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We report on a single-shot diffraction imaging methodology using relativistic femtosecond electron pulses generated by a radio-
frequency acceleration-based photoemission gun. The electron pulses exhibit excellent characteristics, including a root-mean-
square (rms) illumination convergence of 31 ± 2 𝜇rad, a spatial coherence length of 5.6 ± 0.4 nm, and a pulse duration of
approximately 100 fs with (6.3 ± 0.6) × 106 electrons per pulse at 3.1 MeV energy. These pulses facilitate high-quality diffraction
images of gold single crystals with a single shot. The rms spot width of the diffracted beams was obtained as 0.018 ± 0.001 Å−1,
indicating excellent spatial resolution.

1. Introduction

Recently, single-shot diffraction imaging with ultrashort X-
ray pulses generated from free-electron lasers has facilitated
the study of structural dynamics of irreversible processes in
material samples [2] and the acquisition of direct structural
information in chemistry and biology before sample damage
[3]. However, ultrafast electron diffraction and microscopy
(UED andUEM)with electron pulses are also very promising
techniques for the study of ultrafast structural dynamics in
materials because electrons are complementary to X-rays in
a number of ways [4]:

(1) Electrons have a larger elastic scattering cross sec-
tion and can easily be focused. Measurement using
electrons is used to observe structural information of
small or thin crystals, light-element materials, and gas
phase samples [5].

(2) Electron imaging technology with high spatial reso-
lution is well developed.

(3) Femtosecond electron pulses are achievable using
photoemission guns. The instrument is compact.

The most widely used UED [6–8] and UEM [9–18] instru-
ments employ a static dc acceleration-based photoemission

gun for generating short electron pulses with energies ≤ 200
keV. The main obstacle to using the dc guns is the significant
space charge effect [7, 8]. The space charge force of electrons
in the nonrelativistic energy region not only broadens the
pulse width but also acts to increase energy spread and beam
divergence. This leads to a loss in spatial resolution [19].
Current state-of-the-art dc guns generate ∼ 300 fs electron
pulses that contain several thousand electrons per pulse at
∼100 keV energies and have a beam convergence in the
milliradian range [20, 21]. However, because of the relatively
low number of electrons per pulse, such dc gun-based UED
and UEM instruments are difficult to operate in single-
shot mode. To improve temporal and spatial resolution, a
stroboscopic methodology using single-electron pulses in the
UEM system has been proposed. However, this approach
limits the potential applications to reversible processes [11,
18].

To overcome the space charge problem, we have devel-
oped a prototype relativistic UEM with a radio-frequency
(rf) acceleration-based photoemission electron gun [1]. The
rf gun is an advanced electron source for generating high-
brightness relativistic-energy electron beams in a particle
accelerator field [22–24] and has been applied widely in free-
electron lasers [25]. The relativistic UEM using the rf gun
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Figure 1: Prototype relativistic UEM with MeV femtosecond electron pulses generated by a photoemission rf gun: (a) cross-sectional
schematic of prototypical UEM [1] and (b) ray diagram for electron diffraction imaging.

has three crucial advantages over nonrelativistic UED and
UEM systems. Firstly, it can perform single-shot diffraction
imaging with femtosecond temporal resolution. Relativistic
femtosecond electron pulses containing 106 electrons per
pulse have recently been generated using rf guns with
femtosecond laser pulses [26], and they have been employed
in UED experiments [27–35]. Secondly, relativistic-energy
electron beams greatly enhance the extinction distance for
elastic scattering and provide structural information that
is essentially free from multiple scattering and inelastic
effects [36, 37]. Our previous UED study of the structural
dynamics of laser-irradiated gold nanofilms indicate that the
kinematic theory can be applied in the case of 3 MeV probe
electrons with the assumption of single scattering events
[38, 39]. This allows us to easily understand and explain

structural dynamics. Thirdly, a thick sample can be used for
measurement, thereby obviating the requirement to prepare
suitable thin samples. In this letter, we report on a single-shot
diffraction imaging methodology using our relativistic UEM
with femtosecond electron pulses.

2. Single-Shot Diffraction Imaging
Methodology Using Relativistic
Femtosecond Electron Pulses

Figure 1 shows the schematic of a prototype relativistic
UEM constructed with a photocathode rf gun, an electron
illumination system, an objective lens, an intermediate lens, a
projector lens, and an imagemeasurement system.Thedesign
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Figure 2: Relativistic diffraction images of 10 nm thick (100)-orientated single-crystalline gold film measured with (a) single-pulse (single-
shot) and (b) 100-pulse integration. The energy of the femtosecond electron pulses was 3.1 MeV, and the number of electrons in each pulse
was (6.3 ± 0.6) × 106.

and characteristics of each component have been reported
in [1]. The photocathode rf gun was driven by a Ti:sapphire
femtosecond laser to generate femtosecond electron pulses.
The electron energy was 3.1 MeV. The repetition rate of the
electron pulses, whichwas limited by our klystronmodulator,
was 10 Hz.The electron pulses were paralleled by a condenser
lens in the electron illumination system, collimated with a 1.0
mm diameter condenser pinhole, and then injected onto the
specimen.

The objective, intermediate, and projector lenses are uti-
lized for diffraction imaging. The pole pieces in the objective
lens were made of a soft magnetic alloy (Permendur) [1] and
generated amagnetic field strength of 2.3 T at the center of the
pole pieces. The focal length of the objective lens was 5.8 mm
for a 3 MeV electron beam. For diffraction measurements,
we precisely adjusted the intermediate lens, so that the back-
focal plane of the objective lens acted as the object plane
of the intermediate lens. The diffraction pattern (DP) was
then projected onto a viewing screen (scintillator) using the
projection lens. To achieve high sensitivity to MeV electron
detection with a high damage threshold, we chose a Tl-
doped CsI columnar crystal scintillator equipped with a fiber
optic plate (Hamamatsu Photonics) to convert the relativistic-
energy DPs into optical images [1]. The optical images were
detected with an electron-multiplying charge-coupled device
(CCD) of 512 × 512 pixels.

3. Experimental Results

In the demonstration for electron diffraction imaging, we
used a single-crystalline gold film with a thickness of 10
nm, which was placed on a gold mesh (Cat. No. P066,
TAAB Laboratories Equipment Ltd., Reading, UK) as the
specimen. We removed the objective aperture and readjusted
the position of the specimen along the optical axis to optimize
image contrast. Figure 2 shows the DPs of a (100)-orientated

single-crystalline gold sample observed both via a single-
pulse (single-shot) and via 100-pulse integration. The energy
of the electron pulses was 3.1 MeV, and the number of
electrons per pulse was (6.3 ± 0.6) × 106. The fluctuation in
the number of electrons per pulse was mainly caused by the
instability of the incident UV laser pulse energy. The pulse
duration was not measured in the experiments; however, we
estimated it to be 99 ± 5 fs rms by the theoretical simulation
with the aid of General Particle Tracer (GPT) code [40] using
the incident UV laser pulse at the rf gun launch phase of
30∘, and the electron number per pulse of (6.3 ± 0.6) × 106.
The error of the pulse duration is due to the space charge
effect in the region of themeasured fluctuation of the electron
number, and the change in the launch phase of 30∘± 10∘ in the
rf gun. Figure 3 represents the intensity profiles along the (-
420) and (4-20) spots in the images acquired by single-shot
and 100-pulse integration. As illustrated in Figures 2 and 3,
sharp DPs and good contrast were observed. Higher-order
spots of (-420) and (4-20) from the gold single crystals with
scattering vectors up to 1.1 Å−1 were captured clearly with a
single shot. The rms width of the zeroth-order spot (000) in
the single shot was measured as 0.018 ± 0.001 Å−1, indicating
an excellent spatial resolution for the MeV diffracted beam.

Based on the width of the (000) spot and the measured
distance of the diffraction spots from the (000) position,
we estimated the rms illumination convergence angle (𝛼)
of the electron beam at the specimen to be 𝛼 = 31 ± 2
𝜇rad. This convergence angle is two orders smaller than
that of nonrelativistic UEDs. Additionally, the coherence of
the electron source is an important parameter in diffrac-
tion imaging, especially in terms of the spatial coherence
(transverse coherence), which determines the sharpness of
the DPs and the diffraction contrast in the acquired images.
The spatial coherence length is defined as [41]

𝑑
𝑐
=
𝜆

2𝛼
, (1)
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Figure 3: Intensity profiles along the (-420) and (4-20) spots of
the images acquired by single-shot (broken curve) and 100-pulse
integration (solid curve). The rms width of the (000) spot was
obtained as 0.018 ± 0.001 Å−1 from the intensity profile of the single-
shot image with a Gaussian fit.

where 𝜆 is electron wavelength and 𝛼 is the rms illumi-
nation convergence angle. From the obtained illumination
convergence angle, we evaluated the spatial coherence length
of the electron pulses generated with the rf gun to be dc
= 5.6 ± 0.4 nm, which is twice as large as that of current
UED systems [8, 18, 42]. This allows us to detect sharp
DPs and acquire good contrast diffraction images with
a single-shot and integration measurements, as shown in
Figure 2.

4. Summary

In summary, we have proposed a single-shot diffraction
imaging methodology with a relativistic UEM based on an
rf gun. The rf gun generated femtosecond electron pulses
with pulse durations of approximately 100 fs that contained
(6.3 ± 0.6) × 106 electrons per pulse at an energy of 3.1 MeV.
The number of electrons per pulse was two or three orders
higher than that of nonrelativistic UEDs. In our experiments,
the electron pulses exhibited excellent characteristics, includ-
ing an rms illumination convergence angle of the electron
beam at the specimen of 𝛼 = 31 ± 2 𝜇rad, and a spatial
coherence length of dc = 5.6 ± 0.4 nm. The convergence
angle was two orders smaller than of nonrelativistic UEDs,
while the spatial coherence length is twice as large as that
of current UED systems. Using these pulses, we obtained
a high-quality diffraction image from single-crystal gold
with a single shot. The measurements were successful in

facilitating the detection of higher-order DPs with a scat-
tering vector up to 1.1 Å−1 and a spatial resolution of 0.018
± 0.001 Å−1. Single-shot diffraction imaging methodology
with relativistic femtosecond electron pulses is promising for
studying ultrafast phenomena in materials, i.e., phase trans-
formations of crystalline materials, chemical reactions, and
structural dynamics of biomolecules at the femtosecond time
scale.
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