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Abstract

Quantitative studies of the multiple factors influencing the mountain-mass effect, which

causes higher temperatures in mountainous than non-mountainous regions, remain insuffi-

cient. This study estimated the air temperature in the Yellow River Basin, which spans three

different elevation ranges, using multi-source data to address the uneven distribution of

regional meteorological stations. The differences in mountain-mass effect for different geo-

morphic regions at the same altitude were then compared. The Manner–Kendall nonpara-

metric test was used to analyse time series changes in temperature. Moreover, we

employed the geographically weighted regression (GWR) model, with MODIS land-surface

and air-temperature data, station-based meteorological data, vertical temperature gradients

corresponding to the 2000–2015 period, and elevation data, to estimate the correlation

between monthly mean surface temperature and air temperature in the Yellow River Basin.

The following major results were obtained. (1) The GWR method and ground station-based

observations enhanced the accuracy of air-temperature estimates with an error of only ±
0.74˚C. (2) The estimated annual variations in the spatial distributions of 12-month average

temperatures showed that the upper Tibetan Plateau is characterised by low annual air tem-

peratures with a narrow spatial distribution, whereas north-eastern areas upstream of the

Inner Mongolia Plateau are characterised by higher air temperatures. Changes in the aver-

age monthly air temperature were also high in the middle and lower reaches, with a narrow

spatial distribution. (3) Considering the seasonal variation in the temperature lapse rate, the

mountain-mass effect in the Yellow River Basin was very high. In the middle of each season,

the variation of air temperature at a given altitude over the Tibetan Plateau was higher than

that over the Loess Plateau and Jinji Mountain. The results of this study reveal the unique

temperature characteristics of the Yellow River Basin according to its geomorphology. Fur-

thermore, this research contributes to quantifying mountain-mass effects.
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Introduction

The mountain-mass effect, which was first reported by de Quervain [1] in the Alps, describes

the higher altitude of temperature-related vertical belts (such as forest lines and snow lines) in

mountainous areas than in non-mountainous areas or on isolated mountains. The distribution

of this mountain-mass effect causes variations in geographic surface systems [2–5]. As a pro-

truding heat island, mountains absorb solar radiation and convert it into long wave thermal

energy, resulting in a much higher air temperature in mountain ranges than in the free atmo-

sphere at the same altitude [4, 6]. The mountain-mass effect can be explained by the atmo-

spheric heating process, where the ground is the main direct heat source for the atmosphere

[7]. Due to the high altitude of mountains and the thin surrounding air, the ground in moun-

tainous areas receives more solar radiation than that in non-mountainous areas; thus, the

internal climate of a mountain range is relatively dry, with minimal precipitation, a reduced

atmospheric weakening effect, and greater heat transfer to the atmosphere [5]. When air

heated by the ground away from a mountain rises to the same altitude as a mountain range, its

heat is greatly reduced. Furthermore, the mountain-mass effect is more obvious in the interior

of mountain ranges than at the margin of mountainous areas; the larger the mountain, the

higher the upper limit of plant growth and the higher the corresponding vertical vegetation

zone boundary [8].

Additionally, the mountain-mass effect also influences the climate on the mountain itself

[3]. Compared with lowland areas, the air pressure, temperature, and humidity are lower in

mountainous regions; however, sunshine and radiation are more intense, and rainfall is

observed at a certain height [9]. On a mountain hillside, the distribution of different climatic

zones is somewhat similar to that from the equator to the bipolar climatic zone, with altitude

regulating temperature at low latitudes [10]. Therefore, even at the equator, high mountains

will experience snow all year round. Additionally, different hydrothermal conditions have dif-

ferent effects in the vertical direction, leading to various changes in the vegetation landscape

[11]. Additionally, the mountain-mass effect is influenced by various factors [12, 13]. For

example, larger mountains exhibit a more obvious mass effect [14].

Temperature data for the Yellow River Basin are scarce given its geographical characteris-

tics and the fact that only a few meteorological observation stations exist in the area. Therefore,

conducting in-depth and quantitative research on the mountain-mass effect in this region is

particularly challenging [15–17]. Additionally, air-temperature data across the Yellow River

Basin are predominantly obtained via a series of statistical analyses and spatial interpolation

using observations from discrete meteorological stations. For example, Pan et al. [18] per-

formed statistical analysis on observation data from 142 stations in the Yellow River Basin to

study the interdecadal variations in temperature corresponding to the past 50 years. Their

research revealed the temporal and spatial distribution of air temperature, as well as variations

across the basin. Further, Huang et al. [19] used data from 52 stations in the Inner Mongolia

region of the Yellow River Basin corresponding to the 1951–2012 period to study air-tempera-

ture variability and warming stagnation in the basin over the past 60 years. Ideally, these previ-

ous results could be used to determine the overall temporal variations in temperature across

the river basin; however, they do not accurately reflect the detailed spatial distribution of air

temperature [20, 21].

Presently, the most common method of determining air temperature at a given location is

to use data from existing meteorological stations [12, 22]. Thus, the lack of stations in the Yel-

low River Basin, as well as its complex and diverse terrain, hinders analyses of the spatial vari-

ability of air temperature by this method [23, 24]). To obtain more accurate interpolation

results, Hwang et al. [25] generated high-precision global temperature and precipitation
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interpolation values using longitude, latitude, and altitude as the variables, based on global

meteorological observation data from 1950–2000 and 90-m-resolution Shuttle Radar Topogra-

phy Mission (SRTM) topographic data. The development of thermal infrared remote sensing

technology has facilitated the more efficient acquisition of air-temperature spatial data [10, 26,

27]. Air-temperature estimates derived from the geographically weighted regression (GWR)

model based on MODIS land-surface temperature data reveal a good linear relationship

between land-surface temperatures obtained via thermal infrared remote sensing and air tem-

perature [28–30]. Furthermore, the primary advantage of the GWR model is that it identifies

the spatial non-stationarity of the relationship between the response variable and explanatory

variables [31–33].

Analysis of the mountain-mass effect and the variability between mountains at the same

altitude is key to quantifying this effect. Therefore, this study uses MODIS data and existing

air-temperature data to estimate air temperatures in the Yellow River Basin with high preci-

sion, then obtains the differences in air temperature between various terrain heights in the

region to quantify the mountain-mass effect in the Yellow River Basin. Specifically, the aims of

this study are: (1) to analyse the time series changes in air temperature and land-surface tem-

perature using the Manner–Kendall (MK) nonparametric test [34, 35], considering the differ-

ences between air temperature and land-surface temperature based on the root mean square

error (RMSE); (2) to estimate the average monthly air temperatures in the Yellow River Basin

using the GWR analysis method with long-term MODIS land-surface and air-temperature

data, as well as a digital elevation model (DEM), based on the spatial heterogeneity theory; and

(3) to investigate the air-temperature distribution and mountain-mass effect, considering the

unique topography and reanalysis data corresponding to the Yellow River Basin. Therefore,

the results of this study provide basic data that reveal the unique geographical characteristics

of the Yellow River Basin. Further, these findings can play an important role in the process of

diversifying and quantifying mountain mass effects.

Data and methods

Study area

The Yellow River Basin, which occupies a vast territory with highly varied topography, follows

an east–west path across China (95˚530–119˚050 E, 32˚100–41˚500 N) (Fig 1). Its terrain is

approximately divided into three zones: the western portion is located east of the Tibetan Pla-

teau at an altitude of more than 3,000 m a.s.l, the central portion flows through the Loess and

Mongolia Plateaus, at an elevation of 1,000–2,000 m a.s.l., and the eastern part flows through a

plain with an altitude of 100 m a.s.l. The river basin encompasses plateau, middle temperate,

and southern temperate climatic zones, and is ecologically fragile and sensitive. Additionally,

meteorological stations are unevenly distributed throughout the basin; thus, comprehensive

data on meteorological elements are scarce.

Data

In this study (Table 1 and Fig 2), MODIS Terra/Aqua global monthly mean surface-tempera-

ture/emissivity data for the 2000–2015 period, with a spatial resolution of 1 km, were used as

land-surface temperature data. Terra/Aqua Monthly Land-Surface Temperature & Emissivity

(MODLT1M/ MYDLT1M) data were also used. These data were obtained from the Interna-

tional Scientific & Technical Data Mirror Site (Computer Network Information Centre, Chi-

nese Academy of Sciences). Owing to the presence of clouds, the MODIS surface-temperature

data, specifically that corresponding to the middle of the Loess Plateau, contained missing val-

ues; therefore, the nearest neighbour method was employed to make local adjustments on the
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regularly and irregularly distributed data based on the structure of the input data, without

requiring the user to enter data related to the search radius, sample count, or shape. The inter-

polation method used in this study tended toward the natural neighbouring method, which

differs substantially from the traditional nearest neighbour interpolation method; however, the

final results were relatively good. Missing values were replaced using the nearest neighbour

method considering the elevation.

Meteorological data were obtained from 225 stations in the study area during the 2000–

2015 period (http://data.cma.cn/). The air-temperature data used in this study were average

monthly temperature data corresponding to the 2000–2015 period, obtained from the National

Fig 1. Study area and the distribution map of weather stations in this region.

https://doi.org/10.1371/journal.pone.0258549.g001

Table 1. Datasets used in this study.

Type Name Resolution

Land surface temperature MODIS(MODLT1M/MYDLT1M) 1 km × 1 km

Air temperature National Meteorological Information Centre Land Climate Data Monthly Value Data Set (NMICD) 1 km × 1 km

Climatic Research Unit (CRU) 0.5˚ × 0.5˚

Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) 0.25˚ × 0.25˚

Reanalysis Data National Centre for Atmospheric Research/National Centres for Environmental Prediction (NCAR/NCEP) 2.5˚ × 2.5˚

European Centre for Medium Range Weather Forecasts (ECMWF) 0.25˚ × 0.25˚

DEM United States Geological Survey(USGS) 30 m

Meteorological data National Meteorological Information Centre —

https://doi.org/10.1371/journal.pone.0258549.t001
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Meteorological Information Centre Land Climate Data Monthly Value Data Set (NMICD)

(http://data.cma.gov.cn). The gridded Climatic Research Unit (CRU) time series dataset ver-

sion 4.03 for the 2000–2015 period was also used to determine the daily mean temperature

product (http://www.cru.uea.ac.uk/data/). Furthermore, Asian Precipitation-Highly-Resolved

Observational Data Integration Towards Evaluation (APHRODITE) data, AphroTemp_V1808

for the 2000–2015 period were used as the daily mean 0.25 degree-gridded daily temperature

product (http://aphrodite.st.hirosaki-u.ac.jp/index.html). Data from a 1-km resolution topo-

graphic DEM map of the Yellow River Basin were used as covariance values. The thin plate

spline method was used for spatial interpolation to generate monthly grid data with a ground

horizontal resolution of 1 km × 1 km.

Additionally, atmospheric temperature data were obtained from a reanalysis dataset pro-

vided by the National Centre for Atmospheric Research/National Centres for Environmental

Prediction (NCAR/NCEP) (http://www.esrl.noaa.gov) and the European Centre for Medium

Range Weather Forecasts (ECMWF) (https://www.ecmwf.int/). These data provide the

monthly mean temperatures corresponding to 17 barospheres in the vertical direction. How-

ever, as the barometric pressure reaches the top of the troposphere at 250 hPa, and the rate of

vertical temperature decline in the stratosphere differs from that in the troposphere, we select

nine troposphere-pressure, 16-year (2000–2015) atmospheric monthly average temperature

datasets corresponding to the following pressures according to the ideal atmospheric pressure

and altitude table: 1,000, 925, 850, 700, 600, 500, 400, 300, and 250 hPa.

STRM DEM data with a spatial resolution of 30 m were downloaded from the USGS web-

site (https://earthexplorer.usgs.gov/) and resampled within a grid unit of 1 km × 1 km to esti-

mate air temperature using MODIS surface-temperature data.

Fig 2. Flow chart depicting the mountain-mass effect analysis procedure.

https://doi.org/10.1371/journal.pone.0258549.g002
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Methods

Average monthly land-surface temperature data from the MODIS Terra satellite correspond-

ing to the 2000–2015 period were correlated with the average monthly air-temperature data

from the meteorological stations. Further, average monthly Terra land-surface temperature

data for day and night were averaged to obtain the monthly mean surface temperature in the

Yellow River Basin from 2000 to 2015. A corresponding database was established for the fol-

lowing analyses:

1. The MK nonparametric test was used to analyse time series changes in temperature. The

advantages of this method include the fact that the sample does not need to follow any spe-

cific distribution pattern, and interference from outliers is rare; therefore, the calculation is

straightforward [31, 36–38].

2. The GWR method, which is a local statistical method that includes the spatial coordinates

of variables during analysis and may provide a more appropriate basis for investigating spa-

tially varying relationships, was used to explore the complex relationships between Ta, ele-

vation, and land-surface temperature in the study area. The derived relationships were used

to construct the Ta estimation model, whose performance was also compared to other esti-

mation methods. Further, the GWR model is an extension of the conventional regression

method and can be used to model spatially varying relationships [39]. In this model, the

relationship between the dependent variable, Yi, and the explanatory variable, Xk, can be

expressed as:

Yi ¼ b0ðui; viÞ þ
Pp

k¼1
bkðui; viÞxik þ εi ð1Þ

where (ui, vi) represents the coordinates of the ith location (e.g., latitude and longitude); β0(ui,

vi) and βk(ui, vi) represent local coefficients estimated for the independent variable, xk, at point

i; εi represents the regression residuals at location i; and i = 1,2,. . .,n, represents the number of

spatial locations considered.

The regression coefficient of the independent variable in the formula was obtained accord-

ing to the following formula:

b̂ðui; viÞ ¼ ðX
TðWðui; viÞXÞ

� 1XTWðui; viÞY ð2Þ
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where X and Y are matrices composed of explanatory variables and dependent variables,

respectively; b̂ represents an estimate of β; and W(ui, vi) = diag(wi1, wi2,. . .,win) is a square

matrix, whose diagonal element, wij, denotes the geographical weighting of the surrounding
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observed point, j, for the specific point, i. This weight matrix, W(ui, vi), can be constructed

using the distance, dij, and the Gaussian distance decay-based functions.

The Gaussian and bi-square kernel functions are two common types of kernel functions

that are part of the GWR model. The adaptive Gaussian kernel function was expressed as fol-

lows:

wij ¼ exp �
dij

b

� �2
 !

ð5Þ

where dij represents the distance between the sites, i and j, and b represents an adaptive band-

width size defined as the nearest neighbour distance. The adaptive bi-square kernel function

was used to describe the spatial dependence of the data.

wij ¼
1 �

dij

b

� �2
" #2

dij � b

0 dij > b

8
>>><

>>>:

ð6Þ

Further, it was necessary to carefully select an appropriate bandwidth, which can benefit

from employing a measure of how well the model fits the data. Thus, an interval search was

used to determine the optimal bandwidth of the adaptive bi-square kernel function, and the

fitting degree and performance of the model were evaluated using the coefficient of determina-

tion (R2), adjusted R2, local R2, RMSE, and the square root of the standardised residual sum of

squares (Sigma).

Additionally, the GWR method was used to estimate the regression equations for MODIS

air temperature and land-surface temperature, as well as the altitude at each given location in

the study area (Eq 7). It was also used to generate the land-surface temperature coefficient, alti-

tude coefficient, and constant term coefficient, i.e., the regression model for temperature esti-

mation was established using the GWR method.

TaiðuÞ ¼ b0iðuÞ þ b1iðuÞTsiðuÞ þ b2iðuÞhiðuÞ ð7Þ

Here, Ta represents air temperature; Ts represents the MODIS land-surface temperature; h

represents the altitude; u represents a given spatial position; i = 1. . .n, represents the number

of spatial positions considered; and β represents the corresponding coefficient terms.

In addition to using the GWR method to generate the land-surface temperature coefficient,

air-temperature surface coefficient, altitude coefficient, and constant term coefficient, it was

also used to establish the regression model employed to estimate the monthly mean air tem-

perature in the Yellow River Basin. Even though the NMICD-based Ta data for the basin has a

linear relationship with land-surface temperature, some spatial variability was still observed,

which was estimated by introducing the altitude factor into the GWR regression analysis

method. Further, to evaluate the accuracy of the model estimates, 225 meteorological stations

in the study area were used as verification points.

3. The high-precision GWR model was also used to estimate the average monthly air tem-

peratures in the basin for a period of 12 months. In this study, Ta at sea level was deter-

mined as described in a previous study [40]. Then, the average monthly air temperatures
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at altitudes of 5,000 m and 5,500 m in the Tibetan Plateau were determined to compare

the differences between geomorphic regions in the basin:

Tah ¼ Taþ ðelevation � hÞ � g ð8Þ

Here, h represents the specified altitude (5,000 m and 5,500 m); Tah and Ta are the simu-

lated air temperature and actual temperature at the specified altitude, h, respectively; and γ
represents the temperature lapse rate. Jiang et al. [41] used data from Chinese national meteo-

rological stations to calculate the regional-scale lapse rates for the seasonal mean Ta based on a

multiple regression method (Table 2).

4. In this study, we focused on analysing the characteristics and causes of tropospheric tem-

perature gradient changes over the main parts of the Loess Plateau, Mongolia Plateau,

Jinji Mountain, and Tibetan Plateau. The formula for determining the vertical tempera-

ture gradient was as follows:

gT ¼ � DT=DP ð9Þ

where γT represents the vertical temperature gradient (unit: K�hPa-1); ΔT = Tk+1−Tk (k

represents the level); ΔP represents the absolute value of the air pressure difference between

two adjacent isobaric surfaces; and γT > 0 K�hPa-1 indicates that the temperature decreases as

the altitude increases. Conversely, γT <0 K�hPa-1 indicates that temperature increases with

height of the inversion layer and γT = 0 K�hPa-1 indicates that the temperature does not change

with altitude. Further, the higher the γT value, the faster the temperature decreases with

altitude.

Results

Data analysis results

We compared different air-temperature products, including CRU [42], APHRODITE [43–48],

and NMICD, to determine the most suitable product for this study. Even though CRU data

and APHRODITE data had high R2 values (0.95–0.97 and 0.92–0.98, respectively), they also

exhibited high RMSE values (1.02–1.26 and 0.99–1.66, respectively). Therefore, considering

the resolution of the three different data products as well as their estimation accuracy results

(Table 3), NMICD data were used in this study. The time series analysis performed using the

MK nonparametric test indicated that the average monthly MODIS land-surface temperature

was generally consistent with the change in NMICD-based average monthly Ta (Fig 3). The

RMSE values corresponding to the central month of each season were statistically analysed

(Table 4). RMSE values in the range of 48–82% indicated a temperature error of less than 4˚C,

whereas values in the range of approximately 2–19% indicated an absolute error of more than

6˚C, which was primarily distributed in the upper reaches of the Tibetan Plateau, the eastern

Table 2. Lapse rates for mean air temperature at the regional scale (˚C/100 m).

Area Spring Summer Autumn Winter

Tibetan Plateau 0.63 0.59 0.57 0.56

Loess Plateau 0.56 0.62 0.48 0.36

Mongolia Plateau 0.63 0.52 0.46 0.43

Jinji Mountain 0.54 0.57 0.49 0.52

https://doi.org/10.1371/journal.pone.0258549.t002
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and western parts of the Loess Plateau, and in the middle part of the Inner Mongolia Plateau

(Fig 4).

This analysis was performed for three reasons. First, the complex and diverse topographical

conditions that characterise the Yellow River Basin (e.g., varying altitude and surface rough-

ness and undulation) have a strong influence on air temperature. Second, the impact of vegeta-

tion cover on air temperature needs to be considered (Fig 5), i.e., the replenishment of

vegetation in the growing season has a significant impact on surface temperature [49, 50],

which could account for the significant difference between Ts and Ta during the growth period

in the Yellow River Basin. Third, the complex geography, climate, ecology, and natural envi-

ronment in the basin influence the inversion accuracy of the surface temperature to some

extent, thereby enhancing the error associated with temperature estimates.

Table 3. Root Mean Square Error (RMSE) and coefficient of determination (R2) for different temperature products.

Month NMICD APHRO CRU

R2 RMSE (˚C) R2 RMSE (˚C) R2 RMSE (˚C)

Jan. 0.98 0.76 0.95 1.30 0.95 1.26

Feb. 0.96 0.94 0.92 1.49 0.96 1.02

Mar. 0.96 0.97 0.92 1.66 0.96 1.13

Apr. 0.96 1.00 0.92 1.21 0.96 1.17

May 0.97 1.03 0.97 1.16 0.97 1.19

Jun. 0.98 0.99 0.97 1.14 0.97 1.20

Jul. 0.98 0.98 0.98 0.99 0.97 1.18

Aug. 0.98 0.92 0.97 1.09 0.97 1.15

Sep. 0.98 0.78 0.97 1.04 0.97 1.08

Oct. 0.98 0.74 0.96 1.22 0.97 1.04

Nov. 0.97 0.90 0.95 1.44 0.97 1.10

Dec. 0.97 1.02 0.95 1.32 0.96 1.08

https://doi.org/10.1371/journal.pone.0258549.t003

Fig 3. Temporal variations in monthly mean air temperature and land-surface temperature based on data collected at

meteorological stations in the Yellow River Basin.

https://doi.org/10.1371/journal.pone.0258549.g003
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Air temperature estimation and mountain-mass effect analysis

Air temperature estimation and precision evaluation. Table 5 shows that the 12-month

decision coefficient (adjusted R2) was greater than 0.95 (0.96–0.98) and the RMSE was between

0.74˚C and 1.03˚C for each month. This is indicative of high accuracy. Further, the error verifi-

cation results (Table 6) showed that, except for the highest errors, i.e., 1.04–1.11˚C, which

were observed from April to August, the estimation error was less than 1˚C. The results also

showed that the estimation accuracy of the GWR method could be controlled to within an

error of 1.2˚C. Furthermore, the accuracy of temperature estimates in the Yellow River Basin

based on MODIS land surface temperature data, NMICD meteorological data, and DEM data

was very high. The spatial distribution of estimated Ta showed that January was the coldest

month, with a Ta between -20.61˚C and 6.50˚C (Fig 6A), whereas July was the hottest month,

with a Ta between 0.91˚C and 35.70˚C (Fig 6C). Further, the air temperatures corresponding

to each month were generally low in the west and high in the east; this is attributed to high-ele-

vation plateaus and mountains in the west. The upper Tibetan Plateau showed low annual air

temperatures with a narrow spatial distribution. However, air temperatures were high in the

north-eastern area, upstream of the Inner Mongolia Plateau, owing to the rapid drying tem-

perature rise close to the desert. Additionally, changes in the average monthly air temperatures

in the middle and lower reaches of the Yellow River Basin were relatively high with a narrow

Table 4. Root Mean Square Error (RMSE) values for air temperature vs. surface temperature in the central

months of each season.

Month Extent (˚C) < 2˚C (%) 2–4˚C (%) 4–6˚C (%) > 6˚C (%)

Jan. 0.43–12.14 44.05 44.43 9.40 2.12

Apr. 0.45–14.70 19.02 31.21 35.22 14.55

Jul. 0.43–13.51 31.97 27.46 22.33 18.23

Oct. 0.40–13.05 20.31 48.75 24.96 5.97

https://doi.org/10.1371/journal.pone.0258549.t004

Fig 4. Spatial distribution of the Root Mean Square Error (RMSE) of air-temperature data (Ta) and surface-

temperature data for the Yellow River Basin.

https://doi.org/10.1371/journal.pone.0258549.g004
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spatial distribution; this is closely linked to the fact that these areas are located at low altitudes

in the basin plain that continuously receive light and heat (Fig 6).

The annual average temperature in the Yellow River Basin was generally high in the south

and east but low in the north and west. Additionally, the upper reaches exhibited the lowest

temperatures in the entire basin. Moreover, the annual average temperature in the basin

decreased with increasing latitude and elevation, and the lowest temperature in the basin was

observed in January, during which time the Mongolian high pressure is particularly strong,

and the temperature distribution varies with latitude. The temperature in the Inner Mongolia

Plateau in the upper reaches of the basin was significantly low, making this region another

low-temperature zone in the study area. Further, in the lower reaches of this river basin, the

terrain is relatively flat and the mainstream flows in a north-eastward direction. The influence

of cold air from the south-eastern parts of the East China Sea is greater in coastal areas than

inland regions. Therefore, the temperature was high in the upstream region and low in the

downstream region. Furthermore, owing to the effect of terrain and atmospheric circulation,

the average temperature in January in the Yellow River Basin was lower than that in other

parts of the world at the same latitude. This could be attributed to the fact that the Yellow

River Basin is greatly affected by the East Asian winter monsoon; thus, January is the coldest

month of the year in this basin. The temperature rose in February, reaching a maximum in

July, before declining again in August as the summer monsoon weakened. Thus, the annual

Fig 5. Spatial distribution of the NDVI change for the Yellow River Basin within the 2000–2015 period.

https://doi.org/10.1371/journal.pone.0258549.g005

Table 5. Results of geographically weighted regression analysis for the central months of each season (R2: Coeffi-

cient of determination; RMSE: Root Mean Square Error).

Statistical index Jan. Apr. Jul. Oct.

Sigma 0.81 1.09 1.01 0.83

R2 0.98 0.96 0.98 0.98

Adjusted R2 0.98 0.96 0.98 0.98

RMSE (˚C) 0.76 1.00 0.98 0.74

https://doi.org/10.1371/journal.pone.0258549.t005
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variation in temperature was steep and symmetrical, with spring temperatures slightly higher

than those in autumn. Therefore, the relationship between terrain and temperature in the

study area is highly complex.

Analysis of the mountain-mass effect in the Yellow River Basin. To quantitatively ana-

lyse the mountain-mass effect in the Yellow River Basin, the air temperatures of different geo-

morphic units in the Yellow River Basin were compared at the same altitude, and the air-

temperature differences were calculated. The average monthly air-temperature data corre-

sponding to altitudes of 5,000 and 5,500 m were extracted in accordance with Eq (6) (Fig 7),

and the air-temperature profile was created along the east–west direction at the same latitude

(Fig 6(d)). Specifically, the air-temperature differences at an altitude of 5,000 m are shown in

Table 7 and Fig 8. The air-temperature differences between the Loess Plateau and Jinji Moun-

tain in January and July were 6.86˚C and 1.74˚C, respectively, that between the Tibetan Plateau

Table 6. Site verification error for the central months of each season (R2: Coefficient of determination; RMSE:

Root Mean Square Error).

Month Residual Local R2 RMSE (˚C)

Range (˚C) -1.2–1.2˚C (%)

Jan. -3.19–1.33 92.45 0.003–0.87 0.63–0.80

Apr. -2.74–4.57 74.11 0.001–0.95 0.91–1.07

Jul. -5.91–4.00 66.22 0.001–0.96 0.87–1.07

Oct. -2.16–2.54 83.56 0.003–0.94 0.70–0.82

https://doi.org/10.1371/journal.pone.0258549.t006

Fig 6. Spatial distribution of mean air temperature (Ta) values for (a) Winter, (b) Spring, (c) Summer, and (d) Autumn.

https://doi.org/10.1371/journal.pone.0258549.g006
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and the Loess Plateau in July was 2.62˚C, and those between the Tibetan Plateau and Jinji

Mountain in January and July were 6.71˚C and 4.36˚C, respectively.

However, owing to the influence of the temperature lapse rate, the temperature in the Loess

Plateau in January was 0.15˚C higher than that in the Tibetan Plateau in the same month.

Additionally, the temperature of the Inner Mongolia Plateau in July was 2.45˚C higher than

that of the Tibetan Plateau, and 5.07˚C higher than that of the Loess Plateau. Further, the tem-

peratures of the Inner Mongolia Plateau in January and April were 0.69˚C and 2.94˚C higher

than those in Jinji Mountain, respectively. Therefore, the temperature lapse rate has an impor-

tant impact on the mountain-mass effect. Even though the temperature lapse rate varied sea-

sonally, higher terrains showed more prominent mountain-mass effects at the same latitude.

Thus, in the study area, the most prominent mountain-mass effect was observed in the Tibetan

Fig 7. Temperature profile at 5,000 m and 5,500 m in the Yellow River Basin: (a) January; (b) July.

https://doi.org/10.1371/journal.pone.0258549.g007
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Plateau, followed by the Loess Plateau. For the central month of each season, at a given alti-

tude, the temperature of the Tibetan Plateau was approximately 0–3˚C higher than that of the

Loess Plateau and approximately 3–7˚C higher than that of Jinji Mountain.

Moreover, owing to the influence of the temperature lapse rate, the mountain-mass effect

differed from one region to another. This study analysed the temperatures at altitudes of 5,000

and 5,500 m and the temperature differences throughout the basin, which revealed that the

macroscopic influence of large terrain on temperature distributions and changes can be signif-

icant over a wide range, and the local topography can result in major temperature differences

within a short distance. Comprehensive and accurate data on the factors affecting air tempera-

ture (e.g., soil temperature and humidity, vegetation cover, mountain-mass effect, slope topo-

graphic conditions, and precipitation) at the corresponding scales should be obtained in future

studies to improve our estimates of the mountain-mass effect.

Discussion

Characteristics and causes of the vertical temperature gradient

Owing to the scarcity of meteorological stations in the interior parts of the plateaus and large

mountain ranges, it is difficult to accurately express the rate of vertical temperature decline in

such areas. Particularly, the impact of the mountain-mass effect on the temperature of large

Table 7. Air and surface temperature differences between regions of the Yellow River Basin at an altitude of 5,000

m in the central months of each season.

Area Jan. Apr. Jul. Oct.

Tibetan Plateau -18.64 -2.17 6.01 -3.10

Loess Plateau -18.49 -4.66 3.39 -4.72

Mongolia Plateau -26.04 -9.32 8.46 -5.52

Jinji Mountain -25.35 -6.38 1.65 -6.29

ΔTTibetan Plateau-Loess Plateau -0.15 2.49 2.62 1.62

ΔTTibetan Plateau-Mongolia Plateau 7.40 7.15 -2.45 2.42

ΔTTibetan Plateau-Jinji Mts. 6.71 4.21 4.36 3.19

ΔTLoess Plateau-Jinji Mts. 6.86 1.72 1.74 1.57

ΔTLoess Plateau-Mongolia Plateau 7.55 4.66 -5.07 0.80

ΔTMongolia Plateau-Jinji Mts. -0.69 -2.94 6.81 0.77

https://doi.org/10.1371/journal.pone.0258549.t007

Fig 8. Temperature difference during the central months of each season at an altitude of 5,000 m.

https://doi.org/10.1371/journal.pone.0258549.g008
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plateaus and mountains hinders an accurate determination of the rate of vertical temperature

decline [51–54]. This implies that, to accurately estimate the temperature-increasing effect

according to the temperature values of different pressure surfaces from the sounding data, it is

helpful to show the complexity and variability of the vertical decline rate of air temperature in

different regions [55–58]. Therefore, in this study, we calculated the vertical decline rate of

temperature in each month based on the 16-year monthly average temperature of the eight

pressure surfaces (1,000, 925, 850, 700, 600, 500, 400, 300, 250 hPa) of NCEP and ECMWF

data (Table 8) [59]. As the temperature value corresponding to each air pressure surface repre-

sents the average temperature of a grid square with a horizontal resolution of 2.5 × 2.5, super-

posing these nine isobaric surfaces can reveal the temperature value of the eight air pressure

surfaces in each grid. However, not all areas have all eight air pressure surfaces. In high-alti-

tude plateaus, such as the Tibet Plateau, the initial air pressure on the ground may be less than

600 hPa [60]. Therefore, to accurately reflect the actual atmospheric temperature distribution,

the pressure-surface temperature data and the DEM were superimposed to remove the tem-

perature of the pressure surface estimated below the surface, retaining only the temperature

data corresponding to the pressure surface above the ground (Eq 13). From 500 to 100 hPa, a

gradual decrease in temperature was observed with height. Further, the cold source character-

istics in winter were more obvious in the Tibet Plateau, and the cooling trend of the Yellow

River Basin gradually weakened from west to east. As the degree of change of γT with height

differed, the values between the layers were also significantly different. Thus, the overall distri-

bution of γT in the middle and lower troposphere of the Yellow River Basin was high in the

west and low in the east, north, and south, with the value of γT increasing with height. More-

over, the distribution of isothermal gradients was densest at the junction of the Tibet Plateau

and Loess Plateau. In summer, the γT on the Tibetan Plateau showed the most drastic changes,

with the most significant variation with height observed in winter. Additionally, γT appeared

weaker in summer than in winter at low latitudes, but stronger in summer than in winter at

mid–high latitudes. The troposphere in the Loess Plateau, Mongolia Plateau, and Jinji Moun-

tain is larger than that in the Tibetan Plateau. This indicates that the troposphere temperature

in non-plateau areas is not affected by the plateau topography. It was also observed that the

degree of decrease in γT with height was greater in non-plateau areas than in the plateau area.

Furthermore, in winter and spring, changes in γT were more susceptible to cold air or other

factors, and the overall trend of T in non-plateau regions was weaker and less significant than

that in plateau regions. The vertical change in the temperature gradient over the plateau area

showed very obvious seasonality.

Temperature lapse rate in the Yellow River Basin

The rate of vertical temperature decline is key to determining the geographical distribution of

temperature, and is an important measure for predicting the height distribution of vegetation

Table 8. Lapse rates for the mean air temperature of different reanalysis data at the regional scale (˚C/100 m).

Area ECWMF NCEP

Spring Summer Autumn Winter Spring Summer Autumn Winter

Tibetan Plateau -0.36� -0.35� -0.35� -0.36� 0.04 0.04� 0.03 0.02�

Loess Plateau -0.41� -0.44� -0.31� -0.30� -0.17� -0.16� -0.13� -0.14�

Mongolia Plateau -0.36� -0.39� -0.31� -0.30� 0.07 0.02 0.09� 0.18�

Jinji Mountain -0.27� -0.29� -0.22� -0.16� -0.01 -0.02� -0.01 -0.02

� denotes the 95% confidence level.

https://doi.org/10.1371/journal.pone.0258549.t008
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via the application of bioclimatic indicators. It also plays an important role in many fields,

including forest management, agriculture, and ecology). In previous studies, fixed vertical tem-

perature decline rates, e.g., 0.6˚C/100 m and 0.61˚C/100 m, were used to establish a daily tem-

perature grid [61], calculate the climate indicators related to the upper and lower limits of a

species, and analyse the eco climatic characteristics of the forest line [40]. However, due to the

influence of macro factors, such as altitude, latitude, and sea-land distribution, as well as local

factors, such as inversion and cold lakes, determining the spatial distribution of the vertical

temperature decline rate is extremely complicated. From coastal to inland regions, the vertical

temperature decline rate in January and July, as well as the annual average in China, first

decreases, then increases, then decreases gradually [62].

If a fixed vertical decline rate is used to estimate the temperature in different regions, a

large error may be generated. For example, in Sichuan, which is located in Leshan City, at an

altitude of 424 m, the hottest monthly average temperature is 25.9˚C (GHCN, average value

corresponds to the 1950–2000 period). Moreover, based on a vertical temperature decline rate

of 0.6˚C/100 m, it is estimated that the temperature of the hottest month in Mount Emei

(3,049 m a.s.l.), which is only 37 km from Leshan City, is 10.15˚C. However, the actual average

temperature during the hottest month at this mountain is 12.31˚C (GHCN, the average value

in 1951–2000). Furthermore, the temperature of the hottest month in Linzhi (3,000 m a.s.l.) is

16.7˚C (~1950–2000, annual average). Based on a vertical temperature decline rate of 0.6˚C/

100 m, the estimated temperature of Nyingchi Sejila Mountain Forest Line (4,300 m a.s.l.) is

8.9˚C, whereas the hottest monthly temperature at the forest line according to the records of

Sejila Mountain Meteorological Station is 9.4˚C [63].

The near-surface-temperature lapse rate based on data from surface weather stations can

provide a certain reference for the spatial interpolation of temperature. However, in the west-

ern mountainous area, especially the Tibetan Plateau, the meteorological stations are sparsely

distributed, and the elevation is not representative. Thus, the temperature lapse rate in differ-

ent elevation ranges may differ significantly. Therefore, extra care should be taken when using

the temperature lapse rate.

Additionally, the difference in slope aspect and the mountain-mass effect can also cause dif-

ferences in the rate of temperature decline. The influence of slope aspect and mountain-mass

effect can be further considered on the basis of comprehensive natural zoning.

Limitations of the study

The mountain-mass effect is a thermal effect caused by the higher elevation of the ground sur-

face in mountainous regions than in the surrounding lowlands, which leads to higher tempera-

tures and higher vertical belt boundaries in mountainous areas. Therefore, the temperature

difference between the interior and exterior of mountain ranges should be an ideal indicator

of the magnitude of the mountain-mass effect. However, many factors affect this temperature

difference, including atmospheric and geographic factors of various scales.

It is implied that the height of the ground surface is the root cause of the mountain-mass

effect, the temperature difference is the climatological mechanism, and the vertical zone height

difference determines the performance of vegetation. Moreover, dry and wet climates in

mountainous areas affect the temperature and height of the vegetation distribution. In other

words, temperature differences between mountainous and non-mountainous areas at the

same altitude not only depend on the height of the ground surface, but also on the general cli-

mate. Thus, the mountain-mass effect is not strictly equivalent to the temperature difference as

it also depends on several other factors.

PLOS ONE Estimation of the air temperature and the mountain mass effect in the Yellow River Basin

PLOS ONE | https://doi.org/10.1371/journal.pone.0258549 October 21, 2021 16 / 20

https://doi.org/10.1371/journal.pone.0258549


Further, although the temperature difference appears to have the greatest influence on the

mountain-mass effect, there are several uncertainties related to calculation of the temperature

difference. For example, the temperature difference between a certain point in a mountainous

area and the free atmosphere at the same altitude in a non-mountainous area can only be esti-

mated using the vertical decline rate. Moreover, the temperature values corresponding to

mountainous areas have considerable errors owing to the scarcity and limited access of meteo-

rological stations. Furthermore, the height difference of vertical zones based on the tempera-

ture difference adds more uncertainty due to differences in ground material, terrain slope,

plant species, etc.

Although this study focused on the estimation of mean values, the method proposed herein

can also be applied to determine daily maximum, minimum, and average temperatures. Addi-

tionally, more variables (e.g., NDVI, precipitation, and albedo) should be considered in future

research to explore their effect on the accuracy of model estimation.

Conclusions

Time series and regression analyses of MODIS land surface-temperature and air-temperature

data showed similar temporal variations for these two temperatures and a good correlation

between these data. Therefore, MODIS surface-temperature data can be used to estimation the

temperature in mountainous areas. The results of the geographically weighted regression anal-

ysis with MODIS surface temperature and altitude as independent variables showed that the

GWR method, combined with meteorological data, MODIS surface-temperature data, and

DEM data, allows the accurate estimation of air temperature in the Yellow River Basin. We

also compared NMICD, CRU, and APHRODITE data. Considering the resolution of these

three different data products and the results of their accuracy estimation tests, NMICD data

were selected in this study. Although CRU and APHRODITE data were still highly effective

for surface temperature estimation, these datasets exhibited lower accuracy. Additionally, the

downscaling method was employed to improve the applicability of these two types of data.

Temperature estimates in the Yellow River Basin over 12 months were used to obtain the

temporal variation of temperature in the study area. It was observed that the temperature lapse

rate played an important role in estimating the mountain-mass effect, which could not be

accurately estimated based on a fixed temperature lapse rate of the average temperature. Fur-

thermore, the spatial distribution pattern of the temperature lapse rate and the mountain-mass

effect was used to effectively express the change in temperature trends for plateaus, mountains,

basins, and other geomorphic areas that are greatly affected by mountains. Generally, at the

same altitude and latitude, the Tibetan Plateau had a higher temperature than the Loess Pla-

teau and Jinji Mountain. However, these regions exhibited different sensitivities of air temper-

ature and land-surface temperature to local and surface energy; thus, the temperature lapse

rate was unstable. This implies that the constant environmental lapse rate typically assumed in

previous studies (0.65˚C/100 m) is inappropriate for the Yellow River Basin. In summary, we

employed meteorological data and corresponding MODIS surface-temperature data, regres-

sion analysis of DEM data, and verification of the results using meteorological station-based

data to estimate relatively accurate temperatures for the Yellow River Basin and determine

regional differences in the mountain-mass effects. This research provides a foundation for

quantifying the ecological effects of mountainous plateaus.
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