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We studied the impact of the cell thickness on configurations of line disclinations within a plane-parallel nematic cell.The Lebwohl-
Lasher semimicroscopic approach was used and (meta)stable nematic configurations were calculated using Brownian molecular
dynamics. Defect patterns were enforced topologically via boundary conditions. We imposed periodic circular nematic surface
fields at each confining surface. The resulting structures exhibit line defects which either connect the facing plates or remain
confined within the layers near confining plates. The first structure is stable in relatively thin cells and the latter one in thick cells.
We focused on structures at the threshold regimewhere both structures compete.We demonstrated that “history” of samples could
have strong impact on resulting nematic configurations.

1. Introduction

Line topological defects are ubiquitous in nematic liquid
crystals (NLC) which is fingerprinted even in their name
[1]. They could be stabilised topologically by appropriate
boundary conditions [2, 3] or due to energy reasons [4].
They have a strong impact on optical NLC properties and
are therefore of potential interest for various electro-optic
applications.

Nematic uniaxial liquid crystals exhibit simultaneously
liquid properties and local orientational order [5]. The latter
is at macroscopic level commonly presented by the nematic
director field 󳨀⇀𝑛 . It points along the local uniaxial order,
where states with ±󳨀⇀𝑛 are physically equivalent. In bulk
equilibrium 󳨀⇀𝑛 is spatially homogeneous and aligned along
a single symmetry breaking direction. NLC can exhibit
line dislocations, which are characterised by the winding
number m = ±1/2 [6, 7]. It reveals the total reorientation of󳨀⇀𝑛 on encircling the defect in counter-clockwise direction.
Furthermore, one can assign the total topological charge q to
a line defect [6] by enclosing it by a surface. This charge is
integer and reveals how many realizations of all orientations

are realised in the nematic order parameter space [6]. Note
that the core structure of line m = ±1/2 line defects is biaxial
[8], and the center of the core exhibits negative uniaxiality.

Line defects could be stabilised in different ways. For
example, they could be enforced by AFM imprinted patterns
to plates enclosing NLC in plane-parallel geometry as illus-
trated in [2]. It has been shown [9] that, in such geometries
the line defects could either span the opposite plates or are
confined to the vicinity of the bounding plates. In this paper
we focus on these competing structures. We henceforth refer
to the defect configurations that (i) connect the bounding
plates and (ii) remain confined close to the planes, as the (i)
connected and (ii) confined defect configurations, respectively.
In our study we consider networks of line defects in a
plane-parallel cell of thickness h. We use the Lebwohl-
Lasher semimicroscopic lattice model [10, 11] where the local
orientational order is presented by nematic pseudospins. We
assume that the bounding plates are patterned by a lattice
of concentric circles, enforcing the circular planar nematic
alignment, which give rise to line defects. We focus on the
impact of h and history of samples on defect patterns. The
plan of the paper is as follows. In Section 2 we present model
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and in Section 3 results. In the final sectionwe summarize our
results.

2. Materials and Methods

We consider nematic structures within a plane-parallel cell
of thickness h. At the bounding plates we enforce spatially
varying nematic patterns and calculate the corresponding
nematic structures within the cell. In our modelling we
use the semimicroscopic Lebwohl-Lasher lattice approach
[10, 11]. In this modelling the nematic orientational ordering
is described in terms of nematic spins 󳨀⇀𝑆 (states with ±󳨀⇀𝑆
are physically equivalent) residing at each lattice site. We
henceforth refer to unit vectors 󳨀⇀𝑆 as spins. The simulation
lattice is cubic, characterised by the lattice constant a0.

The simulation lattice consists of M × M × L sites in the
Cartesian coordinate system (x, y, z). Here L is proportional
to the cell thickness, i.e., h = La0, while M >> L stands for
its lateral dimensions. In the following we set a0 = 1, so that
we identify L with the cell thickness. Individual sites are
denoted by a set of indices (i, j, k): 1 ≤ i ≤ M, 1 ≤ j ≤ N,
and 1 ≤ k ≤ L. Each site is occupied by a spin 󳨀⇀𝑆 𝑖𝑗𝑘, which
tends to orient in parallel direction with its nearest neighbors.
The bounding plates have imprinted a two-dimensional (2D)
circular nematic “surface field” (see Figures 1 and 2, top
left), which enforces line defects to the LC body. Therefore,
we impose a lattice of two-dimensional m = 1 topological
point defects. This surface imprinted structure is positioned
symmetrically on both plates. In the model the surface field
is determined by frozen-in spins at the bounding plates.

The coupling between neighboring spins inside the cell
is given by the coupling constant J > 0, while the coupling
between the plates and the nearby spins is parametrized with
the anchoring strengthW > 0. The bulk interaction energy F
is the sum of the terms over all lattice sites:

𝐹 = − 𝐽𝐿𝐿
2 ∑
𝑖𝑗𝑘

∑
𝑛.𝑛

(󳨀→𝑆 𝑖𝑗𝑘 ∙ 󳨀→𝑆 𝑛.𝑛)
2

, (1)

where 𝐽𝐿𝐿 = 𝐽.Thesubscriptn.n. in the inner sumdenotes the
6 nearest neighbors of the site with indices (i, j, k).Thebottom
and upper boundary plates are determined artificially by k =
0 and k= L + 1, respectively, and impose the nematic structure
determined by frozen-in spins. The corresponding nearest
inner spin planes (with k = 1 and k = L, respectively) interact
with the boundary planes with the LL interaction written
in (1), where 𝐽𝐿𝐿 = 𝑊 > 𝐽. At the lateral boundaries we
impose the periodic boundary condition. Besides the torques
due to coupling between neighboring spins the random
thermal fluctuations according to the Gaussian distribution
of deviations from equilibrium are included. For numerical
purpose, we introduce the dimensionless time step�𝑡∗=D�t
and the dimensionless temperature 𝑇∗= kT/J = kT. HereD is
the effective rotational diffusion coefficient, �t is the physical
time step, and k is the Boltzmann constant. Simulation details
are described in [11]. Furthermore, we scaleW in units of J.

A surface imposes spin configuration, consisting of a
lattice of 2D circular defects with the winding number m = 1

on the boundary plate. Each circular pattern, centered at (x0,
y0), is determined by

󳨀⇀𝑆 𝑑 ≡ (cos 𝜃, sin 𝜃, 0) = (− sin 𝜑, cos𝜑, 0) , (2a)

𝜑 = arctan
𝑦 − 𝑦0
𝑥 − 𝑥0

. (2b)

In (2a) and (2b) 𝜑 is the azimuthal angle in the (x, y) plane
and 𝜃 is the angle between the spin and the x-axis; therefore
𝜃 = 𝜑 + 𝜋/2 imposes a circular pattern. We place four equal
and symmetrically positioned circular defects on each plate
as shown in Figure 1. In between the circles we impose
a homogeneously aligned spin field along the x-axis. Both
confining plates impose the same spin field, i.e., 󳨀⇀𝑆 𝑖𝑗,𝐿+1 =
󳨀⇀𝑆 𝑖𝑗0.

In simulations we vary the cell thickness L.The remaining
parameters are fixed: W = 5 and 𝑇∗ = 0.5. These conditions
correspond to a relatively strong anchoring deeply in the
nematic phase.

For given conditions we calculate spin configurations
using Brownian molecular dynamics, where details are
described in [11]. We present key structural characteristics
using the following quantities. We define the traceless tensor
order parameter:

𝑄𝑚𝑛 = 3
2 ⟨𝑆𝑖𝑗𝑘,𝑚𝑆𝑖𝑗𝑘,𝑛⟩ − 1

2𝛿𝑚𝑛. (3)

Here Sijk,m denotes them-th component of the spin󳨀⇀𝑆 𝑖𝑗𝑘, while
the triangular bracket denotes the average over the cell and
𝛿mn is the Kronecker symbol. The scalar order parameter S is
conventionally defined as the largest eigenvalue of the tensor.

In order to measure impact of the bounding plates on
the average LC configuration within the cell we define the
quantity S(0, k) whichmeasures the averagematching of spins
in the k-th plane inside the cell with the frozen spins in the
confining boundaries, i.e.,

𝑆 (0, 𝑘) = 3
2𝑀2

𝑀

∑
𝑖,𝑗=1

(󳨀⇀𝑆 𝑖𝑗𝑘 ⋅ 󳨀⇀𝑆 𝑖𝑗0)
2

− 1
2 (4)

If the matching is perfect it holds S(0, k) = 1. Another useful
macroscopic parameter is the mean value of the square of
the spin component Sz, again with averaging over horizontal
planes:

⟨𝑆𝑧2⟩ (𝑘) = 1
𝑀2
𝑀

∑
𝑖,𝑗=1

(𝑆𝑖𝑗𝑘,3)
2

(5)

Note that the bounding plates enforce zero z-component of
the spins.

We study also the impact of sample “history” on spins.
For this purpose we impose four different initial spin con-
figurations: (1) spin configuration imposed by the plates
(which we label by “D”), (2) homogeneous configuration
with all the spins along the x-axis (“XH”), (3) homogeneous
configuration with all the spins along the z-axis (“ZH”), and
(4) random configurations, where the directions of the spins
are randomly distributed according to isotropic distribution
(“R”).
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Figure 1: Spin configurations in different “horizontal” planes for the cell with thickness L = 10: k = 0, bottom control plane with circular
defects (top left), k = 3 (top right), k = 4 (bottom left), and k = 5, middle of the cell (bottom right).

3. Results and Discussion

Of our interest is to analyse the thickness h=La0 driven
transformation between connected and confined defect con-
figurations. In thin enough cells the surface boundary con-
ditions stabilise a connected defect configuration. When the
cell thickness is increased, the defect structure, as enforced
by the plates, tends to unwind into preferable homogeneous
structure in the bulk of the cell. This is indicated by 2D
cross-sections parallel to the plate in Figures 1 and 2, where
the initial spin configuration was “D” and the equilibrium
spin configurations for two different thicknesses of the cell
are compared: L = 10 (very thin cell) and L = 30 (thicker
cell), respectively. Because of the symmetry it is sufficient
to illustrate the spin configurations for the lower half of the
cell, i.e., k ≤ L/2. Thus the four configurations presented in
either of Figures 1 and 2 represent the spin configuration
for the planes with increasing distance from the bottom
plate, indicated by increasing parameter k. In order to have
a definite (albeit superficial) direction of the spin also in the
center points of the defects, the spin was set to be aligned in
z-direction, i.e., perpendicular to the plates there (dots at the
defect centers in the figure).

It is evident fromFigure 1 (L= 10) that the defect structure
is essentially preserved through the cell for small thickness,

but the centers of the defects are smoothed. Thus the line
disclinations essentially connect the confining plates. On the
contrary, in Figure 2 (L = 30) the spin configuration in the
middle of the cell is roughly homogeneous along the x-axis.

Different structures for cells with different thicknesses
can also be forecast theoretically and revealed experimentally
with the use of polarizing optical microscopy [12, 13]. The
essence of the optical polarizing microscopy is the following.
The NLC is positioned between a pair of crossed polarizers
(perpendicular polarization directions). In the case of opti-
cally inactive medium in the cell no light passes through
the second polarizer. However, the optically active medium,
such as NLC, rotates the polarization direction because of the
difference in ordinary and extra-ordinary refraction indices,
and so the intensity of the transmitted light is nonzero. The
degree of polarization rotation depends on nematic director
field. In numerical simulation of the optical pattern, which
mimics the experimental situation, the path of the beam
through the NLC cell is divided into short segments, and
at each segment the small rotation angle of the polarization
is calculated by using the Jones matrix. If the direction of
the light beam is z (perpendicular to the cell plates), the
intensity of the transmitted light generally depends on (x,
y) coordinates, resulting in characteristic optical pattern.
Each pattern in our calculation corresponds to a single
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Figure 2: Spin configurations in different “horizontal” planes for the cell with thickness L = 30: k = 0 (top left, as for Figure 1), k = 5 (top
right), k = 10 (bottom left), and k = 15, middle of the cell (bottom right).

configuration (snapshot).Theoretically modelled patterns for
L= 10 and L= 30 are compared in Figure 3.The left image (L=
10) is characteristic for the winding number m = 1. However,
some traces of the optical patterns of them = 1 line defect are
still present for thicker cell (L = 30, right image).

The structures (equilibrium spin configurations) pre-
sented in Figures 1 and 2 above indicate that there exists a
threshold value of the cell thickness𝐿c abovewhich the defect
structure unwinds in the middle part of the cell (thicker
cells). In our study 𝐿c is between the values 20 and 30,
where the thickness of the cell is approximately equal to the
size of the imposed circles. The direction of the spins in the
predominantly homogeneous part of the cell is parallel to the
x-axis because this direction is favored by the alignment of
frozen spins between the circles.

Furthermore, we have studied the effect of different initial
spin configurations. In the case of thin cells (L = 10 or slightly
larger) the final equilibrium configurations for all different
initial configurations (“D”, “XH”, “ZH”, and “R”) are similar.
This was shown by comparison of 2D horizontal cross-
sections after relaxation, similarly as for Figures 1 and 2 , and
it has been also confirmed by similar values of parameters
S(0, k) and ⟨𝑆𝑧2⟩(𝑘) in (4) and (5). The value of ⟨𝑆𝑧2⟩ is of
the order of 0.02 in the middle of the cell (k = L/2), indicating

that the spins predominantly lie in the (x, y) plane. The small
Sz component is present because of thermal fluctuations.

Only the “ZH” initial spin configurations result in the
equilibrium configuration which tends to deviate from the
(x, y) plane configuration to larger extent, at least for larger
values of L. For instance, for L = 30 we have found that the
“ZH” initial configurations lead to equilibrium configuration
with ⟨𝑆𝑧2⟩ ≈ 0.6 at the middle of the cell, while the other three
initial configurations result in ⟨𝑆𝑧2⟩ ≈ 0.02, as in the case L =
10. However, other differences for initial spin configurations
“D”, “XH”, and “R” have been noticed. As expected, the final
configuration in the cell has the largest similarity to the defect
configuration on the plate, when the initial configuration is
“D”. This is also confirmed quantitatively by the largest value
of the parameter S(0, k) in (4) for all 2D planes (all values of
k). Figures 4 and 5 show the plane averages ⟨𝑆𝑧2⟩ and S(0, k)
as functions of the index k for all initial spin configurations
and for thicknesses L = 10 and 30, respectively.

The degree of alignment of spins along the x-axis could be
quantified by ⟨𝑆𝑥2⟩ in a similar way as ⟨𝑆𝑧2⟩ was defined in
(5) for the z-component. The “R” initial configuration results
in the equilibrium spin configuration between those corre-
sponding to “D” and “XH”.We have also noticed that for thin
cells (L = 10) the quantitative parameters, such as S(0, k), for
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Figure 3: Polarizing optical microscopy patterns for two thicknesses: L = 10 (left) and L = 30 (right). These patterns correspond to spin
configurations illustrated in Figures 1 and 2.The laser wavelength 445 nmwas arbitrary chosen, and the ordinary and extraordinary refraction
indices 1.544 and 1.821 correspond to NLC E7 [12, 13]. The real thickness was set to h = 2 𝜇m for the L = 10 cell and 6 𝜇m for the L = 30 cell.
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Figure 4: Dependence of the plane parameters ⟨𝑆𝑧2⟩ (left) and S(0, k) (right) on k in the case L = 10 (equilibrium spin configuration) for
initial configurations “D” (solid line), “XH” (dashed line), “ZH” (dash-dotted line), and “R” (dotted line).

“R” initial spin configuration are closer to the corresponding
values for “D” as compared to “XH”. The opposite is true for
thicker cells. Our simulations reveal that for initial conditions
“D”, “XH”, and “R” the structural differences decrease on
increasing the cell thickness. However, the “HZ” initial spin
configuration could lead to significantly different structures
as Figure 5 reveals. In this case we also observe a pronounced
statistical behavior of the system with respect to the “escape”
of spin configurations along the z-direction. By repeating
calculations several times for the same set of parameters we
observe that the system either “escapes” or does not and the

extent of this bifurcation behavior increases on approaching
the threshold thickness 𝐿c. The reason behind this is thermal
fluctuations included in the simulations. As a quantitative
measure of the bifurcation extent we set that the “escape”
is realized when ⟨𝑆𝑧2⟩ (k = L/2) exceeds ⟨𝑆𝑧2⟩c = 0.1. Our
statistical analysis in the cell 62 × 62 × 30 reveals that the
probability for the escape along the z-direction is roughly
equal to 40 %.

We also calculated the interaction energy per site of the
equilibrium states 𝐸s = 𝐹eq/(M

2L) (see (1)). We have found
that it increases slightly with the cell thickness: 𝐸s = −3.19,
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Figure 5: Dependence of the plane parameters ⟨𝑆𝑧2⟩ (left) and S(0, k) (right) on k in the case L = 30 (equilibrium spin configuration) for
initial configurations “D” (solid line), “XH” (dashed line), “ZH” (dash-dotted line), and “R” (dotted line).

−3.06, −3.00, and −2.94 for L = 10, 15, 20, and 30, respectively.
The uncertainty of these values due to thermal fluctuations
in our simulations is 𝛿𝐸s ∼ 0.01. The quoted energy values
must be compared to the energy per site for completely
homogeneous state: 𝐸hom = −3 since J = 1. The smaller
energy per site for very thin cells results from relatively strong
coupling between the surface and neighbouring spins: W =
5. The surface anchoring energy has been included into the
total energy and its contribution to the sites at both plates
compensates the rise of energy due to inhomogeneity. On
the other hand differences in the equilibrium energy for the
four different initial configurations for the same L are roughly
comparable to fluctuation 𝛿𝐸s.

4. Conclusions

We investigated nematic structures within plane-parallel cells
of thickness h=La0 whose bounding plates enforced topolog-
ically line-defect patterns. The circular nematic fields at each
bounding surface favour surface topological defects bearing
m = 1 winding number at the centers of the circular patterns.
Due to the finite anchoring strength these nucleation sites
split and as a result two line defects withm = 1/2 emerge from
each nucleation site. In order to achieve winding number
neutral structure two m = −1/2 are formed to compensate
the total winding number within each (x,y) plane. In thin
cells these defect lines span the bounding plates and their
winding number remains the same across the cells. On the
other hand in thick cells the defect lines remain confined
to the vicinity of the bounding plates. Consequently, they
switch the sign of the winding number while linking m =
1/2 and 𝑚 = −1/2 daughter nucleation sites. We analysed

structures in the critical region, L ∼ 𝐿c, where these two
different realizations of defect patterns compete.The resulting
patterns depend relatively strongly on initial conditions. We
imposed four different histories to the nematic cells. We
either imposed the surface imposed pattern through whole
the cell, homogeneously aligned pattern along the x-axis or
z-axis, and isotropic profiles. We label these histories as “D”,
“XH”, “ZH”, and “R”, respectively. These patterns could be
experimentally imposed. For example, the first pattern is
realised in NLC cells below the critical thickness. The second
and the third patterns could be realised by using a strong
enough spatially uniform electrical field aligned along the
x-axis and z-axis, respectively. The fourth profile could be
realised by quenching the sample from the isotropic phase.
In the case of “ZH”we find behaviour which is reminiscent to
the percolation one. In our future study we intend to analyse
external electric field driven rewiring of defect patterns in
thin (L < 𝐿c) and thick (L > 𝐿c) cells.

In the studied case we considered substrates imposing
four circular “easy axis surface fields”. Note that larger num-
ber of circles and different distance between their centers or
different arrangement (e.g., hexagonal) would quantitatively
affect the results. However, we claim that qualitative structure
would be similar. Namely, the key parameter influencing
the switching mechanism is the length of disclinations. The
crucial parameters are therefore the cell thickness h and
the shortest distance between ±1/2 termination ends of
“confined” disclinations.

Furthermore, we considered conditions for which each
m = 1 surface imposed singularity nucleated a pair of m =
1/2 line defects. However, in general also other structural
solutions might appear depending on h and the strength
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of the surface anchoring interactions. Namely, in our mod-
elling we assume that the confined surfaces locally favour
unsplit m = 1 defect structure at the defect nucleating sites.
On the other hand, bulk elasticity favours formation of
defect lines bearing “elementary” (smallest possible) winding
numbers, i.e., |𝑚| = 1/2. A simple modelling [5] in the
approximation of equal nematic elastic constants reveals that
the director field dependent elastic free energy cost �𝐹𝑒 of
a single disclination of strength m within a finite region
(characterised by a linear length R) scales as �𝐹𝑒 ≈ 𝐹0𝑚2,
where 𝐹0 = 𝐹0(𝑅). Consequently, in bulk a pair of m = 1/2
dislocations is energeticallymore favourable than a singlem=
1 line defects. Our preliminary simulations (using Landau-de
Gennes continuum approach in terms of the tensor nematic
order parameter), where we focus on structures emerging
from a single m = 1 surface imposed singularity, reveal three
qualitatively different nematic structures on varying h. For
ℎ ≤ ℎ(1)𝑐 a single m = 1 singularity is most stable. Within the
window ℎ(1)𝑐 ≤ ℎ ≤ ℎ(2)𝑐 a pair of two m = 1/2 disclinations
appears instead. Furthermore, for ℎ ≥ ℎ(2)𝑐 an “escaped”
structure corresponds to the global minimum, where the
singularity in the director field is avoided by a nonsingular
escape of the nematic director field along the 3rd direction
[14]. Note that the described behaviour on crossing ℎ(2)𝑐 was
already observed experimentally [15, 16]. A more detailed
analysis will be published elsewhere.

The observed behavior is reminiscent to the percolation
phenomenon. We illustrate this analogy for the simplest
case of cubic cell (network) in percolation theory. The cell
is divided into small cubes (sites) with two significantly
distinct values of some physical quantity. Let us take the
usual case of either electrically conducting or insulating sites.
The conducting and insulating sites are randomly spatially
distributed, so that there is a fraction p of conducting sites.
In the vicinity of the percolation threshold 𝑝c and for a
finite network there is a probability P that a randomly
distributed conducting sites form a conducting (percolation)
path between two opposite faces of the entire cube. The
percolation threshold 𝑝c is usually defined as the fraction
of conducting sites (i.e., the volume fraction of conducting
phase) where the percolation probability has the value P =
50 %. The percolation threshold 𝑝c is roughly independent
on the network size, but the steepness of the monotonically
increasing function P(p) around 𝑝c increases with increasing
network size [17]. It holds P = 0 for p << 𝑝c, while P = 100
% for p >> 𝑝c. The fraction p in percolation theory plays
similar role as the thickness of the NLC cell in our study, and
𝑝c corresponds to the threshold thickness 𝐿c.
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