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ABSTRACT 
 

Industrial exploration using the Box Behnken Design (BBD) has been faced with a serious setback 
due to the swift upsurge in the runs size as the number of factors increase. This, therefore, 
dissuades researchers and affects the application of the design. The Small Box Behnken Designs 
(SBBD) which achieve the research goal of BBD were proposed to overcome the setback. This 
paper aimed at recommending an appropriate number of center points suitable for response 
surface exploration and its applications in industries using the SBBD. The method adopted for 
assessing the center points is the prediction variance-based G-efficiency optimality criterion. The 
range of design factors, k, considered is 3 to 11, while comparing the designs at 0 - 5 number of 
center points. For each of the design factors considered, the result showed that increasing the 

Original Research Article 



 
 
 
 

Kiwu et al.; Arch. Curr. Res. Int., vol. 22, no. 8, pp. 1-6, 2022; Article no.ACRI.85684 
 
 

 
2 
 

center point, decreases the G-efficiency value. Hence, increasing the center point does not 
contribute significantly to the prediction variance capability of the designs considered. However, in 
other to test the model lack of fit and estimate pure error which are very important in experimental 
design analysis, this study recommends that at most two runs (center points) be replicated at the 
center. Since with this number, approximately 90% G-efficiency can be achieved for response 
surface exploration using the SBBD. 
 

 
Keywords: Small box behnken design; center point; prediction variance; G-efficiency; optimality. 
 

1. INTRODUCTION 
 

Zhang et al. [1], developed the SBBD as an 
alternative to the BBD with the aim of achieving 
similar and effective result as BBD. The SBBD 
possesses reasonably high D-efficiency, much 
smaller runs size compared to BBD, and 
preserved the original orthogonality property of 
the BBD. Hence, the designs are preferred to 
BBD for fitting the second-order response 
surface model [2] investigated the percentage 
rotatability for evaluating the SBBD using the 
measure of rotatability introduced by Khuri 
(1988). They observed that factors k, the SBBD 
is rotatable for k = 3 factors, near rotatable for k 
= 4, 7 factors and not rotatable for k = 5, 6, 8, 9, 
10 and 11 factors. However, no work has been 
done on recommending the number of center 
points suitable for evaluating the SBBD and this 
form the basics for this work. 
 

Considering that all variables in the response 
surface model measurable, the expressions in 
(1) and (2) for first-order response surface model 
and second-order response surface model 
respectively are used to quantify the relationship 
between the controllable input parameters (xi) 
and the obtained response surfaces (T) in 
Response Surface Methodology. 
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where, ,T is an ,1N vector of responses, ,x is 

an ,PN  of the design matrix . The  and   

consist of coefficients of the design factors under 
consideration and errors term, with dimension

1P and 1N  respectively.  
 

2. OPTIMALITY CRITERIA 
 

It is important to note the fact that a design 
performs better than other designs under certain 

optimality criterion does not always guarantee 
that it will retain such performance when 
considered by other optimality criteria. Hence, to 
choose a design, attention will be on the choice 
of design evaluation criteria used. The common 
optimality criteria used in design evaluation are 
A-, D-, E- and G- optimality criteria, [4,5] in a 
comparative study of five varieties of CCDs - 
Central Composite designs (SCCD, RCCD, 
OCCD, Slope-R, FCC) in RSM, evaluated the 
performances of the designs using the D-, A-, G- 
and IV-optimality criteria. The results showed a 
reduction in the D- and G-optimality criteria, an 
increase in the A-optimality criterion while the IV-
optimality remain relatively the same of the 
CCDs in all the factors that were considered at 
different number of center points. [6], evaluate 
and compare the performances of three classes 
of Central Composite Design CCDs (CCCD, 
CCFD and CCID) using the A-, D-, and G-
efficiencies for factors, k, that ranges from 3 to 
10, with 0-5 center points. It was shown from the 
results that, for the three CCDs compared, the G-
efficiency outperformed other efficiency criteria 
employed for all the factors and center points 
considered. [7], applied the D- and G-optimal 
criteria on non-pure blends slope designs to 
study the second-order Kronecker model on 
Equally Weighted Simplex Centroid Axial Design 
and Un-equally Weighted Simplex Centroid Axial 
Design. It was shown from the result that the D- 
and G-optimality values performed better on both 
centroid compared. 

 
3. CENTER POINTS 
 
The center points are observations collected at 
the center of all factor ranges, 

). ..., ,2,1( ,0 kixi 
 
These replicated points at 

the center of all factors are among other things, 
used to calculate the pure error of second-order 
models, to check for curvature and to provide a 
measure of process stability and inherent 
variability: see [8]. According to [9], center points 
adds to the estimation of the coefficients of 
quadratic terms and are used to identify 
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curvature in the response. [10], opined that in 
other to avoid singularity in the information matrix 
of a design, effort should be to add center runs to 
the design so as to maintain favorable design 
qualities such as good prediction variance. [11], 
tested the effect of varying the number of center 
points on parameters estimation by employing 
the optimality criteria A-, D-, and E. [12] used 
integrated variance criterion to determine 
appropriate number of center points for response 
surface designs; he concluded that fewer center 
points are appropriate. [13] recommended 
different number of center point, ranging from 3 
to 12 for the Box Behnken Designs. [14], 
examined the contributions of center points on 

prediction variance performances on CCDs using 
the G-optimal, I optimal and FDS plots. It               
was discovered that the designs perform                 
better with or without replication (center          
points).  

 
4. EVALUATION OF THE APPROPRIATE 

NUMBER OF CENTER POINTS 
 
In this section, center points ranging from 0 to 5 
will be compared for design factors, k, ranging 
from 3 to 11, using the G-efficiency criteria. Let, 

    indicate the number of center points and ,N

the number of design runs. 

 
The expanded design matrix for SDDB for k = 3, with    = 0 is; 
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The G-efficiency is obtained by 
2

max

100


N
p

 , 

where,
 

2

max  is the maximum prediction 

variance, N is the number of design runs and 

P is the number parameters for each of the 
design considered. 
 
The same procedure was used to obtain the G-
efficiencies for all the factors at different center 
points. The results for the G-efficiency for 0 - 5 

center points for each of the factors under 
consideration are shown in Table 1. 
 
From Table 1, it could be seen that additional 
center points to each of the designs under 
consideration rather decreases the G-efficiency, 
hence, there is no need increasing the number of 
center points. However, for error estimation 
which is very important in experimental analysis, 
one or two center points are recommended since 
with this number, one can still achieve 
approximately 90% G-efficiency. 
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Fig. 1. Graphical assessment 
 

Table 1. Result of G-efficiency values for 0 – 5 center point 
 

K P N  xXXxMax )'('  
0n  1n  

2n  
3n  4n  

5n  

3 10 12 0.7500 111.11 102.56 95.24 88.89 83.33 78.43 
4 15 16 1 93.75 88.24 83.33 78.94 75.00 71.43 
5 21 24 0.8889 98.44 94.50 90.86 87.50 84.37 81.46 
6 28 32 0.9167 95.45 92.56 89.84 87.27 84.85 82.55 
7 36 40 1 90.00 87.81 85.71 83.72 81.82 80.00 
8 45 56 0.9670 83.10 81.64 80.23 78.87 77.56 76.29 
9 55 60 0.9333 98.22 96.61 95.05 93.54 92.08 90.66 
10 66 76 0.9153 94.88 93.65 92.45 91.28 90.13 89.02 
11 78 96 0.8967 90.61 89.68 88.76 87.86 86.99 86.12 

 
The graphical assessment of the G-efficiency             
at 0 to 5 center point, show a decrease                        
in the G-efficiency value as the center                      

point rises and this result was                          
consistent for all the factors under            
consideration.  
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5. CONCLUSION 
 

This study has examined the appropriate number 
of center points required for response surface 
exploration using the SBBD. It can be concluded 
from the result that as the number of center point 
rises from 0 - 5, the G-efficiency decreases. This 
finding is in agreement with the findings of [6], 
where the G-efficiency performed better than 
other alphabet based optimality criteria and in 
particular, the G-efficiency decreases as number 
of center pointer increases for CCFD. The 
implication of this finding suggests that 
increasing the center point does not contribute 
significantly to the prediction variance capability 
of the designs considered.   However, for the 
estimation of pure error and test of model lack of 
fit, this study recommends that at most two runs 
(center points) be replicated for response surface 
exploration using the Small Box Behnken 
Designs.  
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