathogenic state. Increased oxidative stress,

chondrocyte apoptosis , inflammation-mediated matrix

breakdown, and calcification of the cartilage matrix have been

observed (121, 122). The deterioration of mitochondrial activities

and quality control is a major cause and characteristic of

chondrocyte senescence and apoptosis, as well as the development

of OA (123, 124). Oxidative stress provokes chondrocyte death via

the caspase-dependent and caspase-independent mitochondrial

pathways in OA (125). The mitochondria of OA chondrocytes

displayed apoptosis-associated structural changes, as well as a

decrease in mitochondrial membrane potential (DYm) and

mitochondrial respiratory chain (MRC) enzyme activity (126).
3 In vivo and in vitro studies of
chondrocyte metabolism in OA

To shed light on in vivo and in vitro studies of glycolysis and

lipid metabolism, this review is based on the cases of diabetes-

related OA and obesity-related OA. Thus, this will provide us with a

broad understanding of the in vivo and in vitro studies of

chondrocyte glycolysis and lipid metabolism and their

relationship with diabetes and obesity, given that these are major

factors in the pathogenesis of OA.
3.1 Diabetes-related OA

Given the importance of glycolysis in chondrocyte metabolism,

multiple researchers have concentrated on its exposure in high-
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glucose environments. Therefore, the ability of normal

chondrocytes to respond to normal glucose levels is lost during

OA, which is the absolute cause of excessive glucose absorption and

possible glucose poisoning (25). Exposure to high glucose levels can

lead to localized toxicity in joint tissue, causing an increase in

oxidative stress, cytokines, proteolytic enzyme synthesis, and the

accumulation of advanced glycation end products (AGEs) (127–

129). Unfortunately, there is a scarcity of qualified research studies

in animal models of diabetes that are related to OA. In a recent

study, cartilage injury was seen after eight weeks of hyperglycemia

in mice with streptozotocin (STZ)-induced type 1 diabetes, and

there were higher levels of circulating AGEs (130). Pioglitazone, a

diabetes medication, improved both anomalies. The authors

concluded that the medication ’s response indicated a

downregulation in PPARg expression; however, it was not so clear

whether this was connected to hyperglycemia improvement or

PPARg suppression (131). A noteworthy investigation employed

the diet-induced-obesity (DIO) model on the C57Bl/6 strain,

meticulously assessing physiological parameters and histological

effects related to OA (132). This study related a high-fat diet (60%

calories) with the meniscal ligament damage paradigm to produce

OA. The mice group that obtained both the high-fat diet and

ligament injury had higher OA scores (increased joint

degradation). However, because hyperglycemia was not developed

until the final month of the experiment, it is uncertain whether

hyperadiposity (133) or increasing hyperglycemia was the main

factor behind increased OA development. This essential study

describes that acceleration of joint degradation is related to

metabolic abnormalities commonly observed in diabetes mellitus

(DM) patients (131). Increased proteoglycan degradation has been
FIGURE 2

ROS implication in the pathophysiology of osteoarthritis.
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found in the non-articular connective tissues of diabetic animals

(134). The composition of cartilage’s ECM significantly affects its

biomechanical qualities. Furthermore, there is some evidence that

metabolic problems related to diabetes affect the cartilage ECM.

Previous experiments in animal models of diabetes demonstrated

decreased collagen formation (135) and enhanced proteoglycan

degradation. Thus, these works show glycolytic metabolism

alterations in chondrocytes in diabetes-related OA.

In an in vitro study, Laiguillon (2015) used diverse methods

such as (14C)-2-deoxyglucose to assess glucose uptake, quantitative

RT-PCR, and ELISA/EIA to observe the expression and release of

pro-inflammatory mediators, and ROS and nitric oxide (NO)

production were measured. Under high-glucose conditions, they

showed enhanced articular chondrocyte glucose absorption,

specifically in response to IL-1b stimulation (127). IL-1b has been

shown to promote GLUT-1 and GLUT-9 production in

chondrocytes (21). They obtained comparable results for GLUT-1.

Under ordinary glucose circumstances, IL-1b only moderately

promoted glucose absorption despite increased GLUT-1

expression. This absorption was abundantly boosted when cells
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were generated under high glucose conditions (127). Also, in

another study, an author observed that OA-affected chondrocytes

exposed to high glucose levels were unable to downregulate GLUT-

1, resulting in higher glucose accumulation inside the chondrocytes

and the production of more ROS, which is deleterious to the ECM

(136), which leads to mitochondrial dysfunction and cartilage

degradation. Excessive oxidative stress may also result from the

crucial cellular transfer of glucose (131). Therefore, these studies

proved that chondrocytes cannot downregulate glucose

concentration under high glucose conditions, but they absorb it,

which may deteriorate cartilage, thus enhancing OA progression.
3.2 Obesity-related OA

It has been noted that OA and lipid metabolism are closely

related (137, 138). Disrupted lipid metabolism is linked to obesity

(139). Obesity is distinguished by high joint loading and aberrant

lipid profiles, such as dyslipidemia (60). Obesity-related

dyslipidemia is defined by elevated plasma levels of TGs, low
FIGURE 3

ROS and Osteoarthritis: A Balancing Act.
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levels of HDL cholesterol (HDL-c), often modestly raised levels of

LDL cholesterol (LDL-c), and higher levels of FFAs (139). Previous

studies have shown a potential role for HDL malfunction in the

pathophysiology of OA, based on the finding that OA patients have

lower serum HDL-c levels (140). To further study this, Eva Thijssen

(2015) compared the development of OA in LCAT−/− and ApoA-I

−/− mice and that of C57BL/6 control mice. These knockout (KO)

mice had significantly lower levels of functional HDL. On the other

hand, cartilage fibrillation, vertical clefts, chondrocyte clustering,

and reduced levels of proteoglycan were observed in both LCAT−/−

and ApoA-I−/− mice fed a Western-type diet (WTD, 42% calories

from fat), while control mice did not exhibit any of these

characteristics. Furthermore, KO mice on WTD showed elevated

cartilage protein levels of MMP-2, MMP-9, and MMP-13. A

decrease followed this enhanced MMP expression in collagen type

II protein levels (60). So, all these studies support the idea that

reduced HDL levels are involved in OA progression by affecting

cartilage homeostasis.

Excessive levels of serum low-density lipoprotein (LDL) and

oxidized LDL have been linked to pro-inflammatory effects (141).

According to research by De Munter (2016), mice given a diet high

in cholesterol developed synovitis, accumulated LDL in synovial

cells, and produced more ectopic bone formation. They suggest that

this process is caused by elevated levels of oxidized LDL activating

endothelial, fibroblast, and synovial macrophages, which in turn

cause ectopic bone formation, local inflammation, and cartilage loss

(142). Oxidized LDL promotes OA by activating inflammatory

pathways such as NF-kB and oxidative stress, leading to the

generation of ROS and the expression of inflammatory mediators

(MMPs), contributing to cartilage degradation in OA (143).

As was previously highlighted, increased systemic FFA levels are

also an important factor in obesity-related dyslipidemia. FFAs can

activate macrophages by engaging Toll-like receptor 2/4 (TLR2/4),

which results in downstream c-Jun N-terminal kinase signaling and

macrophage activation (93). Consequently, pro-inflammatory

mediators such as TNF-a can be secreted by macrophages (60).

Furthermore, TNF-a exacerbates inflammation by stimulating the

synthesis of pro-inflammatory cytokines and chemokines such as

IL-6, IL-8, monocyte chemoattractant protein 1, and CC-

chemokine ligand 5 (144–147). In OA, high levels of FFAs in

cartilage tissues are related to significant tissue damage (58). In

vitro, palmitate (SFA) stimulates the synthesis of pro-inflammatory

cytokines by chondrocytes and synoviocytes, activates TLR-4, and

has pro-apoptotic properties (148).

In vivo studies showed that a high-fat diet exacerbated OA, but

n-3 PUFAs reduced disease severity by lowering inflammation and

cartilage breakdown, and n-6 PUFAs had no deleterious effects on

the condition (149). A diet high in eicosapentaenoic acids and

docosahexaenoic acids may reduce joint stiffness and pain in

individuals with arthritis (150, 151). Thus, the COX enzyme

oxidizes n-6 PUFAs, producing prostaglandins (PGE2 and

PGF2a), as well as leukotrienes such as LTB4. Whereas, n-3

PUFA oxidation produces less inflammatory compounds such as

PGE3 and LTB5, following COX oxidation and lipooxygenase

activity (150). Additionally, the study utilizing the destabilization

of the medial meniscus (DMM) model demonstrates that n-3
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PUFA-derived 17-hydroxy docosahexaenoic acid (17-HDHA) is

linked to reduced pain during loading, confirming the murine

DMM model’s utility in investigating the 17-HDHA pathway as a

potential therapeutic targeting for alleviating OA pain (152).
3.3 Mitochondrial dysfunction

Mitochondrial dysfunction and damage, which can lead to

anomalies in chondrocyte function and viability, exacerbate

cartilage degradation in OA (112). These abnormalities involve

the following aspects: increased inflammatory responses, such as

matrix catabolism induced by interleukin-1ß (IL-1ß) and TNF, as

well as impairment of chondrocyte growth and anabolic responses,

excessive oxidative stress, apoptosis of chondrocytes, and

calcification of the cartilage matrix (112, 119). In their study, Yun

Wang (2015) revealed a dysfunction in mitochondrial biogenesis

capacity, which may lead to deficits in the physiologic

mitochondrial activities of chondrocytes in human knee OA

(101). Thus, they connected decreased mitochondrial biogenesis

capability in well-established human knee OA chondrocytes to

mtDNA content and reduction in mass, as well as decreased

mitochondrial function, as demonstrated through decreased

baseline oxygen consumption and intracellular ATP levels (101).

Multiple studies have demonstrated that mitochondrial dysfunction

has an important influence on catabolic gene expression in

chondrocytes. In their study, Mohammad Y (2020) demonstrated

that mitochondrial roles are compromised in OA cartilage in vivo

compared with healthy cartilage (153). Furthermore, their research

demonstrated a substantial enhancement in the level of

mitochondrial superoxide in human OA cartilage in vivo, which

was associated with the expression of catabolic genes in OA

cartilage. They used carbonyl cyanide 3-chlorophenylhydrazone

(CCCP) to induce mitochondrial malfunction and discovered the

associated signaling route. According to their findings, when

CCCP-induced mitochondrial malfunction was observed in vitro,

increases in type II collagen and proteoglycan degradation were

discovered, which is consistent with the enhancement in their gene

expression in vivo. In human and mouse cartilage explants, they

also observed an enhancement in the protein expression of matrix-

degrading proteases MMP-3, -9, -13, and ADAMTS5 (153).

In vivo and in vitro models, by using different assessment

methods such as mitochondrial DNA analysis, respiration studies,

and mitochondrial membrane potential, researchers have received

vital insights regarding the role of mitochondrial dysfunction in the

expansion and advancement of OA. These discoveries have opened

the door to more research into the underlying processes of

mitochondrial dysfunction in OA, in addition to developing

specialized therapeutic options for the effective treatment of this

debilitating ailment.
4 Therapeutic implications

The search for new treatment targets is crucial, given the limited

therapeutic choices. Chondrocyte metabolism appears to be an
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important target, given its imminent role in the pathophysiology of

OA. In chondrocytes, glycolysis serves a crucial function in the

setup and progression of OA. Modulating glucose metabolism may

provide a novel alternative to treating OA. Therefore, glucose

transporters and glycolytic enzymes could be a potential

therapeutic target to modulate chondrocyte metabolism to treat

OA (2). For example, icariin (ICA) is a flavonoid compound found

in some plants that has been proven to have anti-inflammatory

effects. ICA increases GLUT1 and other glycolytic enzyme

expression, potentially promoting anaerobic glycolysis in OA

cartilage chondrocytes and enhancing cell vitality. Consequently,

ICA may constitute a promising experimental treatment for OA

(154). Furthermore, glucose metabolism and targeting glycolytic

enzymes can influence the activity of transcription factors such as

NF-kB, HIF-a, and TGF-b, which can influence the expression of

genes involved in inflammation and cartilage breakdown. The

modulation of these pathways may alleviate OA symptoms (155)..

New research has highlighted that lipid metabolism may

contribute to the development and progression of OA (60).

Statins have been linked to many anti-inflammatory actions in

addition to their impact on lipid metabolism. They affirmed that

atorvastatin, a member of the statin medication class, can prevent

the development of OA (156). Statins function by inhibiting 3-

hydroxy-3-methylglutaryl-coenzyme A (HMG Co-A) reductase,

leading to a decrease in cholesterol levels (156). In humans,

serum cholesterol levels are related to OA (84). It has been

proven that intra-articular injections of statin during the

development of OA reduced inflammatory cell infiltration and the

expression of matrix-degrading enzymes, hence limiting cartilage

deterioration (157). Statins have been found to have anti-

inflammatory and chondroprotective properties in OA, reducing

the generation of pro-inflammatory cytokines and improving

cartilage repair (158). Resveratrol (RES) is an antioxidant that

exhibits anti-inflammatory, lipid-regulating, antioxidant, and anti-

aging properties (159, 160). RES has been found in animal

experiments to suppress chondrocyte autophagy, apoptosis, and

extracellular breakdown, resulting in a decrease in OA progression

(43). In an experimental study, ChuanCai Liang (2023) found that

RES has been indicated in vivo and in vitro to reduce cartilage

cholesterol accumulation in OA cartilage through the intermediary

of the SIRT1/foxO1 pathway, hence slowing the evolution of

OA (161).

At present, there is no compound targeting mitochondria that is

likely to treat OA (80). However, David (2022) proved that the gut-

derived metabolite Urolithin A enhances joint mitochondrial

function, reduces OA disease development, and alleviates OA

pain (162). Preclinical studies suggest that mitochondrial

dysfunction contributes to chondrocyte apoptosis, which can be

reduced by modulating mitochondria (163). Therapeutic strategies

aimed at limiting or blocking the synthesis of ROS give variable

results. Two investigations, for example, have shown that vitamin C

promotes apoptosis in chondrocyte cell cultures (164, 165).

Hyaluronic acid is a glycosaminoglycan that is a fundamental

compound of the extracellular matrix (166). It exhibits

antioxidant scavenging activity against ROS/RNS and its

regulatory effects are mediated by CD44 binding (166).
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Hyaluronic acid not only protects mtDNA damage from the

initial damage caused by free radicals, but it also maintains cell

viability and prevents apoptosis via the anti-CD44 antibody.

Therefore, improving chondrocyte viability and maintaining

mitochondrial activity under oxidative stress conditions are

crucial therapeutic pathways for the effects of hyaluronic acid in

OA (166). Thus, targeting mitochondrial mechanisms in

chondrocytes may offer opportunities for strategies aimed at

attenuating mitochondrial dysfunction in chondrocytes, which

could reduce the progression of OA and protect joint function.

Table 2 summarizes different metabolic processes’ therapeutic

effects, implications, and prospective therapy methods in OA.

Also, some clinical trials have demonstrated significant

improvements in OA symptoms by targeting chondrocyte

metabolism. Metformin, an AMPK-activating medication, has

shown chondroprotective actions by reducing the onset and

progression of OA. Metformin works by altering mitochondria,

resulting in reduced ATP synthesis. Consequently, this activates the

AMPK respiratory complex I, indicating its use in clinical trials and

as therapy for OA (167). Duloxetine, an effective and appropriate

serotonin (5-HT) and norepinephrine (NO) reuptake inhibitor

(SNRI), is used to treat severe depression, anxiety, diabetic nerve

damage, and fibromyalgia. In recent trials, duloxetine at a dose of

60/120 mg per day reduced the discomfort of individuals with knee

OA (168).

One proposed strategy is to enhance the pharmacological effects

of b-Caryophyllene (BCP), a plant-derived sesquiterpene that

interacts with cannabinoid receptor (CB) 2 and exhibits anti-

inflammatory properties by reducing MMPs and IL-1b
production in human chondrocytes. The combination of BCP

with antioxidants, such as ascorbic acid (AA), and chondro-

protective elements, such as GlcN, increases the production of

proteoglycans and has anti-inflammatory and anticatabolic effects.

Additionally, AA’s antioxidant properties can help minimize

oxidative stress linked to OA progression by inducing

proteoglycan generation in chondrocytes (169).
TABLE 2 The therapeutic implication of metabolic pathways.

Process Impact Therapeutic
implications

Treatment

Glycolysis

Increased glucose
metabolism in
cartilage leads to
cartilage
deterioration

Modulation of
glucose transporters
and glycolysis
enzymes for
cartilage protection

Icariin (128)

Lipid
metabolism

Altered lipid
profile in
chondrocytes
contributes to
cartilage
degradation

Modulating lipid
metabolism to
standardize lipid
deposits and
reduce
inflammation

Atorvastatin
(129)
Resveratrol
(133)

Mitochondrial
dysfunction

Mitochondrial
dysfunction
inducing
chondrocytes
apoptosis and
cartilage damage

Improving
mitochondrial
function to preserve
chondrocyte’s
viability
and function

Urolithin
A (135)
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Physical activity is favorably recommended by the American

College of Rheumatology for improving OA incomes and reducing

disability (170). Regular exercise may enhance OA outcomes by

aiding in weight loss and decreasing joint loading (171), decreasing

systematic inflammatory biomarkers (such as IL-6 associated with

cartilage degradation) (172), and providing appropriate loading of

articular cartilage, which is essential for preserving tissue

integrity (173).

Research also indicates that healthy dietary regimes and

nutrition interventions ameliorate OA progression (174), reduce

inflammatory markers that accelerate cartilage metabolism (175),

and lead to decreases in body weight (176). Based on studies,

adhering to Mediterranean-type diets can mitigate the severity

and progression of OA, as demonstrated by enhancements in

outcomes reported by patients, such as degrees of pain,

movement, symptoms, cartilage deterioration, and inflammatory

biomarkers (177, 178). While Mediterranean-type diets may differ,

they usually include a variety of fruits, vegetables, legumes, nuts, and

seafood, with a moderate intake of dairy, olive oil, and poultry

(179). Certain foods, such as ginger and strawberries, may enhance

symptom relief via antioxidant mechanisms, which can have

negative effects on nearby tissues and promote inflammation (180).
5 Discussion

Our investigation in this review focused on the in vivo and in vitro

metabolic properties and alterations of chondrocytes when exposed to

OA. We highlighted the complex interplay between metabolic

pathways, such as glycolysis, lipid metabolism, and mitochondrial

function. Dysregulation in certain metabolic pathways, such as

glycolysis, lipid metabolism, and mitochondrial activity, contributes

significantly to the pathogenesis of OA. Glycolysis, the mechanism

through which glucose is broken down to produce energy in the form

of ATP, has been related to OA pathogenesis. Increased glycolytic

activity in chondrocytes can cause an increase in ROS generation (40).

Excessive ROS can cause oxidative stress and damage to biological

compounds such as mitochondria (112–114). Altered lipid metabolism

in OA induces lipid buildup in chondrocytes, causing cell stress and

dysfunction. This lipid accumulation causes dysfunction in

mitochondria, impairs the metabolism of lipids, and alters lipid

balance. Therefore, this imbalance promotes oxidative stress in

chondrocytes, exacerbating the deterioration in OA-affected cartilage

(74). Mitochondrial failure in OA affects cellular metabolism, resulting

in decreased ATP synthesis, increased ROS generation, and altered

signaling cascades (29, 101). This malfunction can promote

chondrocyte death and inflammation, which can eventually lead to

cartilage breakdown in OA.

In vivo studies provided insights into the metabolic changes of

chondrocytes in OA. Increased proteoglycan degradation has been

shown in high-glucose milieus. In lipidemia, high expression of

proteolytic enzymes was seen, and that was followed by a decrease

in collagen type II protein levels, further aggravating the metabolic

imbalance in OA.

In vitro studies, an excessive production of ROS was found in

glucose update assessments. An increase in type II collagen and
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proteoglycan degradation was noted in mitochondrial-induced

malfunction. Furthermore, the matrix-degrading proteases MMP-

3, -9, -13, and ADAMTS5 had increased protein expression in

human and mouse cartilage explants (153). The studies also

suggested that there is expression and release of pro-

inflammatory mediators in OA, which further leads to

disease progression.

The interaction between these pathways remains unclear, but all

of these metabolic changes are interconnected and may contribute

to cartilage degeneration and OA progression. For instance,

enhanced glycolytic activity can produce ROS (40), which can

promote mitochondrial dysfunction (112, 114). Altered lipid

metabolism could also contribute to mitochondrial dysfunction

and increased oxidative stress in chondrocytes (71). Overall, these

metabolic alterations interact to disrupt chondrocyte functions,

promote inflammation, and accelerate cartilage degeneration

in OA.

These metabolic changes in OA chondrocytes can be potential

strategies to treat OA. For example, icariin (ICA) increases GLUT1

expression and other glycolytic enzymes, potentially promoting

anaerobic glycolysis in OA cartilage chondrocytes and enhancing

cell vitality (154). Furthermore, physical modalities and diets may

be effective methods for managing symptoms and decelerating

disease development by modulating chondrocyte metabolism.

The interaction between different processes is considered an

important limitation of the study. Additionally, the challenge of this

study is that in vivo and in vitromodels may not fully reproduce the

disease’s complex and dynamic character as it occurs in the human

body. In vivo studies may be constrained by variations in genetic

origins, environmental circumstances, and disease progression in

animal models and humans. Also, in vitro studies may not fully

capture the relationships and effects of various cell types, tissues,

and signaling pathways that contribute to OA in the joint

environment. These limitations make it difficult to precisely

analyze metabolic processes and anticipate the effects of therapy

in trials.

In the future, we will study the different interactions between

metabolic pathways and chondrocytes, such as glycolysis, lipid

metabolism, and mitochondrial function, to gain an extensive

understanding of the influence of metabolic mechanisms on OA

etiology. We need to observe and assess the metabolic activity of

chondrocytes, which will give us a dynamic view of metabolic

alterations during OA. Finally, we need to identify new

chondrocyte metabolic targets for potential therapy to modulate

chondrocyte metabolism.
6 Conclusion

This study provided insight into how chondrocytes can undergo

various metabolic changes during OA, both in vivo and in vitro.

These changes include mitochondrial dysfunction and a shift

towards glycolysis, which are related to chondrocyte catabolism

and cartilage deterioration. Ultimately, the results of in vivo and in

vitro investigations imply that metabolic alterations are essential to

the etiology of OA. Targeting these metabolic changes may offer
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new alternative options for OA treatment. Future research

should also focus on the interaction between the different

metabolic pathways in chondrocytes and their alterations during

OA, as well as the strategies to treat OA by targeting these

metabolic pathways.
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