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Abstract 
Discrete Lotka-Volterra systems in one dimension (the logistic equation) and 
two dimensions have been studied extensively, revealing a wealth of complex 
dynamical regimes. We show that three-dimensional discrete Lotka-Volterra 
dynamical systems exhibit all of the dynamics of the lower dimensional sys-
tems and a great deal more. In fact and in particular, there are dynamical 
features including analogs of flip bifurcations, Neimark-Sacker bifurcations 
and chaotic strange attracting sets that are essentially three-dimensional. Among 
these are new generalizations of Neimark-Sacker bifurcations and novel chaotic 
strange attractors with distinctive candy cane type shapes. Several of these dy-
namical are investigated in detail using both analytical and simulation tech-
niques. 
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1. Introduction 

We shall consider a natural discrete analog of the famous and ubiquitous Lotka- 
Volterra model, developed independently by Alfred Lotka [1] and Vito Volterra 
[2] for the dynamics of a population comprising several interacting species, say 

( )1 2: , , , mx x x=x  , as described in such references as [3] [4]. This model may be 
expressed in the form 
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( )1

d
: 1 , 1 ,

d
mi

i i i ij jj

x
x x x i m

t
α β

=
= = − ≤ ≤∑               (1) 

where the coefficients ,i ijα β  are real constants and typically nonnegative, with 
1iiβ =  for all 1 i m≤ ≤ , 1 j n≤ ≤ . Note that for a single species, (1) is essen-

tially the (continuum) logistic equation. If one employs the Euler method to ob-
tain discrete approximate solutions of (1), the result can be written as the follow-
ing system of difference equations: 

( ), 1 , ,11 , 1 ,m
i n i i n ij j njx x x i mλ γ+ =

= − ≤ ≤∑                (2) 

where the birth-rate parameters iλ  and interaction coefficients ijγ  are usually 
nonnegative constants as we shall assume in the sequel, with 1iiγ =  for all  
1 i m≤ ≤ , 1 j n≤ ≤ . Analogous to our remark above, we note that the 1-dimen- 
sional version of (2) is the discrete logistic equation that, in contrast to (1) for  
1 2m≤ ≤ , can exhibit chaotic dynamics. 

Although our focus here will be on the 3-dimensional version of (2), we first 
describe a few useful details for the m-dimensional system, which has dynamics 
defined by iterates of the map : m mF →   comprising a discrete (semi-) dy-
namical system and is represented as 

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

1 1

1 1 1

1 1 11 1

, , : , ,

, , , , , ,

1 , , 1 ,

m m

m m m

m m
j j m m mj jj j

F F x x f f

f x x f x x

x x x xλ γ λ γ
= =

= =

=

= − −∑ ∑

x x x 

  



        (3) 

where the coefficients are as described in (2). Here, the λ ’s and γ ’s represent 
the birth-rates and interaction strengths of and among the populations, respec-
tively. 

Inasmuch as we are primarily thinking of x  as a population vector, it is nat-
ural to consider the map F restricted to 

{ }1: : , , 0 .m m
mx x= ∈ ≥x N

 
Moreover, since we want the forward iterates of F of points in this set to re-

main in mN , we would like to find the largest subset F=X X  such that  
( )F ⊂X X  for sizeable ranges of the birth-rate parameters. For example, if all 

the off-diagonal interaction coefficients are zero, the obvious choice of X  is the 
m-cube [ ] { }0,1 : : 0 1,1mm m

iK x i m= = ∈ ≤ ≤ ≤ ≤x   in which case ( )F ⊂X X  
for all 0 4iλ≤ ≤ , 1 i m≤ ≤ . For convenience, in this case we say the birth-rate 
parameter ranges are admissible. When some of the off-diagonal interaction coef-
ficients are positive, the manifest generalization of the invariant set is 

( ) 1
: 0 1

m
m

F i ij j
j i

x xγ
≠ =

  = = ∈ ≤ ≤ − 
  

∑x X X :              (4) 

and the admissible iλ  ranges have to be adjusted accordingly. 
It is clear from (3) that a necessary and sufficient condition for ( )F ⊂X X  is 

that the following system of inequalities be satisfied: 
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( ) ( )10 , : 1, 1 ,m
i ij jj f i mϕ γ

=
≤ = ≤ ≤ ≤∑x xλ              (5) 

where ( )1: , , mλ λ= λ . One can by lengthy but straightforward calculations 
find the maximizers and associated maximum values of each of the iϕ , which 
yield a rather complicated system of inequalities determining the optimal admissi-
ble values of λ . However, the system is complex to the point of being very un-
wieldy, we shall opt for a cruder but much easier to use system of inequalities 
described in the following result. 

Lemma 1. The birth-rate parameters satisfying the system of inequalities 

1 4, 1 ,m
ij jj i mγ λ

=
≤ ≤ ≤∑                      (6) 

are admissible in X  for the discrete dynamical system generated by the iterates 
of the map (3). 

Proof. It follows from (4) and (5) that ( )0 ,iϕ≤ x λ  for all ∈x X  and  
m∈Nλ , 1 i m≤ ≤ , so only the upper inequalities in (6) require verification. For 

this, we observe that it is easy to see that each ( ) 4j jf λ≤x  on X . Conse-
quently, 

( ) ( )1 1

1, : ,
4

m m
i ij j ij jj jfϕ γ γ λ

= =
= ≤∑ ∑x xλ

 
which implies that (5) follows from (6), thereby completing the proof. 

The generalities discussed above aside, our almost exclusive focus shall be on 
the discrete dynamical system generated by the iterates of the map 3 3:F →   
defined as 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 2 3

1 12 13 2 21 23 3 31 32

, , : , , , , , , , ,

1 , 1 , 1 .

F x y z f x y z f x y z f x y z

x x y z y x y z z x y zλ γ γ λ γ γ λ γ γ

=

= − − − − − − − − −
  (7) 

Clearly, the x, y-, x, z- and y, z -planes as well as the x-, y- and z-axes are 
F-invariant, so all of the interesting dynamics for the 1-dimensional and 2-di- 
mensional cases of (2)-(3) including flip bifurcations, period-doubling cascades 
(leading to chaos), Neimark-Sacker bifurcations, (2-dimensional) transverse he-
teroclinic orbit induced chaos and chaotic strange attractors of Hausdorff dimen-
sion between one and two such as found in [5] [6] [7] [8] are subsumed under 
the dynamics defined by (7). Naturally then, one can expect even more complex 
and interesting higher dimensional analogs of such dynamics in the 3-dimen- 
sional case, which shall be elucidated in the sequel. In particular, we shall find and 
analyze flip bifurcations, certain higher dimensional Neimark-Sacker type bifurca-
tions to be described in the sequel, several 3-dimensional chaotic regimes and a 
few unusual chaotic strange attractors corresponding to long-term population 
dynamic states. This includes an apparently new type of chaotic strange attractor 
shaped like a candy cane. As one might expect, there have been several studies of 
the dynamics of higher dimensional systems of the Lotka-Volterra (L-V) and re-
lated types such as [9]-[15], but our investigation is novel in a number of re-
spects, especially with regard to the Neimark-Sacker bifurcation generalizations 
and the candy cane chaotic strange attractors. Nevertheless, our work shares some 
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common elements with the dynamics literature. For example, Bischi and Tramon-
tana [10] show that their 3-dimensional Lotka-Volterra type model for industrial 
clusters exhibits standard flip and Neimark-Sacker bifurcations along with inter-
esting chaotic attractors, which are not candy canes. Another example in Yousef 
et al. [15], although fundamentally different from our model owing to the delay 
in one of the growth rates, also is shown to exhibit flip and Neimark-Sacker bi-
furcations along with Marotto chaos. 

The investigation is organized as follows: In Section 2, we describe some basic 
features of the discrete dynamical system generated by the map (7) such as fixed 
points and invariant manifolds. One of our foci will be various types of bifurca-
tions that are fully 3-dimensional versions of those found in lower dimensional 
systems, and one of them—the flip bifurcation shall be investigated in some depth 
in Section 3. This is followed in Section 4 with a definition of certain higher di-
mensional analogs of Neimark-Sacker bifurcations and the identification of var-
ious coefficient/parameter ranges for which they are exhibited for (7). In addi-
tion, several simulations are included to illustrate these bifurcations. Next, in 
Section 5 the focus is on chaotic strange attractors. We show simulation exam-
ples indicating the wide variety of such steady-state sets. In particular, we pro-
vide examples where the nature of the steady-state attractor is strongly dependent 
on the parameters and auxiliary data associated to the dynamical system. Most 
importantly, however, we introduce new types of chaotic strange attractors, which 
we analyze in detail. Finally, in Section 6, we present conclusions and plans for 
future related research including an in depth analysis of the higher dimensional 
Neimark-Sacker type bifurcations and candy cane attractors, which appear to be 
quite common in population dynamics. 

2. Basic Dynamical Properties 

It is clear from its definition that the map (7) enjoys the following invariance prop-
erties concerning the coordinate axes denoted as ( ){ }: ,0,0 :xL x x= ∈ ,  

( ){ }: 0, ,0 :yL y y= ∈  and ( ){ }: 0,0, :zL z z= ∈  and the coordinate planes by 
( ){ }: , ,0 : ,xyP x y x y= ∈ , ( ){ }: ,0, : ,xzP x z x z= ∈  and  
( ){ }: 0, , : ,yzP y z y z= ∈ : 

Theorem 2. The origin ( )0,0,0  is a fixed point of F and all of the coordinate 
sets defined above are F-invariant, i.e. ( )x xF L L⊂ , ( )y yF L L⊂ , ( )z zF L L⊂ , 
( )xy xyF P P⊂ , ( )xz xzF P P⊂  and ( )yz yzF P P⊂ . 
If any of the coordinates of the initial point for the discrete dynamics for (4) is 

zero, it follows from Theorem 1 that the whole process reduces to one of two di-
mensions or less, where it has been shown that the system can exhibit flip bifur-
cations, period-doubling cascades to chaos, horseshoe type chaos and a variety of 
other dynamical phenomena, so we shall focus on initial points with no zero coor-
dinates, which are sometimes referred to as coexistence points, mainly in the con-
text of population dynamics. Thus, it may be said that we are restricting our at-
tention to fully three-dimensional analogs of such dynamical behavior. In par-
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ticular, we shall be most interested in fixed points of the map (7) that are also 
coexistence points. These fixed points can be found by solving the system of li-
near equations 

1
12 13

1

2
21 23

2

3
31 32

3

1
,

1
,

1
,

x y z

x y z

x y z

λ
γ γ

λ
λ

γ γ
λ

λ
γ γ

λ

−
+ + =

−
+ + =

−
+ + =

( )
T

T 31 2

1 2 3

11 1
, , , , ,x y z

λλ λ
λ λ λ

 −− −
⇔ Γ =  

 
     (8) 

which has a unique solution if the matrix Γ  is nonsingular. 
We note that it is sometimes convenient to recast the discrete dynamical sys-

tem in terms of (translated coordinates) with respect to a fixed point ( ), ,x y z∗ ∗ ∗  
with ,x y∗ ∗  and z∗  positive, namely with : x xξ ∗= − , : y yη ∗= −  and  

: z zζ ∗= − , so that the map takes the form 

( ) ( ) ( )ˆ , , : , , , , ,F F x y z x y zξ η ζ ξ η ζ∗ ∗ ∗ ∗ ∗ ∗= + + + −           (9) 

with corresponding fixed point ( ) ( ), , 0,0,0ξ η ζ = . 

3. Flip Bifurcations and Period-Doubling Cascades 

Flip bifurcations and associated period-doubling cascades to chaos are well known 
types of bifurcations and behaviors thoroughly explicated in such texts as [16] 
[17], which have been shown to exist in discrete Lotka-Volterra (L-V) dynamical 
systems associated with the map (7) and its higher and lower dimensional versions. 
There are numerous parameter sets for which (7) exhibits flip bifurcations and sub-
sequent period-doubling cascades leading to one-dimensional logistic map type 
chaos, several of which are described in this section. We begin with some rather 
simple examples and then analyze a less obvious case. 

3.1. Some Simple Flip and Period-Doubling Examples 

Consider the special case chosen for its ease of analysis of the family of maps (7) 
given as :Fλ →X X  defined by 

( ) ( ) ( ) ( ) ( ) ( )( ), , : 1 1 , 1 1 , 1 ,F x y z x x y y x y z zλ λ α λ β λ= − − − − − − −
 

( ){ }3: , , : 0 1 ,0 1 ,0 1 ,F x y z x y y x z
λ

α β= = = ∈ ≤ ≤ − ≤ ≤ − ≤ ≤xX X    (10) 

with 0 , 0.3α β≤ <  and the single (bifurcation) parameter ( ]2,4λ ∈ . It follows 
from Lemma 1 that 0 4λ≤ ≤  is an admissible range for the above map. The coex-
istence fixed points of this map as functions of the parameter λ  are readily found 
to be 

( ) 1 2 1 2 1: , , , , .
1 1 1 1

x y zλ λ λ λ
α λ β λ λ
αβ λ αβ λ λ

    − − − − −
= =     − − − −    

p       (11) 

This class of L-V maps has the bifurcation behavior described in the following 
result, which has a straightforward proof that is left to the reader. The dynamics 
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are also illustrated in Figure 1. 
Theorem 3. The discrete dynamical system generated by the map (10) satisfies 

the following properties when 0 , 0.3α β≤ <  and ( ]2,4λ ∈ : 
i) The system Fλ  has a flip bifurcation at λp  for 3λ =  at which the restric-

tion |: Lf F
λλ=  to the Fλ -invariant line (segment) ( ){ }: , , :L x y z zλ λ λ= ∈ X  

has derivative ( ) 1f zλ′ = − . 
ii) The restriction f has a period-doubling cascade leading to chaos along Lλ  

as λ  increases from 3 to a limit of approximately 3.57 following that of the stan-
dard 1-dimensional logistic map. 

iii) The fixed point λp  is a sink for 2 3λ< <  and is hyperbolic for  
3 4λ< <  with a 2-dimensional (planar) stable manifold  

( ) ( ) ( ){ }2, , : ,sW x y z x yλ λ= ∈p


X  and 1-dimensional (linear) unstable ma-
nifold ( ) ( ){ }lin , , :uW x y z zλ λ λ= ∈p  , where 



X  denotes the interior of X . 
iv) When 3λ = , the fixed point 3λ =p p  has the stable manifold  
( ) ( ){ }2

3 , , 2 3 : ( , )sW x y x y= ∈p


X  and the center manifold  
( ) ( ) ( ){ }3 , , : 0,1cW x y z zλ λ= ∈p . 

v) There is a Milnor attractor ∞  along ( )lin
uW λp X , as in [18], at the lim-

it of the period-doubling cascade as well as a dense chaotic (standard tent map- 
type Milnor) attractor T  for 4λ = , each with a basin of attraction  

( ){ }lin\ denumerable subset of periodic points on uW λp


X X . 
It should be noted that by permuting the coordinates, two analogs of (10) with 

flips along lines parallel to the x- and y-axes are obtained. Also observe that these 
examples can be readily extended to higher-dimensional systems comprising an ar-
bitrary number of populations. 

 

 
Figure 1. Flip bifurcation for (10): (a) 2.8λ = ; (b) 3.4λ = ; (c) 3.56λ = ; (d) 4λ =  with 0.2α =  and 0.3β = . 
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3.2. More Complicated Flip and Period-Doubling Examples 

There are numerous other flip bifurcation/period-doubling cascades to chaos that 
can occur in the L-V discrete dynamical systems generated by maps of the form 
(4), but which are not nearly as recognizable as those described above. We shall 
confine our attention to just the one example :Gλ →X X , with equal birth rates 
serving as the bifurcation parameter (with 2 3.6λ< ≤ ), shown below. The dy-
namics shall be analyzed in detail for prescribed ranges of variation of the inte-
raction coefficients for 

( ) ( ) ( ) ( )( )1 1 2 2, , : ( 1 , 1 , 1 ,G x y z x x a y b z y a x y b z z cx dy zλ λ λ λ= − − − − − − − − −
 

{ }1 1 2 2: : 0 1 ,0 1 ,0 1 .G x a y b z y a x b z z cx dy
λ

= = ≤ ≤ − − ≤ ≤ − − ≤ ≤ − −xX X  (12) 

For the coexistence fixed point, we simply solve the following system of equa-
tions in which we impose the initial constraints 1 2 1 20 , , , , , 0.1a a b b c d≤ ≤ : 

( )1 1
1: ,x a y b z λσ λ

λ
−

+ + = =
 

( )2 2
1: ,a x y b z λσ λ

λ
−

+ + = =                   (13) 

( ) 1: ,cx dy z λσ λ
λ
−

+ + = =
 

to obtain the unique solution 

( ): , , .x y zλ λ λ λ=p                       (14) 

In order to better understand the flip bifurcations that can occur for the map 
(12), we first consider the following special case: 

( ) ( ) ( ) ( )( )1 2, , : 1 , 1 , 1 ,g x y z x x b z y y b z z zλ λ λ λ= − − − − −       (15) 

with 1 20.05 , 0.08b b≤ < . It follows from Lemma 1 that 0 3.7λ≤ ≤  is an admissi-
ble range for this map. Then, from (13) we find that the unique coexistence fixed 
point is 

( ) ( )( )1 2: , , 1 ,1 ,1 .x y z b bλ λ λ λ σ λ= = − −p              (16) 

The type of this fixed point is determined by the eigenvalues of the derivative 
matrix 

( )
( )

( )
( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

2 2

1 1 1

2 2 2

1 2 0
0 1 2
0 0 1 2

2 1 0 1 1
0 2 1 1 1 ,
0 0 2

x b z b x
g y b z b y

z

b b b
b b b

λ λ λ

λ λ λ λ λ

λ

λ λ
λ λ

λ

λ λ λ
λ λ λ

λ

 − − −
 ′ = − − − 
 − 

− + − − − − 
 = − + − − − − 
 − 

p

  (17) 

which are ( ) ( )1 12 1bµ λ λ= − + − , ( ) ( )2 22 1bµ λ λ= − + −  and 3 2µ λ= − , 

with corresponding eigenfunctions ( )T
1 1,0,0=e , ( )T

2 0,1,0=e  and  

https://doi.org/10.4236/am.2021.128049


Y. Joshi et al. 
 

 

DOI: 10.4236/am.2021.128049 701 Applied Mathematics 
 

( )T
3 1 21 ,1 ,1b b= − −e  for ( ]1,3.7λ ∈ , respectively. We note that 1 2, 1µ µ <  for 

all ( ]2,3.1λ ∈ , so that ( ){ }2: , , : ( , )P x y z x yλ= ∈


X , which is gλ -invariant 

for all λ , comprises the stable manifold ( )sW λp  over the same parameter in-
terval. Moreover, 31 0µ− < <  for 2 3λ< < , 3 1µ = −  when 3λ =  and  

31.7 1µ− ≤ < −  for 3 3.7λ< ≤ . It follows of course, that there is a flip bifurca-
tion at 3λ =  at which value the linearized center manifold is  

( ) ( ){ }lin 3 1 2: 1 ,1 ,1 :cW z b b z= − − ∈p   and the ( gλ -invariant) stable manifold is 

( ) ( ) ( ){ }2
3 3: , , : ,sW x y z x y= ∈p



X . When 3 3.1λ< ≤ , the stable manifold is 

( ) ( ) ( ){ }2: , , : ,sW x y z x yλ λ= ∈p


X  and the ( gλ -invariant) unstable mani-

fold ( )uW λp  has as its linearization the line ( ) ( )lin lin 3:u cW Wλ =p p , which is not 

gλ -invariant. In this parameter range, the attractor is a 2-cycle on ( )uW λp . 
The flip bifurcation and period-doubling cascade converging to a Milnor attrac-

tor is determined by the restriction of gλ  to the continuation of ( )uW λp  as a 
1-dimensional gλ -invariant manifold, which we now analyze. 

The determination of the center and unstable manifolds is more conveniently 
handled by translating the coordinates so that the fixed point is always at the 
origin as described in (9). In particular, we define the λ -dependent translation 

3 3:hλ →   by ( ) ( ) ( ), , , , : , ,h x y z x x y y z zλ λ λ λξ η ζ= = − − −  and the corres-
ponding translated map as 

( ) ( )
( ){ }(
( ){ }

( ) )

1

1 1 1

2 2 2

ˆ , , : , ,

1 2 ,

1 2 ,

1 2 ,

g h g h

b z b b x

b z b b y

z

λ λ λ λ

λ λ

λ λ

λ

ξ η ζ ξ η ζ

λξ ξ ζ λ ζ

λξ η ζ λ ζ

λζ ζ

−=

= − − − − −  

− − − − −  

 − − 

 

        (18) 

where the coexistence point for the original map in the translated coordinates 
now corresponds to ( ) ( ), , 0,0,0 :ξ η ζ = = 0  for all ( ]2,3.7λ ∈ . We assume that 
the invariant 1-dimensional invariant manifold that begins as (super) attracting 
for 2 3λ< < , becomes the center manifold ( )cWλ 0  at 3λ =  and is an unsta-
ble manifold ( )uWλ 0  for 3 3.1λ< ≤  can be continued as ( )Wλ

∗ 0  correspond-
ing to the eigenvalue of largest magnitude for 3.1 3.7λ< ≤ , is analytic in ζ  and 
expressible as 

( ) ( ) ( ) ( ){ }: , , : , ,Wλ λ λξ η ζ ξ ϕ ζ η ψ ζ∗ = = =0            (19) 

where 

( ) ( ) ( ) ( )1 1, ,m m
m mm mλ λϕ ζ α λ ζ ψ ζ β λ ζ∞ ∞

= =
= =∑ ∑         (20) 

with coefficients that are analytic functions of the parameter, converge on a ζ
-interval containing the origin and large enough so that the restriction  

( )
ˆ ˆ: Wf gλ λ ∗= 0  exhibits a flip bifurcation at 3λ =  and a period-doubling cascade 

to converging to a Milnor attractor ∞ . 
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For invariance, we must have 

( )( ) ( ) ( ) ( )( ) ( )( )
( )( )

1 1 1 12 1 1 1

2

b b b bλ λ λ

λ

λ λ ϕ ζ λϕ ζ ϕ ζ ζ λ ζ

ϕ ζ λ λζ

− − − − − − − −  

= − −  
  (21) 

and 

( )( ) ( ) ( ) ( )( ) ( )( )
( )( )

2 2 2 22 1 1 1

2 ,

b b b bλ λ λ

λ

λ λ ψ ζ λψ ζ ψ ζ ζ λ ζ

ψ ζ λ λζ

− − − − − − − −  

= − −  
 (22) 

with 1 20.05 , 0.08b b≤ < , which we want to solve for #3 λ λ≤ ≤ . After finding 
( )Wλ

∗ 0 , we wish to determine a parameter interval [ ]#3,λ  containing in its in-
terior a λ∞  such that f̂λ∞  has a Milnor attractor that is the period-doubling cas-
cade limit for f̂λ  as λ λ∞→ . Substituting (20) in (21) and (22) and equating 
coefficients of like powers of ζ , we obtain the values of the leading order coef-
ficients and the following recurrence relations for the higher order terms  
( 1m ≥ ): 

( )1 1
1

1

1
,

4
b b

b
α

−
=

−
                       (23) 

( )

( )
( ) ( )

1
1 1 1 1

1

1 2
1 21

1
1

1
1 2 ,

m m i j m
i j m

m
i m ii

m i
i

A b

m i
i

α λ λ α α α

λ λ α

−
+ + +

+ = −

+   + −−
+ −

=

 = − 
 

+ −  + − −  
  

∑

∑
       (24) 

and 

( )1 1
1

1

1
,

4
b b

b
β

−
=

−
                       (25) 

( )

( )
( ) ( )

1
1 1 1 2

1

1 2
1 21

1
1

1
1 2 ,

m m i j m
i j m

m
i m ii

m i
i

B b

m i
i

β λ λ β β β

λ λ β

−
+ + +

+ = −

+   + −−
+ −

=

 = − 
 

+ −  + − −  
  

∑

∑
       (26) 

where ( ) ( )( ) ( ) 1
1: 2 1 2 m

mA bλ λ λ λ + = − − − − −  ,  

( ) ( )( ) ( ) 1
2: 2 1 2 m

mB bλ λ λ λ + = − − − − −   and [ ]  is the usual greatest integer 

function. Several terms in the series (20) computed using the above recursion 
formulas are as follows: 

( )
( )

2 3
1 2 3 4

2 3
1 2 3 4

,

,

λ

λ

ϕ ζ ζ α α ζ α ζ α ζ

ψ ζ ζ β β ζ β ζ β ζ

 = + + + + 
 = + + + + 





            (27) 

where 
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( )( )( )
( ) ( )( ) ( )

( )( )( )
( ) ( )( ) ( )

2
1 1 1 1

2 2
1 1

2
2 2 2 2

2 2
2 2

2 1 2 4
,

4 3 2 2

2 1 2 4
,

4 3 2 2

b b b b

b b

b b b b

b b

λ
α

λ λ

λ
β

λ λ

−

−

− − −
=
 − + − − − − 

− − −
=
 − + − − − −   

( )
( ) ( )( ) ( )

( )
( ) ( )( ) ( )

2 1 1
3 3

1 1

2 1 2
3 3

2 2

2 2 2
,

4 3 2 2

2 2 2
,

4 3 2 2

b

b b

b

b b

λα α λ
α

λ λ

λβ β λ
β

λ λ

− − −  =
 − + − − − − 

− − −  =
 − + − − − − 

            (28) 

( ) ( ){ }
( ) ( )( ) ( )

( ) ( ){ }
( ) ( )( ) ( )

2
1 1 3 2 2

4 4
1 1

2
1 2 3 2 2

4 4
2 2

2 3 2
,

4 3 2 2

2 3 2
.

4 3 2 2

b

b b

b

b b

λ α λ α α λ α
α

λ λ

λ β λ β β λ β
β

λ λ

 − − − + + =
 − + − − − − 

 − − − + + =
 − + − − − −   

Now, it a straightforward matter to prove, for example using the method of 
majorants, that the power series (27) converge for 1ζ < , so the following result 
is an immediate corollary of Theorem 2 and the fact that the bifurcation beha-
vior is essentially completely determined by the z-coordinate of the map (15). 

Lemma 4. The discrete dynamical system generated by the iterates of gλ  de-
fined by (15) has the following properties for 1 20.05 , 0.08b b≤ <  and  
2 3.7λ< ≤ . 

(a) The coexistence fixed point λp  given by (16) is a sink for 2 3λ< < , has 
a center manifold ( )3

cW p  at 3λ =  (associated with an eigenvalue 1µ = −  of 
( )gλ λ′ p ) along which (15) has a flip bifurcation and there is a stable manifold  
( ) ( ) ( ){ }2

3 3: , , : ,sW x y z x y= ∈p


X . 
(b) For 3 3.1λ< ≤ , λp  is hyperbolic, with stable manifold  
( ) ( ) ( ){ }2: , , : ,sW x y z x yλ λ= ∈p



X  and unstable manifold ( )uW λp  along 
which there is an 2-cycle attractor. 

(c) ( )uW λp  possesses a smooth invariant continuation ( )W λ
∗ p  for  

3.1 3.7λ< ≤  and ( ) ( ) ( ): :Wf g W W
λλ λ λ λ∗

∗ ∗= →p p p  has a period-doubling 
cascade sequence 3.57nλ λ∞↑   such that fλ∞  has a Milnor attractor. 

It follows from continuity and smoothness considerations that the qualitative 
behavior characterized in Lemma 4 should persist for sufficiently small additional 
(nonzero) interaction coefficients in (12). In order to lend some precision to this 
observation, a decidedly non-optimal example of this is formulated and a proof 
is sketched in what follows. In addition, the bifurcation behavior of the this sys-
tem is illustrated by the simulations in Figure 2. 

Theorem 5. Suppose the discrete dynamical system generated by the map (12), 
which is represented in translated form taking the varying coexistence fixed point 
into the origin by the map (18) when the interaction coefficients 1 2 1 2, , , ,a a b b c   
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Figure 2. Flip bifurcation for (12): (a) 2.8λ = ; (b) 3.3λ = ; (c) 3.56λ = ; (d) 3.7λ =  with 1 0.03a = , 2 0.01a = , 1 0.05b = ,  

2 0.06b = , 0.01c =  and 0.015d = . 
 

and d differ from zero, satisfies the following properties: 
(i) 1 2 1 20 , , , , , 0.1a a b b c d≤ < . 
(ii) 1 20.05 , 0.08b b≤ ≤ . 
(iii) 1 1 2 20.05 , 0.08a b a b≤ + + ≤ . 

(iv) { }1 2
1, < max ,
2

c d a a . 

Then the dynamical system generated by the map (12) has a flip bifurcation at 

λp  for a value of the bifurcation parameter λ λ∗=  near 3 along what is initially 
a center and then an unstable manifold followed by a smooth invariant extension 

( )W λ
∗ p  containing a period-doubling cascade to a (Milnor) attractor ∞  as λ  

increases to a value of about 3.6. 
Proof Sketch. We describe the foundational elements of the proof and leave 

the verification of some of the details which tends to be rather lengthy, albeit 
routine to the reader. First, it follows from (13) that the unique coexistence fixed 
point (depending on 1 2 1 2, , , ,a a b b c  and d as well as the bifurcation parameter 
λ ) is 

( ) ( )( )1 2 3, , , , ,x y z K K Kλ λ λ λ σ λ= =p               (29) 

where 

( ) ( )
( ) ( )

( )

1 2 1 2
3

1 2 1 1 2 2 2 1

2 1 2
2 3

1 2

1 1 2 1 3

1 1 1
: ,

1
1 1

: ,
1

: 1 ,

a a c a d a
K

a a c b a b d b a b
a b b

K K
a a

K a K b K

− − − − −
=

− − − − −

− − −  =
−

= − −

            (30) 
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and it is easy to verify that all of the K’s are positive owing to assumptions (i)- 
(iv). Next, we compute the eigenvalues of the derivative of the map at the fixed 
points given by the solutions of the characteristic equation 

( ) 3 2: 0,P Q Rµ µ µ µΦ = + + + =                  (31) 

which we shall compare with the characteristic equation for (15); namely, 

( ) 3 2
0 0 0 0: 0,P Q Rµ µ µ µΦ = + + + =                (32) 

where 

( ) ( )( )0 0 1 2 1 2 1 2 1 2; , , , , , : 3 2P P a a b b c d b b b bλ λ= = − − − − − −  
( )

( )( ) ( )( )
0 0 1 2 1 2

2
1 2 1 2 1 2 1 2 1 2 1 2

; , , , , ,

: 2 2

Q Q a a b b c d

b b b b b b b b b b b b

λ

λ λ∗ ∗ ∗ ∗ ∗ ∗

=

= + + + + − + + + −
 

( )
( ) ( )( ) ( )

0 0 1 2 1 2

2
1 2 1 2 1 2 1 2

; , , , , ,

: 2 2 2

R R a a b b c d

b b b b b b b b

λ

λ λ λ∗ ∗ ∗ ∗

=

 = − − + + + − + − 
      (33) 

and : 1i ib b∗ = − , 1,2i = . We shall compare these with the coefficients of (31), 
which are readily found (in terms of the fixed point (29)) to be 

( ) ( )1 2 1 2 0; , , , , , : 3,PP P a a b b c d P x y zλ λ λλ λ= = + ∆ = + + −  
( )
( ) ( ) ( ) ( )

1 2 1 2 0

2
1 2 1 2

; , , , , , :

3 2 1 1 1
QQ Q a a b b c d Q

x y z a a x y b c x z b d y zλ λ λ λ λ λ λ λ λ

λ

λ λ

= = + ∆

= − + + + − + − + −  
 (34) 

( )
( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 0

2
1 2 1

3
2 1 2 2 1 2 2

; , , , , , :

1 1 1

1 1 .

RR R a a b b c d R

x y z a a x y b c x z

b d y z a b c a b a d c b d x y z
λ λ λ λ λ λ λ

λ λ λ λ λ

λ

λ λ

λ

= = + ∆

= − + + + − − + −
+ − + + − + − −      

It is a simple, but rather tedious, matter to use the formulas above to verify that 
the assumptions (i)-(iv) imply that the following properties obtain: 

(p1) 0 0 0, , 0.06P P Q Q R R− − − <  for all ( ]2.6,3.6λ ∈ . 
(p2) Two of the eigenvalues (solutions of (31)) of ( )Gλ λ′ p , with correspond-

ing eigenvectors nearly parallel to the xy-plane, satisfy 1 2, 1µ µ <  for all  
( )2.9,3.1λ ∈ . 

(p3) The remaining eigenvalue 3µ  of ( )Gλ λ′ p  is negative for ( )2.1,3.7λ ∈  
and is decreasing as a function of λ  such that 3 1µ = −  at 1λ λ= , where  

1 3 0.06λ − < , which corresponds to a flip bifurcation. 
Using (p1)-(p3) in conjunction with the translation of variables to convert the 

fixed point to the origin for all ( )2.6,4λ ∈  as was done for the simpler map (15), 
it can again be shown that there is an invariant 1-dimensional (real) analytic ma-
nifold that is a center manifold for 1 3λ λ= ≈  and is the unstable manifold  

( )uW λp  for 3 3.09λ< < . Consequently, the restriction of the map to  
( ) ( ) ( )( ){ }, , :uW x z z y z z z zλ λ λ λ λ λ λϕ ψ= + − + − ∈p     denoted as  

( ) ( ): u uW Wλ λ→p pg , where we have used a form of parametrization analog-
ous to that in our analysis of (15), can be shown to have the same basic unimo-
dular form as that of (15). Hence, it follows that this is an analog of ( )W λ

∗ p  
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on which the map has a period-doubling (parameter) cascade nλ λ∞↑ , with  
3.57 0.08λ∞ − < , to a Milnor attractor. Thus, the sketch of our proof is complete. 

  

4. Higher Dimensional Neimark-Sacker Type Bifurcations 

The type of higher dimensional analog of the Neimark-Sacker bifurcation that we 
have in mind is one of codimension 1 for a discrete dynamical system in m ,  

3m ≥ , with a fixed point that bifurcates from a sink to a source, giving birth to an 
invariant homeomorph of an ( )1m − -sphere (which is typically as smooth as the 
system except on a lower dimensional subset) that grows in size as a particular pa-
rameter increases. Although we concentrate mainly on 3m = , the following is a 
nice smooth example of the type of bifurcation we interested in for 2m ≥ : Con-
sider the smooth (actually real analytic) map : m mTλ →   defined as 

( ) ( )1tan
: ,Tλ

λ− 
=   
 

x
x x

x
                   (35) 

where ⋅  denotes the Euclidean norm on m  and the parameter ( )0,λ ∈ ∞ . 
The origin is a fixed point for all λ , which is a sink for 0 1λ< <  and a source 
when 1λ > . We note that the origin is the only fixed point for 0 1λ< ≤ , but 
for 1λ >  it is easy to see that the fixed point set of the map comprises all points 
on the ( )1m − -sphere ( ){ }: : tan :mS rλ λ λ λ= ∈ = =x x x  in addition to the 
origin. Moreover, it is rather easy to show that ( )r r λ=  is a smooth increasing 
function for 1 λ≤ < ∞  such that ( )1 0r =  and ( ) 2r λ → π  as λ →∞ . Fur-
thermore, Sλ  is an attractor with basin of attraction  
( ) { }\ 0mB Sλ =  . 
In the sequel, we shall almost exclusively consider such bifurcations for  

3m = , where a particularly simple example of the piecewise smooth variety is 

( ) ( ) ( ) ( )( ), , : 1 , 1 , 1 ,F x y z x x y y z zλ λ λ= − − −            (36) 

for the fixed point ( ) ( ) ( )( )( ): , , 1 1,1,1P x y zλ λ λλ λ λ= = −  in a small neigh-
borhood of 3λ = . Given that each of the coordinate functions is just a logistic 
map, it is easy to see that ( )P λ  is a sink for 2 3λ< <  and a source for  
3 4λ< < , so that 3λ =  is a bifurcation value for the parameter. Moreover, the 
system (36) has the four attracting 2-cycles for 3 3.4λ< <  

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

1 1 1 2 2 2 2 1 1 1 2 2

1 2 1 2 1 2 1 1 2 2 2 1

, , , , , , , , , , , ,

, , , , , , , , , , , ,

x y z x y z x y z x y z

x y z x y z x y z x y z
          (37) 

in addition to nine 2-cycles of saddle type obtained by replacing one or two coor-
dinate pairs in these cycles with fixed point coordinates; such as,  
( ) ( ){ }1 1 2 2, , , , ,x y z x y zλ λ  and ( ) ( ){ }1 2, , , , ,x y z x y zλ λ λ λ . Here 

( )

( )

2
1 1 1

2
2 2 2

1 1 2 3 ,
2

1 1 2 3 ,
2

x y z

x y z

λ λ λ
λ

λ λ λ
λ

 = = = + − − −  

 = = = + + − −  

            (38) 
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which define the vertices (37) of the boundary ( )R λ∂  of the rectangular solid 
( )R λ  containing ( )P λ  when 3λ −  is small and positive. For these parame-

ter values, it is not difficult to verify that ( )R λ∂ , which is homeomorphic and 
piecewise-linearly diffeomorphic to the 2-sphere 2  and is an F-invariant, lo-
cally attracting set for the dynamical system having a diameter that increases 
with λ , as indicated by the simulation in Fig. 4.1. This behavior is somewhat 
like a piecewise-linear analog of Neimark-Sacker bifurcations in 2  (see [19] 
[20]); one in fact that has several natural variations. For example, if we consider 
the following minor modification of (36): 

( ) ( ) ( ) ( ) ( ) ( )( ), , : 1 , 1 , 1 ,F x y z x x y y z zε λ λ ε λ ε= − − − − −       (39) 

where 0 1ε< < , it is not difficult to verify that this system first has a flip bifur-
cation at 3λ = , followed by the fixed point of interest changing from a saddle 
to a source (at 3λ ε= + ) and generating a locally attracting, F-invariant piece-
wise-linear isomorph of 2  like that of (36), only elongated in the x-direction. 
It is also rather easy to envisage even higher dimensional generalization of the 
bifurcations described above for dynamical system far more varied than discrete 
Lotka-Volterra types. However, here we shall confine our attention to such bi-
furcations in 3-dimensional Lotka-Volterra systems, reserving a more extensive, 
general treatment for a later investigation. 

Definition of Neimark-Sacker Analogs and  
Another L-V Example 

We first define the analogs of Neimark-Sacker bifurcations for discrete 3-dimen- 
sional dynamical systems briefly described above and then state an existence theo-
rem for certain Lotka-Volterra systems. For this, we consider a parameter-depen- 
dent 1C  map of the form 

( ) 3: , ,U a b UΘ × → ⊂   

( ) ( ) ( ) ( )( )1 2 3, , ; : , , ; , , , ; , , , ; ,x y z x y z x y z x y zλ θ λ θ λ θ λΘ =       (40) 

where U is an open subset of 3  and the parameter λ  ranges over the inter-
val ( ),a b ⊂  . 

Definition NST. Suppose that (40) has an isolated hyperbolic fixed point  
( ) ( ) ( ) ( )( ): , ,P x y zλ λ λ λ∗ ∗ ∗=  for each ( ),a bλ ∈ . Then (40) has an NST bifur-

cation at ( )0 ,a bλ λ= ∈  if the following properties obtain: 
(i) There is a neighborhood ( ) ( )0 0, ,a bλ ε λ ε− + ⊂  such that at least one ei-

genvalue µ  of λ′Θ  at ( )P λ  satisfies 1µ <  whenever 0 0λ ε λ λ− < <  and all 
eigenvalues µ  of λ′Θ  at ( )P λ  satisfy 1µ >  for 0 0λ λ λ ε< < + . 

(ii) There is a locally attracting, λΘ -invariant homeomorph ( )R λ∂  of the 
boundary of a rectangular box ( )R λ  or 2-sphere 2  enclosing ( )P λ  for  

0 0λ λ λ ε< < +  such that the Lebesgue measure of ( )R λ  increases with λ  from 
zero at 0λ λ= . 

Observe that the key elements, such as the 2-cycles and invariant 2-cycle pairs 
of planes, of the NST bifurcation for the simple map (36) are all hyperbolic or 

https://doi.org/10.4236/am.2021.128049


Y. Joshi et al. 
 

 

DOI: 10.4236/am.2021.128049 708 Applied Mathematics 
 

normally hyperbolic and therefore locally structurally stable. Consequently, one 
expects that small changes in the interaction coefficients (which are zero) should 
still produce NST bifurcations, which is confirmed by our next result. 

Theorem 6. If the Lotka-Volterra map 3 3:F →   defined as 

( ) ( ) ( ) ( )( )1 1 2 2, , : 1 , 1 , 1 ,F x y z x x a y b z y a x y b z z cx dy zλ λ λ= − − − − − − − − − (41) 

is such that 1 2 1 2, , , ,a a b b c  and d are sufficiently small and nonnegative, it has 
an NST bifurcation in the interior of the first octant ( ){ }: , , : , , 0O x y z x y z+ = >  
such that the corresponding invariant sphere homeomorph ( )R λ∂  is the boun-
dary of a curvilinear rectangular box with edges and diagonal vertices compris-
ing a locally attracting set and four attracting 2-cycles, respectively. 

Proof. In the interest of simplicity, we shall give the proof only for the case 
where 1 2 1 2: , :a a a b b b= = = =  and , 0c d = . There is really no loss of generality 
in this since the general argument is essentially the same as this simpler one, on-
ly the calculations are considerably more complicated, albeit routine. Therefore, 
we assume that 

( ) ( ) ( ) ( )( ), , : 1 , 1 , 1 ,F x y z x x ay bz y ax y bz z zλ λ λ= − − − − − − −     (42) 

and 0 , 0.1a b≤ < . It is easy to show that the coexistence fixed point of (42) is 

( ) ( )1 1 1: , ,1 : , ,
1 1

b b x y z
a a λ λ λ

λλ
λ
− − −  = =  + +  

p  for 1λ >  and that the eigenva-

lues of ( )( )F λ′ p  are 

( ) ( )
1 2 3

2 1
, 2 ,

1
a b b

a
λ

µ µ µ λ
+ − − −

= = = −
+

            (43) 

so it follows that ( )λp  is a hyperbolic sink for 1 3λ< <  and there is a bifur-
cation at 3λ =  across which we observe, for all permissible choices of the inte-
raction coefficients, a center manifold at 3λ = , ( )( )cW λp , followed by an 
unstable manifold, ( )( )uW λp , for 3λ > , which is 1-dimensional and trans-
verse to the plane z zλ=  at the coexistence fixed point. One should also note 
that the plane z zλ=  is F-invariant. Our focus is actually going to be on F2 and 
we shall find it convenient to use the translated form of the map described in (9) 
for which the coexistence fixed point is moved to the origin. The translated ver-
sion of (42) is 

( ) ( )
( ) ( ) ( ) ( ) ( )( )

1 2 3
ˆ , , : , ,

: , , , , , , ,

F F F F

x G y G zλ λ λ

ξ η ζ

ξ λ ξ ξ η ζ η λ η η ξ ζ ζ λ ζ ζ

=

= − + − + − +
  (44) 

from which we find that 

( ) ( )
( ) ( ) ( ) ( )(

[ ])

2 2 2 2
1 2 3

1 1 1 2 3 2 2 2 1 3

3 3

ˆ , , : , ,

: , , , , , ,

1 ( ) ,

F F F F

F F x G F F F F F y G F F F

F F z
λ λ

λ

ξ η ζ

λ λ

λ

=

= − + − +

− +

    (45) 

where ( ), , :G G a bξ η ζ ξ η ζ= = + +  and 

( ) ( ) ( ) ( ) ( )2 2
1 1 1: , , : 2 , , ; ,F F A aB bC Hξ η ζ λ ξ λ η λ ζ ξ η ζ λ= = − − −  
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( ) ( ) ( ) ( ) ( )2 2
2 2 2: , , : 2 , , ; ,F F aB A bC Hξ η ζ λ ξ λ η λ ζ ξ η ζ λ= = − + − −    (46) 

( ) ( ) ( )( ) ( )22 2 2 3 3
3 3: , , : 2 1 4 2 2 ,F F ξ η ζ ζ λ λ λ λ ζ λ λ ζ λ ζ = = − − − − − − −   

where 

( ) ( ) ( )1 1: 1 1 2 1 ,
1 1

b bA
a a

λ λ λ
 −  −    = − − − −     + +       

( ) ( ) ( )1 11 1 1 ,
1 1

b bB
a a

λ λ λ−  −    = − − −    + +    
            (47) 

( ) ( ) ( ) ( )( ){ }1: 1 2 1 1 1 1
1

bC b
a

λ λ λ λ− = − − + − + − −    +   
and the higher order terms in (46) are 

( ) ( ){ ( )
( ) }

1

22
1 1 2 1 3

: 1 , , , ,

,

H x G a x G

b x F aF F bF F

λ λ

λ

λ λ ξ ξ η ζ λ η η ξ ζ

λ ζ

= − +

+ + + +  
( ) ( ) ( ){
( ) }

2

22
2 1 2 2 3

: , , 1 , ,

.

H a y G y G

b y F aF F bF F

λ λ

λ

λ λ ξ ξ η ζ λ η η ξ ζ

λ ζ

= + −

+ + + +
          (48) 

As a first step in completing the proof, we note that it follows from our pre-
vious analysis that there exists a positive ε  such that when 0 ,a b ε< < , there 
are parameter values 1 23λ λ< <  for which the following property obtains: The 
coexistence fixed point 0 of (44) is a sink at 1λ λ=  and a source when 2λ λ= . 
Moreover, there is a unique ( )1 2,λ λ λ∗ ∈  across which 0 transitions from a sink 
(as in the case when all the interaction coefficients are zero) or a saddle point to 
a source. What we have also shown in the zero interaction (uncoupled) case, which 
we denote as 0̂F , is that there are unique pairs of invariant, locally attracting 
plane cycles for λ λ∗>  of the form 

( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }{ }: , = , , : = , , , : ,P Q A Aξ ξ ξλ λ λ ξ η ζ ξ λ ξ η ζ ξ λ+ −= =  

( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }{ }: , , , : , , , : ,P Q B Bη η ηλ λ λ ξ η ζ η λ ξ η ζ η λ+ −= = = =  (49) 

( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }{ }: , , , : , , , : ,P Q C Cζ ζ ζλ λ λ ξ η ζ ζ λ ξ η ζ ζ λ+ −= = = =
 

( )B λ−  where ( ) ( )0A Aλ λ− +< < , ( ) ( )0B Bλ λ− +< < ,  
( ) ( )0C Cλ λ− +< < , and ( ) ( )A Aλ λ+ −− , ( ) ( )B Bλ λ+ −−  and  
( ) ( )C Cλ λ+ −−  are increasing functions of λ  that converge to zero as λ λ∗↓ . 

Furthermore, ( )( ) ( )0̂F P Qξ ξλ λ= , ( )( ) ( )0̂F Q Pξ ξλ λ= , ( )( ) ( )0̂F P Qη ηλ λ= , 
( )( ) ( )0̂F Q Pη ηλ λ=  and ( )( ) ( )0̂F P Qζ ζλ λ= , ( )( ) ( )0̂F Q Pζ ζλ λ= . With 

these planes, we have associated lamina defined as 

( ) ( ) ( ) ( ){ }: , , : ,A Aξ λ ξ η ζ λ ξ λ− += ≤ ≤
 

( ) ( ) ( ) ( ){ }: , , : ,B Bη λ ξ η ζ λ η λ− += ≤ ≤              (50) 

( ) ( ) ( ) ( ){ }: , , : ,C Cζ λ ξ η ζ λ ζ λ− += ≤ ≤
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such that for every λ λ∗> , the fixed point 0 of 0̂F  is in the interior of the in-
variant rectangular box 

( ) ( ) ( ) ( ): ,R ξ η ζλ λ λ λ=                     (51) 

which is such that every point in a sufficiently small neighborhood, with the ex-
ception of 0, is attracted to the four pairs of diagonal 2-cycles comprising the 
vertices of ( )R λ∂ . Naturally, one expects that curvilinear analogs of the above 
results to hold for ε  sufficiently small, which what we shall now confirm to com-
plete the proof. We first seek an attracting 

2F̂ -invariant surface of the form 

( ) ( ) ( ){ }: , , : , ,ζ λλ ξ η ζ ζ ξ η+ = = Ψ
 

where λΦ  is (real) analytic in a neighborhood of ( ) ( ), 0,0ξ η =  having the power 
series expansion 

( ) ( ), 0, ,m n
mnm n cλ ξ η λ ξ η

≥
Ψ = ∑                  (52) 

with ( )00 0a λ >  an increasing function of λ  for λ λ∗>  that converges to zero 
as λ λ∗↓ . Invariance requires that λΦ  satisfy the equation 

( )( ) ( )( ) ( )( )( )2 2 2
3 1 2, , , , , , , , , , .F F Fλ λ λ λξ η ξ η ξ η ξ η ξ η ξ ηΨ = Ψ Ψ Ψ    (53) 

Upon substituting (52) in the above equation, it is straightforward to induc-
tively show that if ε  is sufficiently small and 0.1λ λ∗− ≤ , then 

( )12 m n
mnc + +≤  

for all integers , 0m n ≥ . Hence, the series (52) converges uniformly for  
2 2 1 5ξ η+ ≤  over the specified range of the parameter and the sufficiently small 

value of ε . Of course this leads to the companion surface beneath the 0ζ =  
plane in the 2-cycle given by ( ) ( )( )ˆ: Fζ ζλ λ− +=  . Clearly, this procedure can 
be repeated for the first two coordinates to obtain analytic 2F̂ -invariant surfac-
es 

( ) ( ) ( ){ } ( ) ( ) ( ){ }: , , : , and : , , : , ,ξ λ η λλ ξ η ζ ξ η ζ λ ξ η ζ η ξ ζ+ += = Θ = = Φ 
 

where 

( ) ( ) ( ) ( ), 0 , 0, and ,m n m n
mn mnm n m na bλ λη ζ λ η ζ ξ ζ λ ξ ζ

≥ ≥
Θ = Φ =∑ ∑  

converge uniformly for 2 2 1 5η ζ+ ≤  and 2 2 1 5ξ ζ+ ≤ , respectively. In addi-
tion, one has their respective analytic companion 2-cycle surfaces 

( ) ( )( ) ( ) ( )( )ˆ ˆ: and := .F Fξ ξ η ηλ λ λ λ− + − +=   
 

Putting all of this together, we obtain the F̂ -invariant curvilinear rectangular 
box 

( ) ( ) ( )( ) ( ){
( )( ) ( )

( )( ) ( ){ }}

3

3

3

: , , : , , , , ,

, , , , ,

, , , ,

R F

F

F

λ λ

λ λ

λ λ

λ ξ η ζ η ζ η ζ ξ η ζ

ξ ξ ζ ζ η ξ ζ

ξ η ξ η ζ ξ η

= Θ ≤ ≤ Θ

Φ ≤ ≤ Φ

Ψ ≤ ≤ Ψ



 
Then, it follows from the definition of the map that all iterates of points in the 
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interior of ( )R λ , except for the fixed point 0, converge to ( )R λ∂  , as do all 
sufficiently close points in the exterior of ( )R λ . More precisely, the convergence 
is to the union of the four 2-cycle sinks comprising the diagonal vertex pairs. Thus, 
the proof is complete. 

It should also to be possible to prove the above theorem using the implicit 
function theorem, but neither this nor the method used in the proof appears to 
be feasible for higher dimensions and more general parameter ranges. However, 
it appears some of the iterative image techniques employed in [21] can adapted 
to extending the results here and we plan to demonstrate this in a forthcoming 
paper. 

The NST bifurcation for (42) in the case where 0.03a b= =  is illustrated in 
Figure 3 via orbits starting near the fixed point. Observe how for 2.8λ =  all 
the iterates tend to the fixed point sink. Note the contrast in behavior for  

3.3λ =  where all of the iterates converge to an attracting 2-cycle comprising di-
agonal vertices of the boundary of the invariant rectangular box. 

5. Steady-State Chaotic Strange Attracting Sets 

There are numerous types of chaotic strange attracting sets that can occur for the 
dynamics of the map (1). Naturally, there are the well-known lower dimensional 
examples embedded in the coordinate lines and planes such as in [4] [5] [8]. More 
to the point for the purposes here are fully 3-dimensional examples such as those 
indicated by simulation and shown in Figures 4-6. 

In this section we shall focus our attention on a detailed analysis of types of  
 

 
Figure 3. NST bifurcation for (42) with 0.03a b= =  shown for (a) 2.8λ = ; (b) 3.2λ =  via orbits starting at three positions 
near the fixed point in each case. 
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Figure 4. Attractor for (1) with 1 2.2λ = , 2 4λ = , 3 3.9λ = ; 12 0.02γ = , 13 0.03γ = , 21 0.07γ = , 23 0.05γ = , 

31 0.001γ = , 32 0.01γ = . 
 

 
Figure 5. Attractor for (1) with 1 2.2λ = , 2 4λ = , 3 3.9λ = ; 12 0.2γ = , 13 0.3γ = , 21 0.7γ = , 23 0.5γ = , 

31 0.01γ = , 32 0.1γ = . 
 

3-dimensional Lotka-Volterra maps exhibiting steady-state behavior manifesting 
itself in chaotic strange attracting sets (cf. [22] [23]). 

We consider maps of the form : F FF Fλ= →X X  defined as 

( ) ( ) ( ) ( )( )
( )( ( ) ( ))

1 2 3

1 12 13 2 21 23 3 31 32

, , : , , , , , , , ,

: 1 , 1 , 1 ,

F x y z f x y z f x y z f x y z

x x y z y x y z z x y zλ γ γ λ γ γ λ γ γ

=

= − − − − − − − − −
 (54) 

Λ  where 1 2 3, ,λ λ λ  are nonnegative and represented collectively as  
( )1 2 3: , ,λ λ λ λ= , all interaction coefficients are in ( )0,0.5  and 
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Figure 6. Attractor for (1) with 1 2.2λ = , 2 4λ = , 3 3.9λ = ; 12 0.04γ = , 13 0.01γ = , 21 0.07γ = , 23 0.01γ = ,  

31 0.09γ = , 32 0.03γ = . 
 

( ){
}
12 13 21 23

31 32

: , , : 0 1 ,0 1 ,

0 1 .
F x y z x y z y x z

z x y

γ γ γ γ

γ γ

= ≤ ≤ − − ≤ ≤ − −

≤ ≤ − −

X
      (55) 

Furthermore, we assume that ( )Fλ ∈Λ X  implies that ( )F FFλ ⊂X X , so that 
the set ( )FΛ X  is admissible inasmuch as it contains all parameter values such 
that Fλ  maps the compact, convex set FX  into itself. For convenience, in the 
sequel we denote the attracting sets and attractors (minimal attracting sets) of 
the map (54) by   and A , respectively, possibly with subscripts. 

In what follows we shall demonstrate just how complicated the attracting sets 
and attractors can be and how wildly and dramatically they can change as cer-
tain parameters are varied. However, an inkling of the variety and complexity 
leading to chaotic attractors can readily be obtained by considering the simple 
uncoupled map ( ) ( ) ( ) ( )( ), , : 1 , 1 , 1S S x y z x x y y z zλ λ λ λ= = − − −  on 3I  as λ  
increases over the interval ( ]0,4 . In this case it is easy to see that  

( ){ }0 0,0,0= =A 0  is a global attractor for 0 1λ< ≤  and  

( )1
1λσ λ

λ
− = = 

 
A 1 1 , where ( ): 1,1,1=1 , for 1 : 1 < 3λ λ= ≤  is an attractor  

with basin of attraction ( ) ( ){ }3
1 \ , , : , , 0,1I x y z x y z= =A . Then, there is an 

increasing (period doubling) sequence { }nλ  with 2 : 3λ =  and 3.57nλ λ∞↑   
with attracting set 4

2 2,1 kk=
=


A  (comprising four disjoint 2-cycle attractors) 
with basin of attraction ( ) ( ){ }( )3

2 1\ , , : , , 0,1I x y z x y z= = A   for  

2 3: 3λ λ λ= < ≤ . In general, for 1n nλ λ λ +< ≤  there is an attracting set  
12

1 2 ,

n

nn k k

+

=
=


A  (comprising 12n+  disjoint 2n -cycle attractors) with basin of 
attraction ( ) ( ){ }( )3

1 2 1\ , , : , , 0,1n nI x y z x y z −= =   A    . Moreo-
ver, Sλ∞

 has a (Milnor) attractor that is the cartesian product  
3 : SX

λ∞∞ ∞ ∞ ∞= × × ⊂     of the period-doubling cascade limit attractor for 
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each of the coordinate functions and 4S  has a dense chaotic (Milnor) attractor 
3

F I⊂ =A X . 

5.1. Bifurcation of an Attractor from a Sink to an Attracting Cycle 
to a Chaotic Strange Attractor 

We shall now analyze a L-V map family with a codimension-1 bifurcation sequence 
beginning with a sink attractor followed by cycle attractors and ending in a true 
horseshoe type chaotic strange attractor. In particular, for ease of computation 
we consider the family of maps :λΦ →X X  for 0λ >  defined as 

( ) ( )( ) ( )( ) ( )( ), , : 2 1 0.2 , 2 1 0.2 , 1 ,x y z x x z y y z z zλ λΦ = − − − − −    (56) 

where 

{ }3: ( , , ) : 0 1 0.2 ,0 1 0.2 ,0 1 .x y z x z y z zΦ= = ∈ ≤ ≤ − ≤ ≤ − ≤ ≤X : X    (57) 

It should be noted that 0 4λ≤ ≤  is an admissible parameter range for this 
family of maps. 

5.1.1. Types of Fixed Points of the Map (56) 
The fixed points of (56) are easily computed to be 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 1

2 3

4 5

6 7

2: 0,0,0 ; : ,0,0 ;

2 1: 0, ,0 ; : 0,0, ;

2 2 4 9 1: , ,0 ; : ,0, ;
5

4 9 1 4 9 4 9 1: 0, , ; : , , .
5 5 5

λλ
λ

λ λλ λ
λ λ

λ λ λ λλ λ
λ λ λ λ
λ λ λ λ λλ λ
λ λ λ λ λ

− = =  
 

− −   = =   
   

− − − −   = =   
   

− − − − −   = =   
   

p p

p p

p p

p p

     (58) 

We can then determine the types of these fixed points from the spectral prop-
erties of the derivative matrix 

( )

( )

( )

( )

1 2 0.2 0 0.1
2

, , : 0 1 2 0.2 0.1 .
2

0 0 1 2

x z x

x y z y z y

z

λ

λ λ

λ λ

λ

 − − − 
 
 ′Φ = − − − 
 − 
  

    (59) 

As the above matrix is upper triangular, the eigenvalues at the fixed points are 
just the diagonal elements evaluated at the fixed ( ), ,x y zλ λ λ ; namely, 

( )

( ) ( )

( )

( )

0 1 2 3 1 1 2 3

2 1 2 3 3 1 2 3

4 1 2 3

5 1 2 3

4: , ; : , , ;
2 2 2

4 4 1: , , ; : , 2 ;
2 2 10

4: , ;
2

19 4 4 1: , , 2 ;
10 10

λ λ λµ µ µ λ λ µ µ µ λ

λ λ λλ µ µ µ λ λ µ µ µ λ

λλ µ µ µ λ

λ λλ µ µ µ λ

−
= = = = = =

− +
= = = = = = −

−
= = =

− +
= = = −

p p

p p

p

p
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( )

( )

6 1 2 3

7 1 2 3

4 1 19 4: , = , 2 ;
10 10

19 4: , 2 ,
10

λ λλ µ µ µ λ

λλ µ µ µ λ

+ −
= = −

−
= = = −

p

p
           (60) 

which determine the types of the fixed points. 

5.1.2. Dynamics in X  for 0 1< ≤λ  
In this case, it follows from the above that the only fixed point in X  is the ori-
gin 0p , which is a hyperbolic sink when 0 1λ< <  and still a sink when 1λ = . 
Moreover, { }0p  is a global attractor in X  for all 0 1λ< ≤ . 

5.1.3. Dynamics in X  for 1 2< ≤λ  
The dynamics in X  for this case is still rather easy to describe. The only fixed 

points are 0p  and ( )3
1: 0,0, λλ

λ
− =  

 
p . The eigenvalues of ( )0λ′Φ p  are  

(from (60)) 1 2 2µ µ λ= =  and 3µ λ= , with corresponding eigenvectors along 
the x-, y- and z-axes, respectively, so 0p  is a hyperbolic saddle point for  
1 2λ< < , with a 2-dimensional stable ( )0

sW p  and 1-dimensional unstable ma-
nifold ( )0

uW p . At 2λ = , the stable manifold becomes a center manifold  
( )0

cW p  that still attracts all points in the portion of X  in the xy-plane. The 
eigenvalues of ( )3λ′Φ p  are 1 2 0.4 0.1µ µ λ= = +  and 3 2µ λ= − , from which 
it readily follows that 3p  is a hyperbolic sink for all 1 2λ< ≤  and the basin of 
attraction (in X ) is ( ) ( ){ }3{ } , , : 0 1x y z z= < <p X . We note that 1λ =  is 
actually a bifurcation value if the map is considered on all of 

3  inasmuch as 

0p  and ( )3 λp  are distinct for 0 1λ< < , merge at 1λ = , then re-emerge for 
1 2λ< ≤  as distinct points, both of which are in X . 

5.1.4. Dynamics in X  for 2 3< ≤λ  
For this case, things become a bit more interesting. To begin with, we have to 
consider two subcases: (i) 2 9 4λ< ≤ ; (ii) 9 4 3λ< ≤ . 

(i) 2 9 4λ< ≤ : For this subcase, the fixed points in X  are 0p , ( )1 λp ,  
( )2 λp , ( )3 λp  and ( )4 λp . It follows from (60) that the eigenvalues of  
( )0λ′Φ p  are 1 2 2µ µ λ= =  and 3µ λ= , so 0p  is a hyperbolic source, actually 

for all 2 3λ< ≤ . On the other hand, the eigenvalues of ( )1λ′Φ p  are  

1
4

2
λµ −

= , so 1 1µ <  for all 2 3λ< ≤ , 2 2
λµ = , so 2 1µ >  for all 2 3λ< ≤  

and 3µ λ= , so 3 1µ >  for all 2 3λ< ≤ . Hence, 1p  is a hyperbolic saddle point 

for all 2 3λ< ≤ . Next, the eigenvalues of ( )2λ′Φ p  are 1 2
λµ = , so 1 1µ >  

for all 2 3λ< ≤ , 2
4

2
λµ −

= , so 2 1µ <  for all 2 3λ< ≤  and 3µ λ= , so  

3 1µ >  for all 2 3λ< ≤ . Consequently, 2p  is also (symmetrically) a hyperbolic 
saddle point for all 2 3λ< ≤ . 

The eigenvalues of ( )3λ′Φ p  are 1 2
4 1

10
λµ µ +

= =  and 3 2µ λ= − . There-
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fore, 1 20 1µ µ< = <  for 2 9 4λ< <  and 31 0µ− < <  for all 2 3λ< ≤  and  

3 1µ = −  when 3λ = . Hence, there is a flip bifurcation (along the z-axis) at 
3λ = . It also follows from the eigenvalues and an examination of the map (56) 

that 3p  is a hyperbolic sink for 2 9 4λ< <  and still a sink for 2 9 4λ< ≤ , 
but it changes into a hyperbolic saddle point for 9 4 3λ< < . Thus, 9 4λ =  is 
a bifurcation point on account of this behavior, but also due to the emergence 
and re-emergence of fixed points across this value since 3 5 6 7= = =p p p p  when 

9 4λ =  and these points are all different for 9 4λ > . 
Observe that 2λ =  is also a bifurcation value since 0p , 1p , 2p  and 4p  

are all equal when 2λ = , but are distinct when 2λ ≠ . The eigenvalues of 

( )4λ′Φ p  are 1 2
4

2
λµ µ −

= =  and 3µ λ=  from which we conclude that 4p   

is a hyperbolic saddle point for all 2 3λ< ≤ , since 1 2 30 1µ µ µ< = < <  in this 
parameter range. It is worth noting that the generalized eigenspace correspond-
ing to 1 2µ µ=  lies in the xy-plane, which happens to contain the stable mani-
fold of 4p . We also conclude from these considerations that { }3p  is an at-
tractor for all 1 9 4λ< ≤  with basin of attraction given by  

{ }( ) ( ){ }3 , , : 0 1x y z z= < <p X . 
(ii) 9 4 3λ< ≤ : In this range, we must add the fixed points 5p , 6p  and 

7p , noting once again that 3 5 6 7= = =p p p p  when 9 4λ = . Moreover, 3p , 

5p , 6p  and 7p  are distinct, with only 3 ∈p X  for 2 9 4λ< <  and all of 
them are distinct when 9 4 3λ< ≤ . The fixed points 5p  and 6p  are essentially  

symmetric and ( )5λ′Φ p  and ( )6λ′Φ p  have the eigenvalues 1
19 4

10
λµ −

= ,  

2
4 1

10
λµ +

= , 3 2µ λ= −  and 1
4 1

10
λµ +

= , 2
19 4

10
λµ −

= , 3 2µ λ= − , respec-

tively. Consequently, both 5p  and 6p  are hyperbolic saddle points for all 
9 4 3λ< <  and a closer examination of the map shows the dynamics in neigh-
borhoods of these points still exhibit saddle point behavior for 3λ = . The ei-

genvalues of ( )7λ′Φ p  are 1 2
19 4

10
λµ µ −

= = , 3 2µ λ= − , so it follows that  

{ }7p  is a hyperbolic sink for 9 4 3λ≤ < . In fact, an analysis of (56) shows that 

{ }7p  is an attractor whenever 9 4 3λ≤ ≤  with { }( )7 =p X . 

5.1.5. Dynamics in X , Including Chaotic Strange Attractors,  
for 3 4< ≤λ  

This is the parameter range where we find the most interesting and complicated 
dynamics, but some features are rather simple or are subsumed by attributes 
discussed above. For example, the origin 0p  is a hyperbolic source for this range, 
while 1p  and 2p  are both hyperbolic saddle points with 1-dimensional stable 
and 2-dimensional unstable manifolds for 3 4λ< ≤  and at 4λ =  these fixed 
points have a stable manifold that is actually superstable. Furthermore, 3p  is a 
hyperbolic source for all 3 4λ< ≤  that generates a period-doubling cascade along 
the z-axis leading to chaos in the manner of the flip bifurcations described in Sec-
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tion 3. Associated with this cascade is a sequence of hyperbolic fixed points of 
2n
λΦ  that change from hyperbolic saddle points to sources as λ  increases. The 

fixed point 4p  continues to be a hyperbolic saddle point (with stable manifold 
( )( ) { }4 -planesW xyλ =p X ) for this parameter range. Both 5p  and 6p  are 

hyperbolic saddle points with a 1-dimensional stable manifold and 2-dimensional 
unstable manifold. 

It is, in fact, the changes in the fixed point ( )7 λp  in this parameter range 
that are the sources of the especially complicated dynamics, which ultimately in-
cludes a chaotic strange attractor. As shown in (60), the eigenvalues of ( )7λ′Φ p   

are 1 2
19 4

10
λµ µ −

= =  and 3 2µ λ= − , so that ( )7 λp  is hyperbolic, with a  

2-dimensional stable manifold and 1-dimensional unstable manifolds over the 
whole parameter range. Observe that 1 2µ µ=  decreases and 3µ  increases 
with increasing λ  for 3 4λ≤ ≤ . Therefore, there is a flip bifurcation at 3λ =  
with a period-doubling cascade leading to chaos along the unstable manifold  

( )( )7
uW λp  as λ  increases beyond 3 in the manner described in Section 3. 

Moreover, the sequence of attracting 2n-cycles nC  in ( )( )lin 7
uW λp  actually com-

prise attractors with basins of attraction ( )nC = X  for all natural numbers n . 
These cycle attractors (periodic sinks) can also be viewed as results of tangent in-
tersections of ( )( )7

uW λp  and ( )( )7
sW λp  in the manner of Newhouse theory 

[24]. 
More interesting attractors chaotic strange ones rooted in the nature of the 2- 

dimensional stable and 1-dimensional unstable manifolds of ( )7 λp , respec-
tively, occur when λ  is near four. These horseshoe generated attractors are de-
scribed in the following result and illustrated geometrically and with simulations 
of the sequence of bifurcations preceding them, respectively, in Figure 7 and Fig-
ure 8. 

Theorem 7. Suppose that the special cases of the map (54) : F FF →X X  de-
fined as 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ( ) ( )
( ))

1 2 3

12 13 21 23

31 32

, , : , , , , , , , , , ,

: 2 1 , 2 1 ,

1 ,

F x y z F x y z f x y z f x y z f x y z

x x y z y x y z

z x y z

λ

λ γ γ λ γ γ

λ γ γ

=

= − − − − − −

− − −

      (61) 

where FX  is as in (55), satisfies the following properties: (i) 3.7 aλ λ< ≤ ; (ii) 

12 21 31 320 , , , 0.05γ γ γ γ≤ ≤  and sufficiently small and (iii) 13 130.2 , 0.2γ γ− −  are 
also sufficiently small. Here aλ  is the maximum of the admissible parameter range 
[ ]0, aλ , which is greater than 3.8 in view of Lemma 1. Then, there is a horse-
shoe-like chaotic strange attractor (CSA) of the generalized attracting horseshoe 
(GAH) type in FX  of the form 

( )0
: ,n

n
F Kλ λ

∞

=
=


A                       (62) 

with basin of attraction ( ) F Kλ ⊃ ⊃A X , where K is compact. 
Proof. Obviously, the map depends smoothly on the parameters. Moreover, as 

we shall see, the principal features of our proof, both analytical and qualitative,  

https://doi.org/10.4236/am.2021.128049


Y. Joshi et al. 
 

 

DOI: 10.4236/am.2021.128049 718 Applied Mathematics 
 

are smoothly persistent under small perturbations of the interaction coefficients. 
Therefore, owing to the manner in which the theorem is formulated, it suffices 
to verify the result for the rather simple system just studied above; namely, 

( ) ( ) ( )( ) ( )( ) ( )( ), , : , , 2 1 0.2 , 2 1 0.2 , 1 ,F x y z F x y z x x z y y z z zλ λ= = − − − − − (63) 

with 4aλ = , where 

( ){ }3: : , , : 0 1 0.2 ,0 1 0.2 ,0 1 .F x y z x z y z z= = ∈ ≤ ≤ − ≤ ≤ − ≤ ≤X X     (64) 

Let Q be the solid prism having the following vertices in the 0z =  plane: 
3 5, ,0
20 20

 
 
 

, 
5 3, ,0
20 20

 
 
 

, 
11 9, ,0
20 20

 
 
 

 and 
9 11, ,0
20 20

 
 
 

 and corresponding 

vertices in the plane 1z = : 
3 5, ,1
20 20

 
 
 

, 
5 3, ,1
20 20

 
 
 

, 
11 9, ,1
20 20

 
 
 

 and  

9 11, ,1
20 20

 
 
 

 as shown in Figure 7. We note that both the upper and lower faces  

of Q are mapped into the ,x y -plane ( 0z = ). Moreover, it is easy to verify that 
Q is a trapping set for the map for 3.7 aλ λ< ≤ ; i.e., ( )F Q Qλ ⊂  for all  

( ]3.7, aλ λ∈  and the image has the horseshoe shape depicted in Figure 7. This 
and other properties are most conveniently apprehended by analyzing the im-
ages under F of the vertical fibers 

( ) ( ) ( ){ }0 0 0 0 0 0, : , , : , ,0 ,0 1l x y x y z x y R z= ∈ ≤ ≤
 

where R is the rectangular bottom face of Q, which lies in the xy-plane. We com-
pute that 

( )( ) ( ) ( ) ( ) ( )( ){ }0 0 0 0 0 0, 2 1 0.2 , 1 0.2 ,2 1 : 0 1 ,F l x y x x z y y z z z zλ λ= − − − − − ≤ ≤
 

which is a parabolic curve in Q that begins at 

( ) ( ) ( )( )0 0 0 02 1 , 1 ,0x x y yλ − −
 

 

 

Figure 7. Depiction of generators of the GAH: the trapping set Q and ( )F Q  for (63). 
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and ends at 

( ) ( ) ( )( )0 0 0 02 0.8 , 0.8 ,0 .x x y yλ − −
 

For example, the parabolic curve 
1 1,
5 5

F lλ
  
  
  

 begins at ( )2 1,1,0
25
λ , which 

lies between ( )0.296 1,1,0  and ( )0.32 1,1,0 , while 
1 1,
2 2

F lλ
  
  
  

 begins at 

( )1,1,0
8
λ , which lies between ( )0.4625 1,1,0  and ( )0.5 1,1,0  for 3.7 4λ≤ ≤ .  

Then it is straightforward to verify that combining the images of all the vertical 
fibers in Q produces the (twisted) horseshoe shaped image ( )F Q  shown in 
Figure 7. Naturally, the hyperbolic fixed point ( )7 λp  belongs to ( )F Qλ  and 
also to 

( )0
: .n

n
F Qλ λ

∞

=
=


A
 

For 3.7 4λ≤ ≤  these sets λA  by virtue of their construction and Birk-
hoff-Moser-Smale theory (cf. [17] [25] [26] [27] [28]), attracts all points in the 

o

FλX  and are fractal Fλ -invariant sets on which the restriction |F
λA

 is chaotic. 

Consequently, the λA  are chaotic, strange attracting sets. To complete the 
proof, it remains to show that for [ ]3.7,4λ ∈  each λA  is minimally attracting 
instead of a periodic sink subset generated by tangent intersections of  

( )( )7 4uW p  and ( )( ) ( ) ( ){ }
o

3
7 4 , , : 1s

FW x y z z z λλ λ λ= ∈ = = −p X  in the 
manner of Newhouse theory [24]. As a matter of fact, it follows that such λA  
are generalized horseshoe attractors of the type described in [23] if we can verify 
that there are no tangent intersections of ( )( )7

uW λp  and ( )( )7
sW λp  for 

[ ]3.7,4λ ∈  by verifying that the Fλ -image of the arch of ( )F Qλ  lies well below  

the plane 1z zλ
λ
λ
−

= = . We shall describe the arch of the horseshoe by finding  

estimates for the maximum height (z-value) of the fiber images ( )( )0 0,F l x yλ  
as ( )0 0, ,0x y  ranges over R. For this, we define 

( ) ( ) ( ) [ ]
0 0,: : 1x yZ z Z z z zλ λ= = −

 

and find its maximizer ( )0 0: ,M Mz z x y=  and maximum height ( )MZ z , which 
are readily found to be 0.5Mz =  and ( ) 0.25MZ zλ λ= . Consequently,  

( )0.925 1MZ zλ≤ ≤  on R whenever 3.7 4λ≤ ≤ . Hence, the arch of ( )F Qλ   
certainly lies in ( ) ( ){ }0.9 : , , : 0.9A A Q x y z z= = ≥  and it follows that 

( ) ( ){ }, , : 0.36F A Q x y z zλ ⊂ ≤  for all [ ]3.7,4λ ∈ . Thus, since 27 3
37 4

zλ≤ ≤   

for all 3.7 4λ≤ ≤ , there are no tangent intersections of ( )( )7
uW λp  and  

( )( )7
sW λp  for the given range of the birth-rate parameters, which means that 

each λA  is a GAH and the proof is complete. 
Observe that the CSA shown in the simulation in Figure 8 has a rather distinc-

tive shape that brings to mind a chaotic candy cane. It also should be noted that  
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Figure 8. Bifurcations for (61): (a) 3.0λ = ; (b) 3.25λ = ; (c) 3.5λ = ; (d) 3.75λ =  with 12 0.05γ = , 13 0.2γ = ,  

21 0.03γ = , 23 0.21γ = , 31 0.04γ =  and 32 0.05γ = . 
 

the horseshoe of the above theorem is analogous to the twisted horseshoe for the 
2-dimensional Lotka-Volterra map [5]. 

6. Conclusions and Suggestions 

In this study of the discrete Lotka-Volterra dynamical system model, we have 
shown not only that there is an abundance of fully 3-dimensional flip bifurca-
tions and related period-doubling cascades to chaos, but some rather novel ana-
logs of Neimark-Sacker bifurcations and chaotic strange attractors. These bifur-
cations have been analyzed in considerable detail exploiting, for example, the iden-
tification of the strange chaotic attractors as generalized attracting horseshoes, which 
are shaped like candy canes. The focus in this investigation was on 3-dimensional 
systems, but in future research we plan to identify and analyze higher dimensional 
analogs of the Neimark-Sacker-type bifurcations, candy cane attractors and related 
dynamical phenomena. Moreover, we shall make an effort to find other exam-
ples of interesting and useful discrete dynamical system models, besides those of 
Lotka-Volterra type, that exhibit these and possibly other novel, unusual or un-
expected types of behavior. 
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