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Abstract: Reservoir and pumped hydro storage facilities represent one of the best options for provid-
ing flexibility at low marginal cost and very low life cycle carbon emissions. However, hydropower
generation is subject to physical, environmental and regulatory constraints, which introduce com-
plexity in the modelling of hydropower in the context of transition energy analysis. In this article,
a probabilistic model for hydropower generation is developed in order to improve an hourly-resolved
tool for transition path analysis presented in previous research. The model is based on time series
analysis, which exploits the fact that the different constraints affecting hydropower generation were
met in the past. The upgraded version of the transition path analysis tool shows a decrease in the
hydropower flexibility as compared with previous published results, providing a better picture of the
benefits and drawbacks associated with a specific transition path under analysis, for example in terms
of assessing the probability of unserved energy. The upgraded version of the tool was employed
to analyse the Spanish National Energy and Climate Plan (NECP), finding consistence between
proposals associated with the power system and related CO2 reduction and share of renewable
electricity targets.

Keywords: energy modelling; hydropower; renewable grid integration; time series models; energy
transition; Spain

1. Introduction

The Paris Agreement [1] implies that carbon neutrality can be achieved by 2050.
Since energy conversion is mainly responsible for anthropogenic greenhouse gases (GHG)
emissions, plans for energy transition are being developed worldwide. The focus in the
short-term (2020–2030) is placed mainly on the electricity sector, as several renewable
technologies (PV and wind power) are more competitive than conventional technologies,
and massive deployment is expected in the following years. In the framework of the
European Union (EU) energy policy, the so-called Clean Energy for All Europeans package,
Spain has recently submitted to the European Commission its National Energy and Climate
Plan (NECP) [2]. According to this plan, renewables must cover 74% of electricity by 2030
(this percentage was around 40% in the last years [3]).

However, the integration of large amounts of non-dispatchable renewable generation
represents a challenge, as power systems are constrained by the fact that supply and
demand must be balanced at every moment. While flexibility provided by conventional
generation may contribute to wind and PV integration during initial stages of the transi-
tion, additional sources of flexibility will be required as the non-dispatchable penetration
increases and lower carbon emissions are required.

Reservoir and pumped hydro storage facilities represent one of the best options for
providing both flexibility and storage at low marginal cost and very low life cycle carbon

Energies 2021, 14, 98. https://dx.doi.org/10.3390/en14010098 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8249-5179
https://orcid.org/0000-0003-1665-1281
https://www.mdpi.com/1996-1073/14/1/98?type=check_update&version=1
https://dx.doi.org/10.3390/en14010098
https://dx.doi.org/10.3390/en14010098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/en14010098
https://www.mdpi.com/journal/energies


Energies 2021, 14, 98 2 of 17

emissions. In addition, according to a recent study in the EU, among the different storage
technologies, only hydropower reservoirs and, to a small extent, batteries will be relevant
by 2030 [4]. Indeed, hydropower plants are able to change rapidly the power output at
will, since no thermal processes are involved. However, the constraints associated with
hydropower generation exist, and they are of very different nature. For example, the fact
that several hydropower facilities are placed on the same river or its tributaries means that
the generation of the facility upstream places conditions on the rest of the hydropower
generators downstream due to the distance between facilities. When modelling the aggre-
gated hydropower generation in a power system, such constraints could be included by
incorporating physical information of the water systems [5,6], but this information is often
scarce or incomplete. Other limitations might be even more difficult to account for, like
environmental and regulatory constraints [7]. Environmental constraints aim at reducing
the impacts of hydropower facilities in the local environment. These impacts are mainly
due to the presence of dams, as they affect water quality, aquatic species and the natural
water flow. Regulatory constraints arise from the rights and needs of different participants
of the water systems downstream of hydropower facilities, including farms, cities and
industries. They also reflect other goals of the water use different from power generation,
like recreational use, conservation of protected areas and flood control.

As a consequence of technical, environmental and regulatory constraints, hydropower
facilities may be subject to limitations on the amount of water that can be released, the reser-
voir level and flow rate variations, affecting eventually to hydropower generation. Ac-
cording to Reference [7], the difficulty of modelling these constraints usually leads to
inaccurate estimates of the ability of hydropower facilities to provide storage and flexibility.
An example of including environmental and regulatory constraints in an hourly-resolved
optimal provision of hydropower was described in Reference [8], but the small scale of the
considered case study (a single facility of 150 MW) makes this approach rather limited for
modelling the aggregated hydropower generation within a whole power system.

Assessing the viability of a power system in the context of the energy transition
requires detailed simulations in order to account for the variability in the different time-
scales of solar radiation, wind, rain patterns and electricity demand, among others, together
with considering the constraints of the available flexible generation and storage systems.
In Reference [9], an hourly-resolved tool for transition path analysis was introduced,
and employed for analysing energy transition paths in Spain up to 2030. The modelling of
the hydropower technology was grounded on maximum capacity together with maximum
and minimum reservoir levels, disregarding other constraints affecting hydropower time
series dynamics. This led to a limited, and probably optimistic, representation of the
hydropower flexibility.

In this work, a model of the hydropower generation fleet in peninsular Spain through
time series probabilistic forecasting techniques is presented. The advantage of time series
based models is that the dynamics of the considered variable are captured from historical
data, meaning that prior knowledge on the underlying causes is not required. This repre-
sents an appropriate framework for incorporating technical, environmental and regulatory
hydropower constraints, under the assumption that historical data are representative of
hydropower dynamics subject to such constraints.

The proposed hydropower statistical model is coupled with the dispatch algorithm
for power systems with high renewable energy source (RES) penetration presented in Ref-
erence [9], providing an upgraded version of the transition path analysis tool. The results
obtained are compared with those obtained in the previous work [9] with two main goals.
The first one is the analysis of the influence of the proposed model on the hydropower
flexibility, with special emphasis on the observed hydropower hourly gradients. The sec-
ond goal is to analyse the extent to which more realistic hydropower dynamics impact
the transition path results, in terms of emissions, demand supplied with RES, security of
supply, and so forth.
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A third additional objective is included in this research, which consists in the analysis
of the Spanish power system roadmap defined in the NECP [2] based on the upgraded
version of the tool. By doing this, the potential bridge between NECP proposals associated
with the power system and related CO2 reduction and share of renewable electricity targets
is explored.

The rest of the article is structured as follows. Section 2 provides a brief description of
the tool introduced in Reference [9], and summarises the main hypotheses of the model.
The proposed methodology for modelling of the hydropower generation in peninsular
Spain is introduced in Section 3, and the procedure to obtain feasible hydropower values
for an hour coherent with the dynamics observed for this variable in the past is described.
In Section 4, the introduced hydropower model is employed to obtain a new set of results
for the main transition path described in Reference [9]. Finally, the upgraded version of the
tool (equipped with the hydropower model) is employed in Section 5 in order to analyse
the transition path of the Spanish power system described in the Spanish NECP for period
2020–2030. The main conclusions of the work are described in Section 6.

2. Review of the Model Basis

This section summarises the main aspects of the tool for transition path analysis
introduced in Reference [9]. The model uses an hourly dispatch algorithm based on
heuristic rules that prioritise the use of renewable technologies. The capacities of the
different technologies are fixed exogenously and follow different evolution determined by
the transition path under analysis. The dispatch in every hour is determined in subsequent
steps without assuming any knowledge on future hours. The methodology is divided into
the following four steps:

• Transition path definition. This comprises the assumption of capacities of the differ-
ent technologies for every year of the considered period. Of special relevance for a
transition path are the assumptions of wind and PV installation rate and the decom-
missioning of coal and nuclear plants. The transition path definition also includes the
assumption on the electricity demand for every year of the period.

• Definition of the hourly capacity factors. A total of 900 combinations of hourly
capacity factors for a number of variables were built from historical data. The hourly
capacity factor is defined as the ratio between the available generation and installed
capacity in every hour. These variables are assumed to be imposed by weather
and technological factors, and include non-dispatchable generation together with
electricity demand and hydro inflow. Non-dispatchable generation comprises wind
power, PV, small hydropower, cogeneration, nuclear, coal and Concentrated Solar
Power (CSP) generation. Some of these technologies have a certain capacity for
regulating its generation level. However, they are considered non-dispatchable in this
work for convenience. Flexible generation, that is, hydro, biomass and gas, are not
included, as the hourly generation levels of these technologies are determined by the
dispatch algorithm, see below, in order to balance generation and demand. The reason
behind this high number of hourly capacity factor combinations is to consider a broad
range of situations during hourly dispatch simulation. By doing this, results are less
affected by the use of historical time series, and a statistical characterisation of the
performance indicators is obtained.

• Hourly dispatch algorithm. Every year within a transition path is solved for the 900
combinations of hourly capacity factors. The dispatch algorithm determines how
much electricity demand is covered by non-dispatchable technologies in order to
assess the needs for flexible generation. Flexible technologies are dispatched in the
following order: hydropower generation, biomass and gas power plants. Situations
with renewable energy excess lead to store electricity through pumped hydro stor-
age and, eventually, to curtailments. Maximum generation (pumping) power for
hydropower is constrained by the installed generation (pumping) capacity and by the
historical maximum and minimum filling level of the hydropower reservoir. Accord-
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ing to this algorithm, the aggregated hydropower generation can be decided by the
algorithm every hour with a limited number of constraints, given by the hydropower
installed capacity and the existing water reservoirs at the moment, with the objec-
tive of covering the demand before using polluting technologies (biomass and gas).
This approach might result in hydropower generation time series that overestimate
the hydropower flexibility. For this reason, additional constraints that reflect those
mentioned in Section 1 are required. This is the goal of the methodology introduced
in Section 3.

• Performance indicators. The outputs of the dispatch algorithm for the 900 combi-
nations of time series and for every year of the considered period are employed to
generate relevant outputs and performance indicators (CO2 emissions, share of renew-
able electricity, etc.). One of the main indicators is the hourly coverage ratio, defined
as the ratio between the total energy that could potentially be generated at a a certain
hour and the aggregate electricity demand at the same hour. Critical h are defined as
those for which an hourly coverage ratio between 1 and 1.2 is observed (this means
that the total energy that could potentially be generated that hour is between 0% and
20% higher than the electricity demand at this hour). Values of this ratio below 1 are
indicative of a non-zero probability of unserved energy.

Three transition paths were analysed in Reference [9]. The main one, referred to as
transition path A, considered an ambitious but realistic renewable capacity deployment
(annual installation rates of 4 GW/year for PV and 2 GW/year for wind power), a reason-
able level of efficiency (leading to a +0.5% increase of the electricity demand every year)
and the full decommissioning of nuclear and coal before 2025. Results showed that this
transition path was feasible (zero hours with unserved energy), and would led to noticeable
reductions of CO2 emissions (more than 50% of reduction by 2030) and high renewable
penetration levels in electricity generation (∼80% by 2030). Two additional transition paths,
referred to as A2 and B, analysed the impacts of considering a slower nuclear phase-out
and a higher installed capacity for dispatchable RES (biomass), respectively.

3. Statistical Model for Hydropower Generation

Time series models aim at explaining the dynamics of a certain variable of interest
in the absence of knowledge about the underlying governing laws of the considered
system. This approach is useful when these governing laws do not allow for a theoretical
formulation, as in sociology, econometrics or any other field involving human behaviour,
or they are too complicated to handle, for example, complex physical processes as in some
problems related to biology or atmospheric dynamics, among others.

In a nutshell, time series modelling is grounded on the idea that the evolution in time
of a certain variable y is due to two different contributions, one is deterministic and can be
computed from available data, and the other is random. Mathematically,

yt+1 = f (xt|Θ) + εt+1, (1)

where function f (·) represents the deterministic component and εt is the random compo-
nent. xt represents a set of available data at time t, including observations of the considered
variable [yt, yt−1, ...], but also information from any other relevant variable. Θ is a vector
containing the model parameters. The key of time series modelling is the implementation of
appropriate deterministic functions f (·), including appropriate choices for input variables
and the determination of the model parameters. This can be done through several criteria,
such as maximum likelihood or minimum prediction error.

Forecasts provided by time series models can be in the form of point forecasts (the
prediction consists of the expected value) or, more interestingly, probabilistic forecasts
(predictive density functions or quantile forecasts). One of the most common approaches in
probabilistic forecasting consists in dressing a point forecast of the variable of interest with
predictive densities of the forecast error, obtained in similar conditions [10]. Indeed, even
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though εt is usually assumed to be a sequence of independent Gaussian random variables,
in most cases the gap between reality and the use of manageable and parsimonious
models in f (·) lead to forecast error distributions showing structure and dependencies.
This information can be captured and exploited within a probabilistic framework in order
to better describe the dynamics of the considered system.

In this work, the hydropower generation in Spain is modelled in a probabilistic
framework in order to describe the range of flexibility provided by this source when
accommodating non-dispatchable sources in a context of energy transition. To this end,
hourly time series for period 2010–2014 for the following variables were employed:

• ht [GW], the aggregated hydropower generation in peninsular Spain.
• θt [GW], the thermal gap, defined as the demand that needs to be covered by dispatch-

able sources. In particular, in this work the thermal gap is defined as the electricity
demand at time t minus nuclear generation, wind generation, solar generation and
electricity supplied by cogeneration and waste incineration.)

• σt [TWh], the filling level of the aggregated capacity of hydropower reservoirs in
peninsular Spain. According to the Spanish TSO, the total storage capacity for all the
reservoirs in Spain is 18.5 TWh (https://www.ree.es/es/datos/publicaciones/series-
estadisticas-nacionales).

In order to model the feasible values of the hydropower generation for one hour
ahead, a two-staged approach is followed. First, a point-forecast model is implemented
in order to provide the expected value of the hydropower generation for one hour ahead.
This model accounts for the autocorrelation of the hydropower generation, resulting from
the diverse constraints operating in the hydropower system. Second, the prediction errors
obtained with the point-forecasting model are employed to characterise the flexibility of the
hydropower generation observed in the past. This is done by analysing the prediction error
distributions, and their dependencies with relevant variables. The underlying assumption
is that observed forecast errors represent feasible departs of the hydropower generation
with respect to the expected value provided by the inertia of the system.

As a result, the probabilistic model is able to provide a predictive density function
of the hydropower generation at every time step, reflecting the range of the feasible
hydropower generation values. This range will be introduced later in the simulation
algorithm of energy transition paths in order to limit the hydropower generation that is
determined by the dispatch algorithm every hour.

3.1. Modelling the Expected Hydropower Generation through a Point-Forecast Model

Two families of models are considered, linear Autoregressive (AR) models and Varying
Coefficient Models (VCMs). Both models require the original time series to be stationary,
which is the case, since hydro generation is a two-sides bounded variable (the minimum
and the maximum values being zero and the aggregated installed capacity, respectively).
AR models assume linear relationships between consecutive values in a time series. Despite
their simplicity, AR models are widely employed due to their solid theoretical foundations,
see for example, References [11,12], among others. Mathematically, an AR model of order
p, AR(p), is expressed as follows:

AR : ht+1 =
p

∑
i=1

ϕi ht−i+1 + εt+1, (2)

where ϕi are the model parameters, to be determined from historical data. The following
version of the AR model including exogenous variables (such as the thermal gap and the
filling level of the reservoirs), usually referred to as ARX models, will be also considered:

ARX : ht+1 =
p

∑
i=1

ϕi ht−i+1 + ϕθ θt+1 + ϕσ σt+1 + εt+1. (3)

https://www.ree.es/es/datos/publicaciones/series-estadisticas-nacionales
https://www.ree.es/es/datos/publicaciones/series-estadisticas-nacionales
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The model given in (3) assumes that the hydropower generation is a function of its
recent past, the current thermal gap, θt+1, and the hydropower reservoir filling level, σt+1.

Linear models can be upgraded to account for non-linear dynamics in different ways,
usually at the expense of the model simplicity. A good trade-off between non-linear capabil-
ities and model simplicity is provided by Varying Coefficient Models [13], which generalise
AR models by implementing smooth dependencies of the model coefficients with other
variables. By doing so, model coefficients ϕi become smooth functions, ϕ(·). These depen-
dencies usually provide insights and interpretability on the captured dynamics, which is
a rare characteristic in non-linear models. Several methods can be followed to obtain the
model coefficients ϕ(·), all of them being computationally intensive: polynomial spline [14],
smoothing spline [15] and kernel-local polynomial smoothing ([16] and references therein).
The main drawback of the polynomial spline approach is that the regression performed to
obtain the coefficient functions are likely to be quite sensitive to the position of the knots
between splines, specially when a reduced number of knots is considered. Concerning the
smoothing spline approach, the splines are fitted by minimising a penalized least squares
criterion. In this case, the choice for the smoothing parameters involved in the process is
somehow arbitrary, while it usually has a noticeable impact on the obtained coefficient
functions. For these reasons, the kernel-local polynomial smoothing approach will be
employed in this work. For further details on these estimation methods, the reader is
referred to Reference [17].

Two different dependencies in the framework of VCMs will be tested:

VCM(θ) : ht+1 =
p

∑
i=1

ϕi(θt+1) ht−i+1 + εt+1, (4)

and

VCM(σ) : ht+1 =
p

∑
i=1

ϕi(σt+1) ht−i+1 + εt+1. (5)

The model parameters were obtained from a training period comprising years 2010–
2012, and evaluated for the test period (years 2013–2014). The evaluation is based on the
Root Mean Square Error (RMSE) between observations, ht, and forecasts, ĥt:

RMSE =

√√√√ 1
N

N

∑
t=1

(ht − ĥt)2 =

√√√√ 1
N

N

∑
t=1

ε2
t , (6)

where the forecast, ĥt, is the expectation of the considered variable, ĥt = E(ht). Since εt
is assumed to be zero-mean gaussian noise, forecasts are computed directly from the
deterministic component in Equation (1).

Figure 1 shows the root mean square error (RMSE) for the different AR models
considered, for model orders from p = 1 to p = 28 to cover the time scale of one day (left),
and for model orders up to p = 200 to cover the time scale of one week (right).

Results in the daily scale (left) show negligible differences as compared with the
important error reductions experienced at p = 3 and p = 26 achieved by all the models.
This reveals two important regression time scales when accounting for hydropower genera-
tion dynamics. For this reason, VCMs were implemented for these regression model orders
(results are also shown in Figure 1). However, VCMs only outperform all the AR models in
the case of p = 26 and for the case of conditioning model coefficients to reservoir filling
level. In any case, differences between models are negligible compared to the importance
of including relevant time scales within the regression order.
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Figure 1. Root Mean Squared Error (RMSE) of the different point-forecasting models, as a function of
the autoregression order, p.

Based on this, the analysis was extended to a week time scale. That was done only for
the AR models, since the computational requirements for modelling hundred of coefficient-
functions required for VCMs are very high, and probably not justified given the improve-
ments obtained in the daily scale with respect to AR models. Figure 1 (right) shows that
there exists a negligible difference in performance when considering exogenous variables.
However, what becomes important is to consider a model order of p = 169 (one week
contains 168 h). From this order on, no further noticeable improvement is obtained.

The performed analysis suggests that the aggregated hydropower generation in
peninsular Spain in the considered period was mainly driven by the dynamics observed
during the last week, while thermal gap and hydropower filling level contributed little to
the level of hydropower generation. In view of these results, the selected point-forecast
model is an AR(169) model, without exogenous variables.

3.2. Modelling the Prediction Error through a Probabilistic Model

An analysis of the predictive error obtained with the point-forecasting model described
above reveals a certain structure in εt+1, as well as dependencies with exogenous variables.
Figure 2 (top) shows the statistical distribution of εt+1 conditioned to three levels of the
predicted hydropower generation, ĥt+1. It can be seen that in situations where the point-
forecast model predicts a negative aggregated hydropower generation (indicating that
hydropower pumping overcomes hydropower generation) of −1 GW, the distribution of
the related predictive errors shows less uncertainty (i.e., less variance) than that observed
for situations in which the predicted hydropower generation is of 5 and 10 GW. Also,
a different bias can be appraise in each situation.

A similar conclusion is obtained from Figure 2 (middle), in which the error predictive
densities were conditioned to three different levels of thermal gap, θt+1. In this case, the dif-
ference in bias is even more prominent, indicating a positive bias for large thermal gaps.

Figure 2 (bottom) shows the statistical distribution of εt+1 conditioned to three differ-
ent values for the filling level, σt+1, reflecting different levels of uncertainty depending on
this variable.



Energies 2021, 14, 98 8 of 17

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 2. Statistical distribution of εt+1 conditioned to three levels of: (top) predicted hydropower
generation, ĥt+1; (middle) thermal gap, θt+1; (bottom) reservoir filling level, σt+1.

In view of the previous analysis, a probabilistic model based on the generation of
conditioned predictive densities of the forecast error was built.

3.3. A Probabilistic Model for the Hydropower Generation

By combining the point-forecasting model and the error probabilistic model described
in the previous sections, the probabilistic model for the hydropower generation is obtained.
Mathematically, the predictive density of the hydropower generation estimated at time t
for time t + 1 is given by:

p(ht+1) = ĥt+1 + p(εt+1|ĥt+1, θt+1, σt+1). (7)

Figure 3 shows an example of the hydropower generation up to time t, and the ob-
tained predictive density for time t + 1, for a situation with σt+1 = 13.1 TWh and a thermal
gap of θt+1 = 17.8 GW. This figure shows that, according to the implemented model,
the hydropower generation for the next time step is expected to be 3.5 GW. In addition,
the conditional predictive density of the error forecast is informative about the uncer-
tainty associated with the level of generation, in such a way that the probability for the
hydropower generation is concentrated within the range from 2.5 to 5 GW.
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Figure 3. Example of the predictive density of the hydropower generation provided by the statisti-
cal model.

4. Revisiting Previous Results with the Upgraded Version of the Transition Path
Analysis Tool

In this section, the results obtained for transition path A in Reference [9] are revisited
and compared to those obtained with the upgraded version of the tool. The upgrade
consists in the coupling of the probabilistic model described in Section 3 within the dispatch
algorithm of the tool. The probabilistic model provides the dispatch algorithm with a range
of feasible values for the hydropower generation at every time step. By feasible we mean
that, from a statistical point of view, they are likely to happen based on past observations.
This range is determined from the predictive density p(ht+1) described in (7). In particular,
percentiles P1 and P99 of the distribution are employed to define the minimum and
maximum levels of hydropower generation for the related time instant. The set of results
obtained for transition path A with the upgraded version of the model will be referred to
as transition path A+.

Due to the nature of the implemented hydropower probabilistic model, it is expected
that the new hydropower generation time series will show hourly gradients of lower
magnitude. This follows as a consequence of providing a constrained range of feasible
hydropower values to the dispatch algorithm. To illustrate this idea, Figure 4 shows 24 h of
the mix generation for transition paths A and A+. The considered day belongs to year 2030,
when large PV capacities have been installed, resulting in a critical ramp-down throughout
the sunset. The flexibility required in such situations is one of the challenges for power
systems with high PV penetration [18]. In both cases the figure shows that hydropower
generation is storing water during the day, while there is an excess of PV generation.
On the left, this situation is followed by a sharp increase in hydropower generation from
16 h to 19 h. During this period, gas generation is not required, conveying the idea that
hydropower provides the required flexibility. This gradient in the hydropower generation
is moderated in the plot on the right due to the constraints imposed by the probabilistic
model, leading to the need for some gas generation during the PV ramp-down.

To delve more into this question, Figure 5 shows the histogram of the hourly hy-
dropower gradient, normalised as a probability density function, for transition paths A and
A+ for years 2020, 2025 and 2030. To facilitate interpretability, a similar plot with historical
data for 2015 is included.
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Figure 4. Power generation mix during a 24-h period in 2030 provided by the transition path analysis tool. Left: without
considering the probabilistic model for hydropower generation (transition path A). Right: including the probabilistic model
(transition path A+).

Figure 5. Histograms of hourly hydropower gradients normalised to probability density function.
Top left: historical data (2015); rest of figures: results for transition paths A and A+.

In can be seen that hydropower gradients in the past were typically between ±3 GW.
The obtained simulations for 2020–2030 show the need for increasing the maximum hy-
dropower gradient, up to [−10, 12] GW by 2030. The reason for this is two-fold: (i) The
increase in installed non-dispatchable RES technologies (wind and PV); (ii) the priority of
the hydropower with respect to combined cycle gas turbines in the dispatch algorithm; this
makes that maximum capacity of hydropower (provided by maximum installed power,
water reservoirs availability and, in the upgraded version of the model, the range of feasible
hydropower values provided by the statistical model) is employed to cover the demand
before using gas.

Since transition path A+ incorporates the impact of constraints on the hydropower
dynamics, the modelled flexibility in the power system during the transition path is
reduced. Consequently, it is expected that the performance of the transition path will
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decrease. Figures 6 and 7 show the main performance indicators for transition paths A
and A+.
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Figure 6. Performance indicators for transition path A.
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Figure 7. Performance indicators for transition path A+.

Figures 6 and 7 (top) illustrate the statistical distribution of the CO2 emissions and
the percentage of demand supplied with RES for every year. Both variables show similar
levels in both transition paths, indicating that the hydropower modelling did not impact
these figures noticeably. The main difference observed between transition paths A and A+
are observed in terms of unserved energy. While there is no unserved energy in transition
path A, Figure 7 (bottom left) reflects an increasing probability of having a number of hours
every year with unserved energy in transition path A+. The number of hours with non-zero
probability remains in all the period below 50 h per year, which represents less than 0.6%
of the time. However, it is worth noting that the constraints in the hydropower dynamics
introduced by the model led to such situations, and they deserve attention when analysing
the proposed transition path. With this purpose in mind, the plot on the bottom right in
Figure 7 was performed. This plot illustrates the probability distribution of the maximum
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unserved energy in one hour observed for every year. This variable is important because
it helps sizing the required additional resources for addressing situations with unserved
energy. According to the plot, additional resources providing a maximum of ∼6.5 GW
would be required by 2028 to eliminate hours with non-zero probability of unserved energy.
This power could be supplied in different forms: additional flexible generation capacity
(i.e., combined cycles), storage (batteries), demand-side management, interconnections
or a combination of them. Additional flexible generation should be considered with care,
as it could involve additional emissions, and investments that could not be recovered. It is
important to remark that batteries, demand-side management and interconnections are
not considered in the current version of the tool, which represents current limitations to
be addressed in future research. In particular, concerning the absence of interconnections
in the tool implies that peninsular Spain is assumed to be electrically isolated. However,
currently import capacities with neighbour countries are of 3 GW with France, 3.4 GW with
Portugal and 0.6 GW with Morocco. Moreover, new interconnections with France will add
2 GW more by 2026–2027. Also, REE (the Spanish TSO), has implemented an interruptibility
service, which affects mainly large-scale industry, and provides the possibility for rapid
demand reductions in the order of 2–3 GW. With all this in mind, the conclusion is that the
potential situations with unserved energy revealed by the upgraded version of the model in
transition path A+ could probably be solved with currently available mechanisms, and/or
with little investments in additional flexibility mechanisms (batteries and demand-side
management), which are likely to be available by the second half of the decade.

5. The Spanish Roadmap for 2030

The upgraded version of the model was employed to analyse the Spanish roadmap for
2030, gathered in the submitted National Energy and Climate Plan (NECP) [2]. A transition
path referred to as NECP has been defined according to that document, and other relevant
information. The main assumptions are:

• The installation rate for PV and wind power for peninsular Spain is of 2.7 GW/year
and 2.1 GW/year, respectively, reaching 38.4 of PV and 48.5 GW of wind power
by 2030 (data for peninsular Spain, see Reference [2], Annex D). Installed power
capacity pumped hydro storage (PHS) increase linearly between 2019 (3.3 GW) and
values detailed in Reference [2] for 2025 (4.2 GW) and 2030 (6.8 GW). Storage energy
capacity increases accordingly, with 73 GWh in 2019, 92 GWh in 2025 and 150 GWh
in 2030. No new installed capacity or storage capacity is considered for reservoir
and mixed-storage hydroelectric power plants. Nuclear capacity follows the nuclear
decommissioning plan recently defined by the Government in agreement with the
owners of the nuclear facilities. This plan establishes the decommissioning of four
reactors out of seven in the period 2020–2030, in particular, one reactor per year during
2027–2030. Concerning coal, a sharp decrease of installed capacity is expected in the
first half of the period, with installed capacity in 2025 representing only 23% of that
installed in 2019 (from 9215 MW to 2085 MW), and no coal plants operative by 2030 [2].
A linear decrease has been assumed in both periods 2019–2025 and 2025–2030.

• Yearly capacity factors for some renewable energy sources are expected to increase
throughout 2020–2030, according to Reference [2]. In particular, full load hours of wind
power scale up from 2200 to 2400 during 2025–2030 due to wind farms repowering
and new offshore wind power.

• Electricity demand increases by 0.49% every year, reaching 263 TWh in 2030 [2].
• Hourly hydro inflow combines historical data employed in Reference [9] with correc-

tions accounting for the expected impact of climate change. The corrections apply to
both the annual hydro inflow and its seasonal profile. According to Reference [19],
a reduction in the annual hydro inflow of 8% could be expected by 2030 in Spain. In
Reference [20], hydro annual inflow reduction between −22% and −28% is predicted
at the end of the century compared to todays values, for the RCP8.5 scenario. Slightly
more severe are the reductions predicted in Reference [21], with an annual hydro
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inflow change in Spain between −20% and −40% by 2050. With this in mind, in this
work a linear reduction of the annual hydro inflow is assumed for the period 2020–
2030, from −5% of reduction for 2020 to −10% for 2030 with respect to historical data
gathered from 1991. Concerning the seasonal profile of hydropower inflow decrease,
Reference [20] estimated that main decreases would take place during spring and
autumn. Based on that work, a seasonal pattern of hourly hydro inflow decrease was
built. Figure 8 (top) reflects this pattern for a reduction of 10% of the annual hydro
inflow observed in Spain in 2010. Figure 8 (bottom) shows the original hourly hydro
inflow in Spain for 2010 and the modified one.

The roadmap for the Spanish power system described in Reference [2] includes rein-
forcements of interconnections and 2.5 GW of batteries with Maximum Charge/Discharge
time of 2 h by 2030. As mentioned in Section 4, both interconnections and batteries are not
considered in the current version of the tool, what makes the obtained results a conservative
picture of the real performance of the analysed transition path.
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Figure 8. Top: Seasonal variation of hydro inflow, adapted from Reference [20], and computed for
a reduction of 10% of the annual hydro inflow observed in Spain in 2010. Bottom: Hourly hydro
inflow in Spain for 2010, and modified assuming a variation of −10% in the annual hydro inflow and
the seasonal variation (see text for details).

Results for transition path NECP are shown in Figure 9. The two plots on the top show
the distribution of the CO2 emissions and the percentage of demand covered with RES,
respectively, together with the targets established by Spanish authorities (NECP targets, in
Reference [2]). Both sets of data fit notably well, which serves as a validation of the Spanish
plans based on our tool for transition path analyses. It is important to remark that, while
results obtained in our simulations correspond to peninsular Spain, NECP goals refer to
Spain, thus, they include insular territories. This could explain why the obtained emissions
remain slightly below the NECP target.
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Figure 9. Performance indicators for transition path NECP.

Our results also suggest a certain probability of hours with unserved energy. The two
plots on the bottom in Figure 9 show that this could be the case for around 15 h by 2030,
the maximum unserved energy in one hour being lower that 4.5 GWh. Based on the
limitations of the model mentioned at the end of Section 4, it is very likely that such situa-
tions could be safely managed with non-modelled elements, like current interconnection
levels and interruptibility service, and/or the expected installed batteries and demand-side
management to be developed in the near future.

A More Realistic Picture for Coal in Spain

As mentioned above, the Spanish power system roadmap described in Reference [2]
considers a complete decommission of coal plants by 2030, with a noticeably decrease
by 2025. However, during the elaboration of this research, coal decommissioning has
unexpectedly accelerated, as several coal plants closed in 2019–2020. Additionally, several
announcements make probably that all existing coal power plants in Spain are decom-
missioned by 2023, see Table 1. The main reason behind is the increasing cost of coal
generation, mainly driven by increasing carbon prices in EU Emissions Trading Systems
(ETS), in combination with the new RES capacity that is being installed in Spain. Actually,
several decommission announcements are for carbon facilities that had already invested
in adapting their installations to new European legislation on quality air, and which in
principle could keep operating. Table 1 shows the remaining coal facilities in peninsular
Spain and the installed power over the following year.

Thus, a relevant question is whether accelerated coal decommissioning may be incom-
patible with NECP roadmap, in the sense that the risk of unserved energy could increase
noticeable, affecting the quality of electricity supply, specially during the first half of the
period 2020–2030. To address this issue, a new transition path, referred to as NECP-no
coal, has been defined by considering the total coal capacity detailed in Table 1. The rest of
parameters are those included in NECP transition path.
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Table 1. Expected installed coal capacity [MW] in peninsular Spain, according to different decommis-
sion announcements.

Coal Power Plant 2020 2021 2022 2023

As Pontes 1468 1468 0 0
Litoral 1159 1159 0 0

Los Barrios 589 589 0 0
Lada 358 358 0 0

Aboño 916 916 916 0
Soto de Ribera 350 350 350 0

TOTAL 4840 4840 1266 0

Results for this new transition path are shown in Figure 10. Two main differences
can be appraise between NECP and NECP-no coal performance. First, CO2 emissions are
notably reduced in the NECP-no coal transition path, specially during the first half of the
period. In particular, the accumulated emissions during the decade were reduced by 18.5%
(from 313.7 Mt to 255.6 Mt). This reveals the extent to which power system emissions
are driven by coal, thus, the importance of displacing this energy source in the context
of climate policies. The counterpart is an increase in the maximum unserved energy in
one hour, showing a need for additional flexible generation earlier in the period (2020–
2023). However, the amount of required capacity during these first years remains low,
below 2 GW.
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Figure 10. Performance indicators for transition path NECP-no coal.

6. Conclusions

In this work, a probabilistic model for hydropower generation was developed in order
to improve an hourly-resolved tool for transition path analysis presented in previous re-
search. The introduced model aimed to account for physical, environmental and regulatory
constraints affecting hydropower dynamics. The model is grounded on time series analysis
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of historical data, which exploits the fact that these constraints were met in the past. Results
showed that the dynamics of the aggregated hydropower generation in peninsular Spain
were properly accounted for by linear regression on the last week records. Dependencies
with exogenous variables, such as thermal gap and reservoir level, were employed to
determine predictive densities of the hydropower generation for the next hour.

The upgraded version of the transition path analysis tool showed a decrease in the
hydropower flexibility, as compared with results previously published. In particular,
hourly hydropower gradients were reduced, providing a better picture of the benefits and
drawbacks associated with a specific transition path under analysis, for example, in terms
of assessing the probability of unserved energy.

The upgraded version of the tool was employed to analyse the Spanish National
Energy and Climate Plan 2020–2030 (NECP), and an updated version of this plan including
the faster coal decommissioning already taking place in Spain. In both cases, a small
probability of unserved energy was observed during the considered period. The quan-
tification of the amount of maximum unserved energy in one hour showed that these
situations could most probably be solved with currently available mechanisms not mod-
elled by the tool (interconnections and interruptibility service), or with little investments in
additional flexibility (batteries, demand-side management, etc.). The modelling of these
flexibility sources as well as the coupling of the power system with other sectors such
as heating/cooling and transport represent some lines for future research. Other lines
of research should consider the impact of climate change on solar and wind resources,
as well as on electricity demand. Finally, the obtained results indicate consistence between
NECP proposals associated with the power system and related CO2 reduction and share
of renewable electricity targets. In particular, the expected faster coal decommissioning
could led to −18.5% of the accumulated emissions during the decade, as compared to the
original path for coal considered in the NECP.
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