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Abstract 
In this paper, based on the dynamic relationship between algae and protozoa, 
an aquatic ecological model with Allee effect was established to investigate 
how some ecological environment factors affect coexistence mode of algae 
and protozoa. Mathematical derivation works mainly gave some key condi-
tions to ensure the existence and stability of all possible equilibrium points, 
and to induce the occurrence of transcritical bifurcation and Hopf bifurca-
tion. The numerical simulation works mainly revealed ecological relationship 
change characteristics of algae and protozoa with the help of bifurcation dy-
namics evolution process. Furthermore, it was also worth emphasizing that 
Allee effect had a strong influence on the dynamic relationship between algae 
and protozoa. In a word, it was hoped that the research results could provide 
some theoretical support for algal bloom control, and also be conducive to 
the rapid development of aquatic ecological models. 
 

Keywords 
Algae, Protozoa, Allee Effect, Bifurcation, Relationship 

 

1. Introduction 

As everyone knows, lake eutrophication is a natural process and a stage of lake 
evolution. However, a common phenomenon associated with lake eutrophica-
tion is that many phytoplankton, especially those with buoyancy or mobility, 
usually multiply in large numbers to form algal blooms, which can cause a series 
of serious water environment problems [1] [2]. Therefore, the cause, harm and 
control measures of algal blooms have become one of the important environ-
mental issues concerned by the academic community. 

There are many organisms in nature that can inhibit algal growth, mainly in-
cluding: cyanobacteria virus (algaphage), alginolytic bacteria, protozoa, fungi 
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and actinomycetes [3] [4] [5] [6]. At the same time, protozoa are an important 
link in aquatic food chain, many protozoa can eat algae, and some even take al-
gae as their only food [7]. A large number of studies have shown that the decline 
of algal biomass is often accompanied by a sharp increase in the number of pro-
tozoa, considering the environmental adaptability, reproductive ability, algal con-
trol efficacy, host range, adaptability to host changes of various algal control bi-
ological factors, scholars believe that protozoa are a control factor with great ap-
plication prospects [7] [8] [9]. The paper [10] mainly focused on the dispute and 
consensus of non classical biological manipulation technology dominated by silver 
carp and bighead carp. The paper [11] pointed out that silver and bighead carps 
were just suitable for controlling cyanobacteria bloom by comparison with the 
increasing of blue-green algae’s proportion and the forming of microcystis bloom 
within the enclosures without fish. The paper [12] constructed a new aquatic eco-
logical model to understand the dynamic relationship between Microcystis aeru-
ginosa and filter-feeding fish, which could indirectly show the algae control ef-
fect of filter-feeding fish. The paper [13] proposed an aquatic amensalism model 
to explore the inhibition mechanism of algicidal bacteria on algae. In general, the 
use of protozoa to control algal blooms is a brand-new control idea, which is 
worth our in-depth exploration. 

The Allee effect is an ecological concept with roots that go back at least to 
the 1920s, and fifty years have elapsed since the last edition of a book by W.C. 
Allee, the father of this process in the paper [14]. The paper [15] pointed out 
that Allee effect is divided into weak Allee effect and strong Allee effect, weak 
Allee effect refers to the unit individual growth rate at low densities, increasing 
with population density and always positive, with the population showing a 
positive growth trend, strong Allee effect refers to the unit individual growth 
rate at low density, increasing with population density but negative below a crit-
ical value, when population density below that becomes negative and tends to 
extinction. The paper [16] investigated sufficient conditions for the existence of 
coexisting solutions from the strong and weak Allee effects. The paper [17] es-
tablished a predation-prey system with Allee effects to study the stability analysis 
of nonspatial systems and obtain the existence of Hopf branching at coexisting 
equilibrium points and the stability of branching periodic solutions. The paper 
[18] shown that the model with strong Allee effect has at most two positive equi-
librium point in the first quadrant, while the model with weak Allee effect has at 
most three positive equilibrium point in the first quadrant. The paper [19] dis-
cussed the impacts of Allee effect on co-existence, stability, bistability and bifur-
cations, and pointed out that the introduction of Allee effect could induce more 
rich dynamics and compel the model to be more sensitive to initial population 
densities. The paper [20] pointed out that the model with strong Allee effect 
could exhibit multiple stability in the first quadrant, and the model with weak 
Allee effect could undergo saddle knot bifurcation, Hopf bifurcation and Bog-
danov-Takes bifurcation in the first quadrant. In short, with more and more 
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examples of Allee phenomenon in natural ecology, more and more researchers 
pay attention to Allee effect, then more and more excellent achievements will 
appear in the near future. 

Other arrangements of this paper are as follows: In the second section, an aq-
uatic ecological model with Allee effect is built to describe the ecological rela-
tionship between algae and protozoa. In the third section, the existence and sta-
bility of all possible equilibrium points are studied. In the fourth section, the 
possible bifurcation dynamic behavior of the model (2.2) is mainly explored. In 
the fifth section, relevant dynamic simulation tests are carried out to verify the 
feasibility of theoretical results and demonstrate the evolution trend of popula-
tion coexistence mode. In the sixth section, we mainly give the main conclusions 
and make some explanations. 

2. Ecological Mathematical Modeling 

At present, it is of special significance to apply ecological models to study the 
problem of biological algae control, this is because that ecological model can 
form three basic of studying biological system, namely: trophic level analysis, 
system perspective and dynamic view [21] [22], which can improve the under-
standing of the ecological interactions between populations and their depen-
dence on internal and external conditions [23] [24]. The paper [12] proposed a 
new aquatic ecological model to explore the aggregation behavior of algae popu-
lation. According to the modeling framework of this new aquatic ecological 
model, we will propose an aquatic ecological model to characterize the dynamic 
relationship between algae and protozoa (protozoa can feed on algae), which can 
be described as follow: 

( )

( )

1
1 1

1

1 1
2 2

d 1 ,
d

d ,
d

N g PN N Nr N m N
T K N a c N g

N g PP r P m P
T c N g

α

β α

 − 
= − − −   + + −  


− = + − + −

          (2.1) 

where ( )N T  and ( )P T  are density of algae population and protozoa respec-
tively, r1 is maximum growth rate of algae population, K1 is maximum environ-
mental capacity for algae population, m1 is mortality rate of algae population, a 
is Allee effect coefficient, r2 is intrinsic growth rate of protozoa, c is saturation 
coefficient, m2 is mortality rate of protozoa, 1α  is capture rate of protozoa 
preying on algae, 1β  is energy conversion rate, and g is algal aggregation para-
meter. 

For simplicity, we will replace the model (2.1) with the following variable:  

1 1

1 1

1 2 1 1 2

1 1 1 1

, , , , ,

, , , , ,

r cy Kt gN cx P T p d
r c c

m r mam q b e n
r c r r r

α
β α

= = = = =

= = = = =
 

then the model (2.2) is obtained:  
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( )

( )

2d 1 ,
d 1

d .
d 1

x d yx x x mx
t x q p x d

ey x dy by ny
t x d

 − 
= − − −  + + −  

− = + − + −

             (2.2) 

For the model (2.2), the existence and stability of all possible equilibrium points 
will firstly be discussed. Then some critical conditions are given to demonstrate 
the occurrence of transcritical bifurcation and Hopf bifurcation. Finally, some 
numerical simulations were implemented to not only verify the feasibility of the 
theoretical results, but also dynamically evolve ecological dynamic relationship 
between algae and protozoa, which can abstract out ecological evolution signi-
ficance represented by bifurcation dynamic evolution behavior.  

3. Existence and Stability of All Possible Equilibrium Points 

In this section, we will explore the existence and stability of all possible equili-
brium points of the model (2.2), which represents the special dynamic relation-
ship between populations. 

To obtain all possible equilibrium points of the model (2.2), we list the fol-
lowing equations from the model (2.2):  

( )

( )

2

1 0,
1

0.
1

x d yx x mx
x q p x d

ey x d
by ny

x d

 − 
− − − =  + + −  
− + − = + −

               (2.3) 

It is easy to find that the model (2.2) has five possible equilibrium points: 
( )0 0,0E , ( )1 1,0E x , ( )2 2 ,0E x , ( )3 3 ,0E x , ( ),E x y∗ ∗ ∗ , where  

( ) ( )
1 2

1 1
0, 0,

2 2
m p m p

x x
− + ∆ − − ∆

= > = >  

( ) ( )2 2
3

1
0, 1 4 0.

2
p m

x m p mpq
−

= > ∆ = − − >  

According to the equation(2.3), the model(2.2) has one internal equilibrium 

point if n b> , b nd
b e n

−
>

+ −
 and 2 2x x x∗< < , where  

( ) ( ) ( )
( )( )

2 1
, .

x p x mpx x q x db nx d y
b e n x q x d p

∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗

 − − + + −−  = − =
+ − + −

 

Thus, we can give Theorem 1, which is mainly the critical condition for the 
existence of all possible equilibrium points. 

Theorem 1 1) The boundary equilibrium point ( )0 0,0E  always exists. 
2) The boundary equilibrium point ( )1 1,0E x  and ( )2 2 ,0E x  exist if and 

only if 
( )21

4
m p

q
m

−
<  and 0 1m< < . 

3) The boundary equilibrium point ( )3 3 ,0E x  exists if and only if  
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( )21
4
m p

q
m

−
=  and 0 1m< < . 

4) The internal equilibrium point ( ),E x y∗ ∗ ∗  exists if and only if n b> , 

b nd
b n e

−
>

− +
 and 2 1x x x∗< < . 

Because the stability of the equilibrium point is determined by the properties 
of the eigenvalues of its Jacobian matrix, the stability of each equilibrium point is 
discussed, thus we can get that the Jacobi matrix of the model (2.2) is  

( )
( ) ( )

( )
( )

3 2

2 2

2

2 3 2
11

.

11

x p q x pqx y x dm
x dp x q x d

J
e x dey b n

x dx d

 − + − + −
− − − 

+ −+ + − 
=  − + − + −+ − 

 

On the based of the Jacobi matrix, we can obtain Theorem 2-6, which mainly 
explore the types and stability of all equilibrium points. 

Theorem 2 Under the premise of n b> , we have 

1) If 0b n e− + >  and 1d >  or 0e b n+ − <  and 1 b nd
e b n

−
< <

+ −
 hold, 

( )0 0,0E  is a saddle. 

2) If 1d <  or 0e b n+ − <  and b nd
e b n

−
>

+ −
 hold ( )0 0,0E  is a stable 

node. 
Proof. The Jacobi matrix of the ( )0 0,0E  is: 

0

1 .
0

1

E

dm
dJ

edb n
d

 − −=  
 − − − 

 

Apparently, the Jacobi matrix of 
0EJ  has two characteristic roots,  

1 0mλ = − < , 2 1
edb n

d
λ = − −

−
. Under the premise of n b> , it is easy to know 

that if 0b n e− + >  and 1d >  or 0e b n+ − <  and 1 b nd
e b n

−
< <

+ −
 hold, 

the boundary equilibrium point ( )0 0,0E  is a saddle; if 1d <  or 0e b n+ − <  

and b nd
e b n

−
>

+ −
 hold, the boundary equilibrium point ( )0 0,0E  is a stable 

node. 
Theorem 3 Under the premise of n b> , we have 

1) If 
( )21

4
p m

q
m
−

<  and 
( )1

11
e x d

n b
x d
−

> −
+ −

 hold, the boundary equilibrium 

point ( )1 1,0E x  is a saddle. 

2) If 
( )21

4
p m

q
m
−

<  and 
( )1

11
e x d

n b
x d
−

< −
+ −

 hold, the boundary equilibrium 
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point ( )1 1,0E x  is a stable node. 

Proof. The Jacobi matrix of the boundary equilibrium point ( )1 1,0E x  is: 

( )

( )
( )

( )1 1

3 2
1 1 1 1

2
11

,0
1

1

2 3 2
1

.

0
1

E x

x p q x pqx x dm
x dp x q

J
e x d

b n
x d

 − + − + −
− − 

+ −+ =  − + − + − 

 

Then, the Jacobi matrix of ( )1 1 ,0E xJ  has two characteristic roots,  

( )
( )

( )3 2
1 1 1 1

1 22
11

2 3 2
, .

1
x p q x pqx e x d

m b n
x dp x q

λ λ
− + − + −

= − = + −
+ −+

 

Firstly, we will analyze the positive and negativity of 1λ . It is easy to know 
that ( )2

1 0p x q+ >  and 1x  satisfies ( )2
1 11 0x p m x mpq+ − + = , we put it in 

1λ  and sort it out.  

( ) ( ) ( )
( )

2 2 2 2
1

1 2
1

1 3 1 2 1
.

m p m pq x mpq mp m q

p x q
λ

 − − + − + + − =
+

 

According to 
( )21

4
p m

q
m
−

< , and  

( )
1

1
0,

2
m p

x
− + ∆

= >  

therefore  

( ) ( ) ( ) ( ) ( ) ( )
22

2 2 2 2
1

1 1
1 3 1 2 1 0,

8
p m m

m p m pq x mpq mp m q
m

− + − − + − + + − < − ∆ <   

so 1 0λ < . 
Secondly, we analyze the positive and negativity of 2λ . Through calculation, 

we can get that if 
( )21

4
p m

q
m
−

<  and 
( )1

11
e x d

n b
x d
−

> −
+ −

 hold, we have 2 0λ > , 

then the boundary equilibrium point ( )1 1,0E x  is a saddle; If 
( )21

4
p m

q
m
−

<  

and 
( )1

11
e x d

n b
x d
−

< −
+ −

 hold, we have 2 0λ < , then the boundary equilibrium 

point ( )1 1,0E x  is a stable node. 

Theorem 4 Under the premise of n b> , we have 

1) If 
( )21

4
p m

q
m
−

< , 1
3

m ≠  and 
( )2

21
e x d

n b
x d
−

> −
+ −

 hold, the boundary 

equilibrium point ( )2 2 ,0E x  is a saddle. 

2) If 
( )21

4
p m

q
m
−

< , 1
3

m ≠  and 
( )2

21
e x d

n b
x d
−

< −
+ −

 hold, the boundary equi-

librium point ( )2 2 ,0E x  is a stable node. 

Proof. The Jacobi matrix of the boundary equilibrium point ( )2 2 ,0E x  is 
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( )

( )
( )

( )2 2

3 2
2 2 2 2

2
22

,0
2

2

2 3 2
1

.

0
1

E x

x p q x pqx x dm
x dp x q

J
e x d

b n
x d

 − + − + −
− − 

+ −+ =  − + − + − 

 

Then, the Jacobi matrix of ( )2 2 ,0E xJ  has two characteristic roots,  

( )
( )

( )3 2
2 2 2 2

1 22
22

2 3 2
, .

1
x p q x pqx e x d

m b n
x dp x q

λ λ
− + − + −

= − = + −
+ −+

 

Firstly, we will analyze the positive and negativity of 1λ , because  
( )2

2 0p x q+ > , owing to 2x  satisfies ( )2
2 21 0x p m x mpq+ − + = , we put it in 

1λ  and sort it out, we can get  

( ) ( ) ( )
( )

2 2 2 2
2

1 2
2

1 3 1 2 1
.

m p m pq x mpq mp m q

p x q
λ

 − − + − + + − =
+

 

1) If 1 0λ > , then ( ) ( ) ( )( )2 2 2 2
21 3 1 2 1m p m pq x mpq mp m q − − + − > − + −  . 

a) If ( ) ( )2 21 3 1 0m p m pq − − + − >  , then ( ) ( )23 1 1m q m p− > − ,  

( )
( ) ( )

2 2

2 2 2

2 1

1 3 1

mpq mp m q
x

m p m pq

 − + − >
− − + −

. 

i) When 10
3

m< < , 
( )21

0
3 1

p m
q

m
−

< <
−

 contradicts 0q > . 

ii) When 1 1
3

m< < , 
( )21

0
3 1

p m
q

m
−

> <
−

 has no intersection with  

( )21
0

4
p m

q
m
−

< < , so there is no solution. 

b) If ( ) ( )2 21 3 1 0m p m pq − − + − <  , we have ( ) ( )23 1 1m q m p− < − ,  

( )
( ) ( )

2 2

2 2 2

2 1

1 3 1

mpq mp m q
x

m p m pq

 − + − <
− − + −

, also because 
( )

2

1
2

m p
x

− − ∆
= , therefore, it 

must be satisfied that  

( ) ( )
( ) ( )

2 2

2 2

1 2 1
0.

2 1 3 1

m p mpq mp m q

m p m pq

− − ∆ + −
+ <
− − + −

 

It can be deformed  

( ) ( ) ( ) ( )

( ) ( )

2 2

2

1 1 3 1 4 2 1
0

2 1 3 1

m p m p m q mq mpq m

m p m q

  − − ∆ ⋅ − − + − + + −    <
 ⋅ − − + − 

 

for ( ) ( )21 3 1 0m p m q − − + − <  . So it needs to be proved that  

( ) ( ) ( ) ( )2 21 1 3 1 4 2 1 0,m p m p m q mq mpq m  − − ∆ ⋅ − − + − + + − >     

simplified the upper type  

( )( ) ( )24 1 0,mq m p p q− − ⋅ + >  
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because ( ) 0p q+ > , and ( )24 1 0mq m p− − > , 
( )21

4
p m

q
m
−

>  contradicts 

( )21
0

4
p m

q
m
−

< < , so 1 0λ < . 

2) If 1 0λ < , then ( ) ( ) ( )( )2 2 2 2
21 3 1 2 1m p m pq x mpq mp m q − − + − < − + −  , 

a) If ( ) ( )2 21 3 1 0m p m pq − − + − >  , then 
( )

( ) ( )

2 2

2 2 2

2 1

1 3 1 0

mpq mp m q
x

m p m pq

 − + − <
− − + − <

, 

it contradicts 2 0x > . 

b) If ( ) ( )2 21 3 1 0m p m pq − − + − <  , we have ( ) ( )23 1 1m q m p− < − ,  

( )
( ) ( )

2 2

2 2 2

2 1

1 3 1

mpq mp m q
x

m p m pq

 − + − >
− − + −

, also because 
( )

2

1
2

m p
x

− − ∆
= , therefore, it 

must be satisfied that  

( ) ( )
( ) ( )

2 2

2 2

1 2 1
0.

2 1 3 1

m p mpq mp m q

m p m pq

− − ∆ + −
+ >
− − + −

 

It can be deformed  

( ) ( ) ( ) ( )

( ) ( )

2 2

2

1 1 3 1 4 2 1
0

2 1 3 1

m p m p m q mq mpq m

m p m q

  − − ∆ ⋅ − − + − + + −    >
 ⋅ − − + − 

 

for ( ) ( )21 3 1 0m p m q − − + − <  . So it needs to be proved that  

( ) ( ) ( ) ( )2 21 1 3 1 4 2 1 0,m p m p m q mq mpq m  − − ∆ ⋅ − − + − + + − <     

simplified the upper type  

( )( ) ( )24 1 0,mq m p p q− − ⋅ + <  

because ( ) 0p q+ > , ( )24 1 0mq m p− − < , so 
( )21

4
p m

q
m
−

< , therefore, this 

situation is true. On account of ( ) ( )23 1 1m q m p− < − , 

i) When 10
3

m< < , so 
( )21

0
3 1

p m
q

m
−

> <
−

 and 
( )21

0
4

p m
q

m
−

< < , they take 

the intersection to get 
( )21

0
4

p m
q

m
−

< < . 

ii) When 1 1
3

m< < , 
( )21

0
3 1

p m
q

m
−

< <
−

 and 
( )21

0
4

p m
q

m
−

< < , they take 

the intersection to get 
( )21

0
4

p m
q

m
−

< < . 

In a word, when 
( )21

0
4

p m
q

m
−

< <  and 1
3

m ≠  hold, we have 1 0λ < . 

Secondly, we analyze the positive and negativity of 2λ . When 
( )21

4
p m

q
m
−

<  
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and 
( )2

21
e x d

n b
x d
−

> −
+ −

 hold, the boundary equilibrium point ( )2 2 ,0E x  is a 

saddle. when 
( )21

4
p m

q
m
−

<  and 
( )2

21
e x d

n b
x d
−

< −
+ −

 hold, the boundary equili-

brium point ( )2 2 ,0E x  is a stable node. 

Theorem 5 Under the premise of n b> , we have 

1) If 
( )21

4
p m

q
m
−

<  and 
( )3

31
e x d

n b
x d
−

> −
+ −

 hold, the boundary equilibrium 

point ( )3 3 ,0E x  is a saddle. 

2) If 
( )21

4
p m

q
m
−

<  and 
( )3

31
e x d

n b
x d
−

< −
+ −

 hold, the boundary equilibrium 

point ( )3 3 ,0E x  is a stable node. 

Proof. The Jacobi matrix of the boundary equilibrium point ( )3 3 ,0E x  is  

( )

( )
( )

( )3 3

3 2
3 3 3 3

2
33

,0
3

3

2 3 2
1

.

0
1

E x

x p q x pqx x d
m

x dp x q
J

e x d
b n

x d

 − + − + −
− − 

+ −+ =  
− + − + − 

 

It is easy to obtain that the Jacobi matrix of ( )3 3 ,0E xJ  has two characteristic 
roots,  

( )
( )

( )3 2
33 3 3

1 22
32

2 3 2
, .

1
e x dx p q x pqx

m b n
x dp x q

λ λ
−− + − +

= − = + −
+ −+

 

Firstly, we will analyze the positive and negativity of 1λ , because 3x  satisfies 
( )2

3 31 0x p m x mpq+ − + =  and ( )2
3 31x p m x mpq= − − − , we put it in 1λ  and 

sort it out, we can get  

( ) ( ) ( )
( )

2 2 2 2
3

1 2
3

1 3 1 2 1
.

m p m pq x mpq mp m q

p x q
λ

 − − + − + + − =
+

 

Owing to 
( )

3

1
2
m p

x
−

= , simplified  

( ) ( ) ( )2 2 2 2
31 3 1 2 1m p m pq x mpq mp m q − − + − + + −  , we can get  

( )
( )

4 3

1 2
3

1
0

m p

p x q
λ

− −
= <

+
, so 1 0λ < . 

Secondly, we analyze the positive and negativity of 2λ . When 
( )21

4
p m

q
m
−

=  

and 
( )3

31
e x d

n b
x d
−

> −
+ −

 hold, the boundary equilibrium point ( )3 3 ,0E x  is a 

saddle. When 
( )21

4
p m

q
m
−

= , and 
( )3

31
e x d

n b
x d
−

< −
+ −

 hold, the boundary equi-

librium point ( )3 3 ,0E x  is a stable node. 
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Theorem 6 Under the condition of the internal equilibrium point  
( ),E x y∗ ∗ ∗ , 

1) If ( ) 0EDet J
∗
> , ( ) 0ETr J

∗
<  hold, the internal equilibrium point  

( ),E x y∗ ∗ ∗  is a stable node(focus). 
2) If ( ) 0EDet J

∗
> , ( ) 0ETr J

∗
>  hold, the internal equilibrium point  

( ),E x y∗ ∗ ∗  is an unstable node(focus). 
Proof. The Jacobi matrix of the internal equilibrium point ( ),E x y∗ ∗ ∗  is,  

( )

( )
( ) ( )

( )

3 2

2 2

,

2 3 2
11

0
1

E x y

x p q x pqx y x dm
x dp x q x d

J
e x d

b n
x d

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗∗ ∗

∗

∗

 − + − + −
− − − 

+ −+ + − =  − + − + − 

 

where b nx d
b e n∗

−
= −

+ −
, 

( ) ( ) ( )
( )( )

2 1x p x mpx x q x d
y

x q x d p
∗ ∗ ∗ ∗ ∗

∗
∗ ∗

 − − + + − =
+ −

. The fol-

lowing characteristic equation is obtained as follow  

( )
( ) ( )

( )

3 2
2

2 2

2

2 3 2

1

0,
1 1

x p q x pqx y m
p x q x d

x d ey
x d x d

λ λ∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

 − + − +
− − − ⋅ 

+ + −  
−

+ ⋅ =
+ − + −

 

and  

( ) ( )1 2 1 2, ,E ETr J Det Jλ λ λ λ
∗ ∗
= + =  

here  

( )
( )2 ,

1 1
E

x d eyDet J
x d x d∗

∗ ∗

∗ ∗

−
= ⋅

+ − + −
 

for 0y∗ > . Then we can get  
2

,
x mpx pxq

mp
∗ ∗ ∗− − +

<  

for  

( )
( ) ( )

3 2

2 2

2 3 2
.

1

x p q x pqx yT m
p x q x d

∗ ∗ ∗ ∗

∗ ∗

− + − +
= − −

+ + −
 

Thus if ( ) 0EDet J
∗
> , ( ) 0ETr J

∗
<  hold, the internal equilibrium point  

( ),E x y∗ ∗ ∗  is a stable node(focus); if ( ) 0EDet J
∗
> , ( ) 0ETr J

∗
>  hold, the in-

ternal equilibrium point ( ),E x y∗ ∗ ∗  is an unstable node(focus). 

4. Local Bifurcation Analysis 

In this section, we will choose parameter d as a bifurcation control parameter to 
investigate the bifurcation dynamics evolution characteristics of the model (2.2), 
and give the threshold conditions for transcritical bifurcation and Hopf bifurca-
tion of the model (2.2). 
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4.1. Transcritical Bifurcation 

Theorem 7 1) The model (2.2) undergoes a transcritical bifurcation at the 

equilibrium point ( )1 1,0E x  when 1 1TC
b nd d x

b e n
−

= = +
+ −

. 

2) The model (2.2) undergoes a transcritical bifurcation at the equilibrium 

point ( )2 2 ,0E x  when 2 2TC
b nd d x

b e n
−

= = +
+ −

. 

3) The model (2.2) undergoes a transcritical bifurcation at the equilibrium 

point ( )3 3 ,0E x  when 3 3TC
b nd d x

b e n
−

= = +
+ −

. 

Proof: 

1) On the basis of the Theorem 3, when 1 1TC
b nd d x

b e n
−

= = +
+ −

, the Jacobi 

matrix of the equilibrium point 1E  is 

( )
( )1

3 2
1 1 1 1

2
11

2 3 2
1 ,

0 0
TCE

x p q x pqx x dm
x dJ p x q

 − + − + −
− − 

+ −= + 
 
 

 

suppose V and W are eigenvectors of 
1TCEJ  and 

1

T
TCEJ , then  

1 1

T0 , 0 .
TC TCE EJ V V J W W= ⋅ = ⋅  

Then we can get  

( )
( )

1

11
3 2
1 1 12

2
1

1

2

1
,

2 3 2

0
.

1

x d
x dv

V
x p q x pqxv

m
p x q

w
W

w

− 
 + −   = =   − + − +  − 

+  
   

= =   
  

 

Due to  

( )
( )

( ) ( )1 1

2
1

1 1
2

2

;

1 0
; ,

0
1

TC

d
d TC

d

E d

y
x dF

F E d
F ey

x d

 
 + −    = = =    −     

+ −  

 

so  

( )
( )

( )
( )
( )

( )
( )
( )

1 1

1 1 1
1 1

22 2 ;

3 2
1 1 1

2 2
1 1

3 2
1 1 1

2 2
1 1

;

2 3 21
1

,
2 3 2

1

x y

x y
TC

d d

d TC
d d E d

F F v
DF E d V

vF F

x p q x pqx
m

x d p x q

x p q x pqxe m
x d p x q

   
=    
    

  − + − +
  −

  + − +  =
  − + − +−   −

  + − +  
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( )( )

( )

( ) ( )

( )

1 1

2 2 2
1 1 1

1 1 1 2 2 22 2
2

1 1 2 2 2
2 2 2

1 1 1 2 2 22 2
;

3 2 2 2
1 1 1

1 1 1 23 2
1 1

1 22
1

2
; ,

2

2 6 6 2 2
1

.
2

1

TC

d TC

E d

F F Fv v v v v v
x yx y

D F E d V V
F F Fv v v v v v

x yx y

x qx q x pq v v v v
p x q x d

e v v
x d

 ∂ ∂ ∂
+ + ∂ ∂∂ ∂ =  ∂ ∂ ∂

 + +
∂ ∂∂ ∂  

 − − − +
− 

+ + − =  
 
 + − 

 

Thus, we can reach the following conclusions:  

( ) [ ]T
1 1

0
; 0,1 0,

0d TCW F E d  
= = 

 
 

( )

( )
( )
( )

T
1 1

3 2
1 1 1

2 2
1 1

;

2 3 2
0,

1

d TCW DF E d V

x p q x pqxe m
x d p x q

  
 − + − +−  = − ≠
 + − + 

 

( )( )

( )
( )

( )
( )

T 2
1 1

3 2
1 1 1 1

3 2
1 1

; ,

2 2 3 2
0.

1

d TCW D F E d V V

e x d x p q x pqx
m

x d p x q

  
 − − + − +
 = − ≠
 + − + 

 

According to Sotomayors theorem, when 1 1TC
b nd d x

b e n
−

= = +
+ −

, then the 

model (2.2) undergoes a transcritical bifurcation at the equilibrium point  
( )1 1,0E x . 

2) On the basis of the Theorem 4, we next prove that the model (2.2) will un-
dergo a transcritical bifurcation at the equilibrium point ( )2 2 ,0E x . When 

2 2TC
b nd d x

b e n
−

= = +
+ −

, the Jacobi matrix of the equilibrium point 2E  is  

( )
( )2

3 2
2 2 2 2

2
22

2 3 2
1 ,

0 0
TCE

x p q x pqx x dm
x dJ p x q

 − + − + −
− − 

+ −= + 
 
 

 

suppose V and W are eigenvectors of 
2TCEJ  and 

2

T
TCEJ , then  

2 2

T0 , 0 ,
TC TCE EJ V V J W W= ⋅ = ⋅  

then  

( )
( )

2

21 1
3 2
2 2 22 2

2
2

1 0
, .

2 3 2 1

x d
x dv w

V W
x p q x pqxv w

m
p x q

− 
 + −      = = = =      − + − +     − 

+  

 

Owing to  
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( )
( )

( ) ( )2 2

2
1

2 2
2

2

;

1 0
; ,

0
1

TC

d
d TC

d

E d

y
x dF

F E d
F ey

x d

 
 + −    = = =    −     

+ −  

 

and  

( )
( )

( )
( )
( )

( )
( )
( )

2 2

1 1 1
2 2

22 2 ;

3 2
2 2 2

2 2
2 2

3 2
2 2 2

2 2
2 2

;

2 3 21
1

,
2 3 2

1

x y

x y
TC

d d

d TC
d d E d

F F v
DF E d V

vF F

x p q x pqx
m

x d p x q

x p q x pqxe m
x d p x q

   
=    
    

  − + − +
  −

  + − +  =
  − + − +−   −

  + − +  

 

( )( )

( )

( ) ( )

( )

2 2

2 2 2
1 1 1

1 1 1 2 2 22 2
2

2 2 2 2 2
2 2 2

1 1 1 2 2 22 2
;

3 2 2 2
2 2 2

1 1 1 23 2
2 2

1 22
2

2
; ,

2

2 6 6 2 2
1

,
2

1

TC

d TC

E d

F F Fv v v v v v
x yx y

D F E d V V
F F Fv v v v v v

x yx y

x qx q x pq v v v v
p x q x d

e v v
x d

 ∂ ∂ ∂
+ + ∂ ∂∂ ∂ =  ∂ ∂ ∂

 + +
∂ ∂∂ ∂  

 − − − +
− 

+ + − =  
 
 + − 

 

we can obtain  

( ) [ ]T
2 2

0
; 0,1 0,

0d TCW F E d  
= = 

 
 

( )

( )
( )
( )

T
2 2

3 2
2 2 2

2 2
2 2

;

2 3 2
0,

1

d TCW DF E d V

x p q x pqxe m
x d p x q

  
 − + − +−  = − ≠
 + − + 

 

( )( )

( )
( )

( )
( )

T 2
2 2

3 2
2 2 2 2

3 2
2 2

; ,

2 2 3 2
0.

1

d TCW D F E d V V

e x d x p q x pqx
m

x d p x q

  
 − − + − +
 = − ≠
 + − + 

 

According to Sotomayors theorem, when 2 2TC
b nd d x

b e n
−

= = +
+ −

, then the 

model (2.2) undergoes a transcritical bifurcation at the equilibrium point  
( )2 2 ,0E x . 

3) On the basis of the Theorem 5, we will prove that the model (2.2) will un-
dergo a transcritical bifurcation at the equilibrium point ( )3 3 ,0E x . When 

3 3TC
b nd d x

b e n
−

= = +
+ −

 holds, the equilibrium point ( )1 1,0E x  and ( )2 2 ,0E x  

will coincide as an equilibrium point, here the Jacobian matrix at ( )3 3 ,0E x  is  
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( )
( )3

3 2
3 3 3 3

2
33

2 3 2
1 ,

0 0
TCE

x p q x pqx x d
m

x dJ p x q

 − + − + −
− − 

+ −= + 
 
 

 

suppose V and W are eigenvectors of 
3TCEJ  and 

3

T
TCEJ , then  

3 3

T0 , 0 ,
TC TCE EJ V V J W W= ⋅ = ⋅  

so  

( )
( )

3

31 1
3 2
3 3 32 2

2
3

1 0
, .

2 3 2 1

x d
x dv w

V W
x p q x pqxv wm

p x q

− 
 + −      = = = =      − + − +     − 
 + 

 

Because of  

( )
( )

( ) ( )3 3

2
1

3 3
2

2

;

1 0
; ,

0
1

TC

d
d TC

d

E d

y
x dF

F E d
F ey

x d

 
 + −    = = =    −     

+ −  

 

then, we can obtain  

( )
( )

( )
( )
( )

( )
( )
( )

3 3

1 1 1
3 3

22 2 ;

3 2
3 3 3

2 2
3 3

3 2
3 3 3

2 2
3 3

;

2 3 21
1

,
2 3 2

1

x y

x y
TC

d d

d TC
d d E d

F F v
DF E d V

vF F

x p q x pqx
m

x d p x q

x p q x pqxe m
x d p x q

   
=    
    

  − + − +
  −

  + − +  =
  − + − +−  −

  + − +  

 

( )( )

( )

( ) ( )

( )

3 3

2 2 2
1 1 1

1 1 1 2 2 22 2
2

3 3 2 2 2
2 2 2

1 1 1 2 2 22 2
;

3 2 2 2
3 3 3

1 1 1 23 2
3 3

1 22
3

2
; ,

2

2 6 6 2 2
1

.
2

1

TC

d TC

E d

F F Fv v v v v v
x yx y

D F E d V V
F F Fv v v v v v

x yx y

x qx q x pq
v v v v

p x q x d
e v v

x d

 ∂ ∂ ∂
+ + ∂ ∂∂ ∂ =  ∂ ∂ ∂

 + +
∂ ∂∂ ∂  

 − − − +
− 

+ + − =  
 
 + − 

 

Thus, we can get the following conclusions:  

( ) [ ]T
3 3

0
; 0,1 0,

0d TCW F E d  
= = 

 
 

( )

( )
( )
( )

T
3 3

3 2
3 3 3

2 2
3 3

;

2 3 2
0,

1

d TCW DF E d V

x p q x pqxe m
x d p x q

  
 − + − +−  = − ≠
 + − + 
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( )( )

( )
( )

( )
( )

T 2
3 3

3 2
3 3 3 3

3 2
3 3

; ,

2 2 3 2
0.

1

d TCW D F E d V V

e x d x p q x pqx
m

x d p x q

  
 − − + − +
 = − ≠
 + − + 

 

According to Sotomayors theorem, when 3 3TC
b nd d x

b e n
−

= = +
+ −

, then the 

model (2.2) undergoes a transcritical bifurcation at the equilibrium point  
( )3 3 ,0E x . 

4.2. Hopf Bifurcation 

According to the Theorem 6, the internal equilibrium point ( ),E x y∗ ∗ ∗  can lose 
its stability, hence the model (2.2) may occur a Hopf bifurcation under certain 
conditions. 

Theorem 8 Under the conditions of the Theorem 6, the internal equilibrium 
point E∗  can change its stability when the controlling parameter d passes 
through a critical value Hpd d= , then the model (2.2) will undergo a Hopf bi-

furcation, where ( ) 0
Hp

E d d
Tr J

∗ =
= .  

Proof: To determine the internal equilibrium point ( ),E x y∗ ∗ ∗  can change 
its stability by a Hopf bifurcation, we need to prove the cross-sectional condition 
of Hopf bifurcation: 

( ) ( )
( ) ( )

3 2

2 2

2 3 2
0,

1
E

x p q x pqx yTr J m
p x q x d∗

∗ ∗ ∗ ∗

∗ ∗

− + − +
= − − =

+ + −
 

( )
( ) ( )( ) ( )

3 2 3 2
*

2 2

2 3d 0,
d 1

Hp
Hp

E
d d d d

x pqx qx x pxTr J
q p x q p x d x q x d∗

∗ ∗ ∗ ∗

= ∗ ∗ ∗ ∗ =

 − + −   = + ≠   + + − + − 
 

hence the model (2.2) can occur a Hopf bifurcation at Hpq q= . 
Next, we discuss the stability of the limit cycle by computing the first Lyapu-

nov coefficient of the internal equilibrium point ( ),E x y∗ ∗ ∗ . Translating the 
origin of coordinates at this equilibrium point through the following transfor-
mation dx x x∗= − , dy y y∗= − ,  
we can obtain  

( )
( )

2 2 3 2 2 3
10 01 20 11 02 30 21 12 03

2 2 3 2 2 3
10 01 20 11 02 30 21 12 03

,

,
d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d

x x y x x y y x x y x y y P x y

y x y x x y y x x y x y y Q x y

α α α α α α α α α

β β β β β β β β β

 = + + + + + + + + +


= + + + + + + + + +





 

where  

( ) ( )
( )
( ) ( ) ( ) ( )

( )
( )
( ) ( ) ( )

2 3
* * * * *

10 012
* **

2
* * *

20 112 3 3 3
* * * *

22 3
* ** *

30 213 4 4 3
* * * *

02 12 03

2
, ,

11

2 1, ,
1 1

22 1, ,
1 1

0,

pqx qx x y x dm
p q x x dx d

q p x x y
p q x q x x d x d

x q p xq pq x y
p q x p q x x d x d

α α

α α

α α

α α α

− − + +
= + − =

− − −− −

+ −
= + − =

− − − − − −

− −− −
= + + =

− − − − − −

= = =
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and  

( )
( )

( )

( ) ( ) ( )

** *
10 01 202 3

** *

*
11 30 212 4 3

* * *

02 12 03

, , ,
11 1

, , ,
1 1 1

0,

e x dey eyb n
x dx d x d

eye e
x d x d x d

β β β

β β β

β β β

+−
= = − − =

− −− − − −

− −
= = =

− − − − − −

= = =

 

then ( ) ( ), , ,d d d dP x y Q x y  are power series in ( ),d dx y  with terms i j
d dx y  sa-

tisfying 4i j+ ≥ . 
Thus, the first Lyapunov coefficient is  

( ) ( ){

( ) ( ) ( )
( ) ( )( )

( ) ( )

2 2
10 10 11 11 02 02 11 10 01 11 20 11 11 023

2
01

2 2 2
10 11 02 02 02 10 10 02 20 02 10 01 20 20 02

2 2
01 20 20 11 20 01 10 10 11 02 11 20

2
10 01 10 10 03 01 30 10

3

2

2 2 2

2 2

3 2

l α β α α β α β α α β α β α β
α

β α α α β α β β α α α α α β β

α α β β β α β α β β α α

α α β β β α α α

− = + + + + +
∆

+ + − − − −

− + + − − 

 +

π

− + − ( ) ( ) }21 12 12 10 01 21α β α β α β + + −   

( )

( ) ( )
( )( )

2 2 2
10 10 11 10 01 11 20 11 10 01 203

2
01

2 2
01 20 20 11 20 11 20 01 10 10

2
10 01 10 01 30 10 21 01 21

3 2
2

2 2

3 2 .

α β α α α β α β α α α
α

α α β β β α α α β α

α α β α α α α α β

− = + + −
∆

− + − −

− + − + − 

π

 

If 0l < , the limit cycle is stable; if 0l > , the limit cycle is unstable. However, 
the expression for Lyapunov number l  is rather cumbersome, we cannot di-
rectly judge the sign of it, so we will give some numerical simulation results in 
section 5. 

Based on the mathematical theory, the existence and stability threshold condi-
tions of all possible equilibrium points of the model (2.2) are deduced, and some 
critical conditions for inducing transcritical bifurcation and Hopf bifurcation of 
the model (2.2) are explored, which can provide a theoretical basis for some 
numerical simulation works. Furthermore, it is also worth pointing out that the 
key parameter d has a serious effect on bifurcation dynamics of the model (2.2). 

5. Simulation Analysis and Results 

In order to verify the validity of theoretical results, find some key control para-
meters that can induce bifurcation dynamics of the model (2.2), and explore 
ecological interaction between algae and protozoa, some numerical simulations 
are given with parameter values 0.4n = , 0.2b = , 0.6e = , 0.1m = , 0.6q =  
and 2p = . From the equations 2.3, we can obtain that the dynamic relationship  

between algae x and protozoa y is 
( ) ( ) ( )

( )( )

2 1x p x mpx x q x d
y

x q x d p

 − − + + − =
+ −

. It is  

easy to find from Figure 1(b) that only when the algae density is greater than the 
value of d, the protozoa density can be positive, so the initial value of algae den-
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sity in numerical simulation is larger than the value of d. At the same time, the 
density of protozoa y can reach a limit value and a maximum value within the 
range of algae x density, which implies that there may be an oscillatory coexis-
tence mode between algae x and protozoa y. Furthermore, it is obvious to know 
from Figure 1(a) that the dynamic relationship between algae x and protozoa y 
is affected by the value of parameter d, thus, we can select parameter d as a con-
trol parameter of dynamic evolution process of the model (2.2). 

The bifurcation dynamic evolution processes of the model (2.2) are shown in 
Figures 2-5. It is clearly visible from Figure 2 that if the value of d is greater 
than a critical value 1.23TCd = , the boundary equilibrium point 1E  is locally 
asymptotically stable, the model (2.2) has no internal equilibrium point. How-
ever, if the value of d is less than a critical value 1.23TCd = , the boundary equi-
librium point 1E  loses stability and a new internal equilibrium point appears, 
this process implies that a transcritical bifurcation occurs, the detailed dynamic 
results are shown in Fi.3. Therefore, if the value of d is within the interval 
( ),Hp TCd d , the model (2.2) has a stable internal equilibrium point, that is, algae 
and protozoa have a steady-state coexistence mode. As the value of d gradually 
decreases and is lower than a key value 0.1882Hpd = , the internal equilibrium 
point loses stability and a limit cycle appears, which implies that the model (2.2) 
has a Hopf bifurcation dynamic behavior, the dynamic evolution process of 
Hopf bifurcation is shown in Figure 4 and Figure 5, which shows that algae and 
protozoa coexist in a periodic oscillation mode. At the same time, because the 
first Lyapunov coefficient is 0.046126845270109456077− Π , this limit cycle is 
stable. Furthermore, it is also worth emphasizing that when the value of para-
meter d gradually decreases from 1.5 to 0, the model (2.2) will undergo tran-
scritical bifurcation and Hopf bifurcation successively, which means that the 
coexistence mode of algae and protozoa has changed fundamentally, from a 
protozoan extinction mode to a steady-state coexistence mode, and finally to a 
stable periodic oscillatory coexistence mode. Therefore, it is worth pointing out 
that the value of parameter d seriously affects the coexistence of algae and pro-
tozoa. 

 

 
Figure 1. (a) Dynamic relationship between algae x, protozoa y and parameter d value; (b) 
Dynamic relationship between algae x and protozoa y with 0.1d = . 
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In order to investigate the influence mechanism of Allee effect on dynamic 
behavior of the model (2.2), we will select parameter q as a control parameter for 
relevant dynamic simulation experiments. It is relatively clear from Figure 6 and 
Figure 7 that the model (2.2) has a constant steady state and a stable periodic 

 

 
Figure 2. Bifurcation diagram of the model (2.2), here the red line indicates 
that the internal equilibrium point x∗  changes with the parameter d, the 
blue line and yellow line stand for the boundary equilibrium point 0x  and 

1x  with the parameter d value changing, respectively. Here 0x  and 1x  

represent the boundary equilibrium point ( )0 0,0E  and ( )1 1,0E x . The 

solid curve shows that the equilibrium point is stable, the cyan dotted curve 
shows that the equilibrium point is unstable, and the vertical dot dotted line 
indicates a critical value of the equilibrium point which can induce bifurca-
tion. More detailed, HP and TC are some critical values for the Hopf bifurca-
tion and transcritical bifurcation. Besides, the red dots are solid points, where 
the boundary equilibrium point ( )0,0  does not exist. 
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Figure 3. (a) If 1 1.23066238TCd d= = , then a transcritical bifurcation occurs, where the boundary equilibrium point ( )1 1,0E x  

and the equilibrium point ( ),E x y∗ ∗ ∗  coincide; (b) ( )1 1,0E x  is a saddle when 11.2 TCd d= < , which can separate an internal 

equilibrium point ( ),E x y∗ ∗ ∗ ; (c) ( )1 1,0E x  is a stable node when 1 1.25TCd d< = , and the internal equilibrium point ( ),E x y∗ ∗ ∗  

does not exist. 
 

 
 

 

Figure 4. (a) If 0.18821122Hpd d= = , then a Hopf bifurcation occurs at the internal equilibrium point ( ),E x y∗ ∗ ∗  and can 

generate a periodic solution; (b) Local magnification plot of (a); (c) ( ),E x y∗ ∗ ∗  is an unstable node (or spiral source)if 

0.16 Hpd d= < ; (d) ( )* * *,E x y  is a stable node (or spiral source) if 0.2Hpd d< = . 
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Figure 5. (a) Dynamic evolution diagram of Hopf bifurcation based on the change of parameter d value; (b) Local magnification 
plot of (a) when 0.1882Hpd d> = . 

 

 

Figure 6. (a) Time series of algae x with 1.5q = ; (b) Time series of protozoa y with 1.5q = ; (c) Phase diagram of algae x and 
protozoa y with 1.5q = . 

 

 
Figure 7. (a) Time series of algae x with 1.85q = ; (b) Time series of protozoa y with 1.85q = ; (c) Phase diagram of algae x and 
protozoa y with 1.85q = . 
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oscillation state, when the value of parameter q are 1.5 and 1.85 respectively, that 
is to say, the model (2.2) experiences a Hopf bifurcation dynamic behavior with 
the increase of parameter q value. Furthermore, this simulation result also indi-
rectly shows that the size of Allee effect seriously affects the coexistence mode of 
algae and protozoa. 

Based on the numerical simulation analysis, we first know that the model (2.2) 
has complex bifurcation dynamic behavior, mainly including transcritical bifur-
cation and Hopf bifurcation. Secondly, the algal population density gradually 
decreases with the transition from transcritical bifurcations to Hopf bifurcations. 
Finally, the value of key parameters of Allee effect seriously affects the coexis-
tence mode of algae and protozoa. 

6. Conclusions and Remarks 

In this paper, based on the dynamic relationship between algae and protozoa, an 
aquatic ecological model with Allee effect was established to explore bifurcation 
behavior and investigate how Allee effect affects the coexistence mode of algae 
and protozoa. Some key conditions were given to ensure the existence and sta-
bility of all possible equilibrium points, and induce the model (2.2) to have tran-
scritical bifurcation and Hopf bifurcation, which were theoretical basis for sub-
sequent numerical simulation and the necessary conditions for parameter esti-
mation value. 

Through numerical simulation, we can see that the model (2.2) has complex 
bifurcation dynamics. It can be seen from Figure 3 and Figure 4 that transcriti-
cal bifurcation could make algae and protozoa to transform from a protozoa 
gradual extinction coexistence mode to a steady-state coexistence mode, and 
Hopf bifurcation could force algae and protozoa to transform from a constant 
steady-state coexistence mode to a stable periodic oscillation coexistence mode, 
which implied that the ecological relationship between algae and protozoa had 
changed substantially. Furthermore, it was easy to know from Figure 6 and 
Figure 7 that the ecological relationship between algae and protozoa could 
change from a constant steady state to a periodic oscillatory steady state with the 
increase of key parameters of Allee effect, which showed that Allee effect se-
riously affected coexistence mode of algae and protozoa. 

Based on the theoretical analysis and numerical simulation results, it is worth 
pointing out that the algal aggregation behavior can change the coexistence 
mode of algae and protozoa, and the greater the algae population aggregation 
intensity, the more adverse to the permanent survival of protozoa, this research 
result is consistent with the fact that algae bloom is not conducive to the survival 
of protozoa. Furthermore, it should also be emphasized that algae population 
has Allee effect mechanism with small key value, which is conducive to form pe-
riodic oscillation coexistence mode of algae and protozoa. 

Although some theoretical and numerical simulation results have been ob-
tained in this study, there are still some deficiencies that need our follow-up re-
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search, such as: 1) the natural growth mode of protozoa is too simple, and the 
logistic growth function needs to be studied subsequently; 2) the influence of 
hydrodynamics on algae and protozoa should be considered in modeling dy-
namic process. However, it is hoped that the research results of this paper can 
play a theoretical supporting role in the study of aquatic ecological model.  
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