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The Darcy-Forchheimer flow of a Williamson fluid over a Riga plate was analyzed in this paper. Energy and mass equations are
modeled with Cattaneo-Christov theory and double stratifications. The governing PDE models are altered into ODE models.
These models are numerically solved by MATLAB bvp4c and analytically solved by the homotopy analysis method. The impact
of governing flow parameters on fluid velocity, fluid temperature, fluid concentration, skin-friction coefficient, local Nusselt
number, and local Sherwood number is scrutinized via graphs and tables. We acknowledged that the speed of the fluid becomes
diminishes for more presence of porosity parameter. Also, we noted that the thermal and solutal boundary layer thicknesses are
waning due to their corresponding stratification parameters. In addition, the maximum decreasing percentage of skin friction is
obtained when the suction/injection parameter varies from 0.0 to 0.4 for Williamson and viscous fluids. The maximum
increasing percentage of local Nusselt number occurs when the suction/injection parameter varies from 0.4 to 0.8 for
Williamson and viscous fluids.

1. Introduction

Non-Newtonian fluids are extensively implemented in diverse
industrial processes such as petroleum drilling, drawing of plas-
tic films, fibre spinning, and food production. The Williamson
fluid model is one of the simplest non-Newtonian models to
replicate the viscoelastic shear-thinning attributes, see William-
son [1]. The flow of thermally radiative Williamson fluid on a
stretching sheet with chemical reaction was disclosed by Krish-
namurthy et al. [2]. They proved the fluid temperature falling
off due to the presence of the Williamson parameter. Khan
et al. [3] demonstrated the impact of slip flow of Williamson
nanofluid in a porous medium. They exposed that the surface

drag force suppresses due to rising the Williamson fluid
parameter. The 2D unsteady radiative Williamson fluid flow
on a permeable stretching surface was deliberated by Hayat
et al. [4]. They noticed that the fluid speed becomes slow when
theWilliamson parameter is high. Nadeem et al. [5] examined
the Williamson fluid flow past a stretching sheet, and they
found that the skin friction coefficient decreases with enhanc-
ing theWilliamson parameter.Make use of the Keller box pro-
cedure to solve the problem of MHD flow of Williamson fluid
over a stretching sheet by Salahuddin et al. [6]. Their outcome
shows that the Williamson fluid parameter leads to suppress
the fluid velocity. Few significant analysis for this area is seen
in Refs. [7, 8].
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Fluid flow over a porous medium is confronted in plenti-
ful applications in industry. Few applications are wood dry-
ing, nuclear waste storage, food processing, oil purifying,
drainage, and irrigation. Darcy’s principle is applied to ana-
lyze the flow behavior under the condition of small velocity
and low porosity. When the quantity of Reynolds number
overcomes unity, the Darcy principle was not applicable. For-
chheimer [9] defeated this limitation by inserting the square
velocity term in the momentum equation. After that, this is
known as the Forchheimer number, which is applicable for
working higher Reynolds number. Numerical analysis for a
Darcy-Forchheimer flow of viscous fluid over a plate was
inspected by Mukhopadhyay et al. [10]. They noted that the
permeability parameter leads to a decrease in the warmth of
the fluid. Hayat et al. [11] demonstrate the 3D Williamson
nanomaterial flow on a Darcy-Forchheimer porous medium.
They concluded that the surface shear stress diminishes for
growing the Forchheimer number. The Darcy-Forchheimer
flow of a viscous fluid with heterogeneous-homogeneous
chemical reactions was portrayed by Khan et al. [12]. Their
results clearly show that the fluid speed becomes slowdown
due to the availability of Darcy number. Haider et al. [13]
scrutinize the Darcy-Forchheimer and slip flow of hybrid
nanofluid on a rotating disk. They proved that the larger esti-
mation of Forchheimer enhances the fluid temperature.
Steady 3D Darcy-Forchheimer flow of carbon nanotubes on
a rotating disk was revealed by Sadiq et al. [14]. Some impor-
tant studies for these concepts are collected in Refs. [15–18].

The magnetic field plays a significant role in the develop-
ment of fluid thermophysical traits. The demeanour of
broadly used fluids like liquid metals, plasma, and electro-
lytes has a low conductor of electricity. Therefore, an external
agent is required to boost up the heat transfer attributes
through superior conductivity and thermophysical traits. A
magnetic bar with permanently fixed magnets and alternate
electronics, known as a Riga plate, can be acted as an external
agent to improve fluid electricity. This plate was introduced
by Gailitis and Lielausis [19]. Nanofluid flow over a Riga
plate was deliberated by Ahmad et al. [20]. Nazeer et al.
[21] inspected the chemically reacting Eyring-Powell nano-
fluid on a Riga plate. They proved that the fluid speed
enhances when enhancing the modified Hartmann number.
Chemically reacting Prandtl fluid on a Riga plate was
addressed by Gireesha et al. [22]. Their results show that
the velocity boundary layer thickens due to the more pres-
ence of the modified Hartmann number. Mehmood et al.
[23] performed the impact of Soret and Dufour effects of a
Casson fluid flow on a Riga plate with chemical reaction.
Ayub et al. [24], Nayak et al. [25], and Rasool et al. [26] are
few essential studies of fluid flow over a Riga plate.

Stratification is a natural process that combines two or
more fluids with different densities, temperatures, and con-
centrations. The double stratification occurs due to both the
heat and mass transfer differences. Cheng [27] examined
the mass and heat transfer analysis of a power-law fluid in
a stratified medium. He noticed that the heat transfer gradi-
ent declines for escalating the thermal stratification parame-
ter. The radiative flow of a hyperbolic tangent fluid with
chemical reaction and dual stratification’s in a porous

medium was elucidated by Khan et al. [28]. They found that
the fluid concentration downturns for the high magnitude of
the stratified thermal parameter. Rehman et al. [29] evaluated
the problem of a chemically reacting Williamson fluid with
dual stratification, and they have seen that the rate of heat
transfer rate is declined for the presence of thermal stratifica-
tion parameter. The impact of solutal and thermal stratifica-
tion of a Williamson nanofluid was deliberated by Khan et al.
[30]. It is noticed that the horizontal velocity suppresses
when the higher magnitude of the thermal stratification
parameter. Mallawi et al. [31] derived the series solution of
thermally radiative non-Newtonian fluid flow with double
stratifications. They have seen that the fluid concentration
depresses for enhancing the solutal stratification parameter.
Time-dependent MHD nanofluid flow with dual stratifica-
tions was performed by Hayat et al. [32]. They proved that
surface shear stress enriches for higher values of thermal
and solutal stratification parameters.

The aforementioned inspection announces that most of
the researchers are involved in revealing the nature of the
Darcy-Forchheimer flow with Cattaneo-Christov theory
through prescribed wall temperature but not analyzed dual
stratifications on a Riga plate. Therefore, our key argument
is to fulfill this gap. So, our study elucidates the outcome of
the Darcy-Forchheimer flow of a Williamson fluid in the
presence of double stratifications, thermal radiation, and
chemical reaction on a Riga plate. These types of outcomes
will be definitely helpful for a thermal engineer to modeling
the thermal systems. Here, the heat and mass transfer phe-
nomena are illustrated by the Cattaneo-Christov dual flux
model and the Riga plate is used to control the fluid flow.

2. Mathematical Formulation

Let us consider the 2D Darcy-Forchheimer flow of a
Williamson fluid on a Riga plate. Here, the surface tempera-
ture and the concentration are denoted by Tw and Cw which
are always larger than the free stream temperature T∞ and
the free stream concentration C∞, respectively, see
Figures 1(a) and 1(b). The thermal radiation and first-order
chemical reaction are taking into account. Flow situation is
manifested with double stratifications. The fluid phase is heat
consumption/generation. In addition, the heat and mass
transfer phenomenon is inspected through Cattaneo-
Christov dual models. The governing equations are modeled
as follows:
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where u, v is the velocity in x and y directions, ν is the kine-
matic viscosity, Γ is the time constant, J0 is the current den-
sity, ρ is the density of the fluid, M0 is the magnetization of
the magnet, a1 is the width of the magnet and the electrodes,
Cb is the drag coefficient, k2 is the permeability of porous
medium, T is the fluid temperature, λT is the relaxation time
of heat flux, α is the thermal diffusivity, Cp is the specific heat,
σ∗ is the Stefan-Boltzmann constant, k∗ is the mean absorp-
tion coefficient, Q is the heat generation/absorption coeffi-
cient, C is the fluid concentration, λC is the relaxation time
of mass flux, DB is the mass diffusivity, and k1 is the chemical
reaction parameter.

The boundary conditions are

u =Uw xð Þ, v = −Vw xð Þ, T = Tw = T0 + bx, C = Cw = C0 + cx, at y = 0,

u⟶ 0, ∂u
∂y

⟶ 0, T ⟶ T∞ = T0 + dx, C⟶ C∞ = C0 + ex at y⟶∞:

ð6Þ

Now, we consider the following dimensionless variables:
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By using (7), we can modify equations (2)–(4) as follows:
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Figure 1: Sketch of Riga plate (a) and physical configuration of the problem (b).
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the radiation parameter, S1 = d/b is the thermal stratification
parameter, Hg =Q/ρCpa is the heat absorption/generation
parameter, Γ1 = λTa is the heat relaxation time parameter,
Sc = ν/DB is the Schmidt number, Cr = k1/a is the chemical
reaction parameter, S2 = e/c is the solutal stratification
parameter, Γ2 = λCa is the mass relaxation time parameter,
and fw = −Vw/

ffiffiffiffiffi
aν

p
is the suction/injection parameter.

The corresponding boundary conditions are

f 0ð Þ = fw,
f ′ 0ð Þ = 1,
θ 0ð Þ = 1 − S1,
ϕ 0ð Þ = 1 − S2,

ð11Þ
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ð12Þ

The skin friction coefficient, local Nusselt number, and
local Sherwood number are expressed as
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ρU2
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;
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here, the wall shear stress, heat, and mass flux are as follows:
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The dimensionless form of the above parameters are
expressed as
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3. Solutions

3.1. Numerical Solution. In this section, the bvp4c solver has
been used for gaining the solution. In order to solve the prob-
lem, equations (8)–(10) are commuted into a system of first-
order differential equations with the boundary conditions
also modified in the same manner. For this, let us take

f = y1,
f ′ = y2,
f ′′ = y3,
θ = y4,
θ′ = y5,
ϕ = y6,
ϕ′ = y7:

ð16Þ
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Figure 2: h − curve with 18th order of approximation.

Table 1: Order of order approximations and CPU timing.

Order −f ′′ 0ð Þ −θ′ 0ð Þ −ϕ′ 0ð Þ CPU timings (sec.)

1 1.27000 1.21054 1.43054 0.58

5 134103 1.22687 1.45881 4.73

10 1.34290 1.22692 1.45860 33.06

13 1.34294 1.22692 1.45860 47.64

15 1.34294 1.22692 1.45860 139.76

20 1.34294 1.22692 1.45860 646.61

25 1.34294 1.22692 1.45860 2376.22

30 1.34294 1.22692 1.45860 7157.92
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The system of equations are

Table 2: Numerical and analytical computation of local skin friction coefficient, local Nusselt number, and local Sherwood number for
various values of We, λ, Fr, fw, and Ha.

We λ Fr fw Ha Skin friction coefficient Local Nusselt number Local Sherwood number
Numerical Analytical Numerical Analytical Numerical Analytical

0.0 0.2 0.4 0.3 0.3 -1.21627 -1.21624 2.06338 2.06344 1.46840 1.46841

0.1 -1.19072 -1.19070 2.05471 2.05477 1.46383 1.46385

0.2 -1.16263 -1.16259 2.04481 2.04487 1.45858 1.45860

0.3 -1.13089 -1.13083 2.03314 2.03319 1.45233 1.45235

0.4 -1.09319 -1.09164 2.01848 2.01859 1.44438 1.44442

0.5 -0.99995 -0.99998 1.99720 1.99782 1.43257 1.43294

0.2 0.0 0.4 0.3 0.3 -1.07827 -1.07818 2.07408 2.07422 1.47298 1.47303

0.1 -1.12135 -1.12130 2.05904 2.05913 1.46558 1.46561

0.2 -1.16263 -1.16259 2.04481 2.04487 1.45858 1.45860

0.3 -1.20228 -1.20225 2.03132 2.03136 1.45194 1.45195

0.4 -1.24046 -1.24042 2.01851 2.01853 1.44563 1.44564

0.5 -1.27728 -1.27725 2.00630 2.00634 1.43961 1.43964

0.2 0.2 0.0 0.3 0.3 -1.05656 -1.05652 2.06805 2.06811 1.47074 1.47076

0.3 -1.13706 -1.13702 2.05038 2.05043 1.46149 1.46151

0.5 -1.18763 -1.18758 2.03940 2.03945 1.45575 1.45576

0.8 -1.25946 -1.25942 2.02397 2.02406 1.44768 1.44773

1.0 -1.30495 -1.30544 2.01430 2.01498 1.44262 1.44322

0.2 0.2 0.4 -1.0 0.3 -0.68939 -0.68936 1.22935 1.22940 0.91349 0.91350

-0.5 -0.83580 -0.83579 1.47333 1.47339 1.07673 1.07675

0.0 -1.02546 -1.02543 1.79633 1.79639 1.29221 1.29223

0.5 -1.26411 -1.26408 2.24148 2.24153 1.59103 1.59105

1.0 -1.55195 -1.55182 2.88826 2.88923 2.03343 2.03242

0.2 0.2 0.4 0.3 0.0 -1.29871 -1.29869 1.99254 1.99255 1.43332 1.43333

0.5 -1.07378 -1.07374 2.07612 2.07619 1.47399 1.47401

1.0 -0.85646 -0.85641 2.14556 2.14568 1.50882 1.50886

1.5 -0.64420 -0.64411 2.20587 2.20586 1.53970 1.53989

2.0 -0.43568 -0.43431 2.25965 2.26084 1.56771 1.57081

y′1 = y2,
y′2 = y3,

y′3 =
y22 − y1y3 −Hae−βη + λy2 + Fry22

1 +Wey3
,
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y′5 =
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2
2 − y1y2y5 − y1y3y4 − S1y1y3

� �
1/Prð Þ 1 + 4/3ð ÞRð Þ − Γ1y

2
1

,
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2
2 − y1y2y7 − y1y3y6 − S2y1y3
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2
1

:

ð17Þ
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With the boundary conditions

y1 0ð Þ = fw,
y2 0ð Þ = 1,

y2 ∞ð Þ = 0,
y4 0ð Þ = 1 − S1,

y4 ∞ð Þ = 0,
y6 0ð Þ = 1 − S2,
y6 ∞ð Þ = 0:

ð18Þ

The above set of equations are numerically solved by
MATLAB built-in function bvp4c.

3.2. HAM Solution. The obtained ODE’s (8)–(10) with condi-
tions (11) are analytically solved by applying the HAM
scheme. Because this method is powerful tool for solving
nonlinear problems, see Sarwar and Rashidi [33]. Let the
initial approximations are chosen as f0ðηÞ = fw + 1 − 1/eη,
θ0ðηÞ = ð1 − S1Þ/eη, and ϕ0ðηÞ = ð1 − S2Þ/eη , and linear oper-
ators are Lf =D3 f −Df , Lθ =D2θ − θ, and Lϕ =D2ϕ − ϕ,
where D is the differential operator and the linear property is
Lf ½C1 + C2e

η + C3ð1/eηÞ� = 0 = Lθ½C4e
η + C5ð1/eηÞ� = Lϕ½C6e

η

+ C7ð1/eηÞ�, where Ckðk = 1 − 7Þ are constants.
After implementing the ith order HAM technique, we

found the following:

f i ηð Þ = f ∗i ηð Þ + C1 + C2e
η + C3

1
eη
,

θi ηð Þ = θ∗i ηð Þ + C4e
η + C5

1
eη
,

ϕi ηð Þ = ϕ∗i ηð Þ + C6e
η + C7

1
eη
:

ð19Þ

Here, f ∗i ðηÞ, θ∗i ðηÞ, and ϕ∗i ðηÞ are the particular solutions.
These HAM techniques have the parameters (hf , hθ, and

hϕ), and these are responsible for the convergence of solu-
tions, see Refs. [34–37]. Figure 2 portrays the range value of
hf , hθ, and hϕ are −1:3 ≤ hf ≤ −0:4, −1:6 ≤ hθ ≤ −0:25, and
−1:4 ≤ hϕ ≤ −0:35. We assign hf = hθ = hϕ = −0:9 for better
convergency.

4. Results and Discussion

Here, we revealed the results by graphs and tables which
describes the shift in velocity, temperature, concentration, skin
friction coefficient, local Nusselt number, and local Sherwood
number concerning the disparate values of the parameters,
such as Weissenberg number ðWeÞ, local porosity parameter
ðλÞ, Forchheimer number ðFrÞ, modified Hartmann number
ðHaÞ, thermal radiation parameter ðRÞ, thermal stratification
parameter ðS1Þ, heat generation/absorption parameter ðHgÞ,
heat relaxation time parameter ðΓ1Þ, chemical reaction
parameter ðCrÞ, solute stratification parameter ðS2Þ, mass
relaxation time parameter ðΓ2Þ, and the suction/injection

parameter ðfwÞ. The numerically obtained values are
compared with the results fetched by the analytical approach
by HAM.

Table 3: Numerical and analytical computation of local Nusselt
number for various values of R, Hg, S1, and Γ1.

R Hg S1 Γ1
Local Nusselt number

Numerical Analytical

0.0 -0.5 0.2 0.1 1.72351 1.72355

0.3 1.92821 1.92826

0.5 2.04481 2.04487

0.7 2.15002 2.15009

1.0 2.29156 2.29164

0.5 -0.5 0.2 0.1 2.04481 2.04487

-0.2 1.88531 1.88544

0.0 1.76494 1.94091

0.2 1.62586 1.62695

0.5 1.21530 1.27139

0.5 -0.5 0.0 0.1 2.33479 2.33481

0.2 2.04481 2.04487

0.4 1.75483 1.75492

0.6 1.46484 1.46498

0.8 1.17486 1.17503

1.0 0.88488 0.88508

0.5 -0.5 0.2 0.0 1.90591 1.90597

0.1 2.04481 2.04487

0.2 2.18818 2.18824

0.3 2.33609 2.33615

0.4 2.48859 2.48865

Table 4: Numerical and analytical computation of local Sherwood
number for various values of Cr, S2, and Γ2.

Cr S2 Γ2
Local Sherwood number

Numerical Analytical

-0.5 0.2 0.1 0.90317 0.89525

-0.2 1.06313 1.06391

0.0 1.14498 1.14517

1.5 1.31565 1.31568

1.0 1.45858 1.45860

1.0 0.0 0.1 1.69469 1.69469

0.2 1.45858 1.45860

0.4 1.22248 1.22250

0.6 0.98637 0.98640

0.8 0.75026 0.75030

1.0 0.51416 0.51421

1.0 0.2 0.0 1.37297 1.37298

0.1 1.45858 1.45860

0.2 1.54716 1.54718

0.3 1.63881 1.63884

0.4 1.72399 1.73363
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Table 1 provides the HAM order and CPU timings. From
this table, we concluded that 13th order is sufficient for all
profiles. Table 2 delineates the changes of skin friction coeffi-
cient, local Nusselt number, and local Sherwood number for
the distinct values ofWe, λ, Fr, Ha, and fw. We noted that the
surface shear stress upsurges when heightening the We and
Ha values and it declines for enhancing the λ, Fr, and fw
values. The local Nusselt and Sherwood numbers reduce for
raising the We, λ, and Fr, and it rises for increasing the Ha
and fw. Table 3 describes the influence of R, Hg, S1, and Γ1
over the heat flux. The heat transfer gradient decimates when
developing the Hg and S1 values, and it grows when growing

the R and Γ1 values. Table 4 helps to figure out the shift of
mass flux for the various values of Cr, S2, and Γ2. The mass
transfer rate escalates for the enriching values of Cr and Γ2,
and it suppresses for increasing S2 values. Also, we proved
that our numerical and analytical results are almost same.

Figures 3(a) and 3(b) establish the impact of fw (a) and
Ha (b) on velocity profile for DFRP and NDFRP. We uncov-
ered that the fluid speed aggravates due to more presence of
Hartmann number and quite the opposite behavior is
obtained for the fw parameter. The MBLT is high in NDFRP
compared to DFRP for both parameters. The outcomes for
disparate values of Ha and R on temperature profile are
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Figure 3: The velocity profile for disparate values of fw (a) and Ha (b).
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Figure 4: The temperature profile for disparate values of Ha (a) and R (b).
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illustrated in Figures 4(a) and 4(b) for DFRP and NDFRP (a)
and heat consumption/generation (b). We ascertained that
the fluid temperature dwindles because of the high quantity
of Hartmann number. However, it is enhanced for raising the
radiation parameter. Figures 5(a) and 5(b) explains the changes
of fluid temperature for distinct values of S1 (a) and Γ1 (b) for
heat generation/consumption fluid. We revealed that the fluid
warmness becomes subsides for hike values of S1 and Γ1. In
addition, the thermal boundary layer thickness is large in the
heat generation case compared to the heat consumption case.
The significance of S2 and Γ2 on concentration profile on
destructive chemical reaction and the generative chemical reac-
tion is plotted in Figures 6(a) and 6(b). We ascertained that the
fluid concentration lessens for large values of S2 and Γ2.

The variations of SFC for distinct combination of fw and
Ha (a) for DF flow (lower plate) and NDF flow (upper plate)
and (b) for DF flow ofWilliamson fluid (upper plate) and vis-
cous fluid (lower plate) are portrayed in Figures 7(a) and
7(b). We found that the plate shear stress depresses for
enhancing values of fw, and it raises for rising the values of
Hartmann number. Figures 8(a) and 8(b) disclose the
changes of LNN for disparate combination of fw and Ha
(a) for DF flow (lower plate) and NDF flow (upper plate)
and (b) for DF flow ofWilliamson fluid (lower plate) and vis-
cous fluid (upper plate). We noted that heat transfer gradient
escalates for increasing the values of fw and Ha. The alterna-
tions of LNN for various combination of (a) fw and Γ1 with
Hg = −0:5 (upper plate) and Hg = 0:5 (lower plate) and (b)
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Figure 5: The temperature profile for disparate values of S1 (a) and Γ1 (b).
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Figure 6: The concentration profile for disparate values of S2 (a) and Γ2 (b).
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fw and S1 with Hg = −0:5 (upper plate) and Hg = 0:5 (lower
plate) are plotted in Figures 9(a) and 9(b). We noticed that
the heat transfer gradient upgrades for the available of fw,
and it weakens for high quantity of S1 and Γ1. In addition,
the larger heat transfer gradient occurs in heat consumption
case compared to heat generation case. Figures 10(a) and
10(b) express the LSN variation with respect to the distinct
combination of fw and Ha (a) for DF flow (upper plate)
and NDF flow (lower plate) and (b) for DF flow of William-
son fluid (upper plate) and viscous fluid (lower plate). We
proved that the mass transfer gradient slashes due to larger
values of fw and Ha. The deviation of LSN for different com-
bination of (a) fw and Γ2 with generative chemical reaction
(upper plate) and destructive chemical reaction (lower plate)
and (b) fw and S2 with generative chemical reaction (upper
plate) and destructive chemical reaction (lower plate) is

shown in Figures 11(a) and 11(b). We concluded that the
LSN declines for upgrading the values of fw, Γ2, and S2.

The decrement percentage of SFC for various values of fw
on Williamson fluid and viscous fluid is plotted in
Figures 12(a) and 12(b) and observed that the maximum
decreasing percentage of surface shear stress is obtained
when fw varies from 0.0 to 0.4 for both fluids. Figures 13(a)
and 13(b) give the increment percentage of LNN for various
values of fw on Williamson fluid and viscous fluid. The max-
imum increment percentage has occurred when fw vary from
0.4 to 0.8 for both fluids. The decrement percentage of LSN
for various values of fw onWilliamson fluid and viscous fluid
is illustrated in Figures 14(a) and 14(b), and we have seen
that the maximum decrement percentage occurred when fw
varies from 0.4 to 0.8 for both fluids. Figures 15(a) and
15(b) display the decrement/increment percentage of LNN

0.4

0.2

0.00.5

0.0

1

2

3

−0.5

fw

1Γ

Re√

Nu

(a)

0.4

0.2

0.00.5

0.0

0

1

2

−0.5

fw

S1

Re√

Nu

(b)

Figure 9: The variations of LNN for distinct combination of (a) fw and Γ1 withHg = −0:5 (upper plate) andHg = 0:5 (lower plate) and (b) fw
and S1 with Hg = −0:5 (upper plate) and Hg = 0:5 (lower plate).
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Figure 10: The variations of LSN for distinct combination of fw andHa (a) for DF flow (upper plate) and NDF flow (lower plate) and (b) for
DF flow of Williamson fluid (upper plate) and viscous fluid (lower plate).

10 Advances in Mathematical Physics



0.3

0.1

0.2

0.00.5

0.0

0

5

10

−0.5

fw

Re√

Sh

2 Γ

(a)

0.3

0.1

0.2

0.00.5

0.0

10

5

0

15

−0.5

fw

Re√

Sh

S2 

(b)

Figure 11: The variations of LSN for distinct combination of (a) fw and Γ2 with generative chemical reaction (upper plate) and destructive
chemical reaction (lower plate) and (b) fw and S2 with generative chemical reaction (upper plate) and destructive chemical reaction (lower
plate).

fw = − 0.4 fw = 0.0 fw = 0.4 fw = 0.8

fw

−25

−20

−15

−10

−5

SFC (%)

DFRP
DFSP

NDFRP
NDFSP

(a)

fw = − 0.4 fw = 0.0 fw = 0.4 fw = 0.8

fw

−25

−20

−15

−10

−5

SFC (%)

DFRP
DFSP

NDFRP
NDFSP

(b)
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for various values of S1 and LSN for various values of S2. We
concluded that the heat transfer gradient enhances in heat
generation case and maximum increment percentage is
obtained when S1 varies from 0 to 0.2 and it suppresses in
heat consumption case and maximum decrement percentage
is obtained when S1 varies from 0.8 to 1. The mass transfer
gradient enhances in destructive chemical reaction case and
maximum increment percentage is obtained when S2 varies
from 0.8 to 1, and it suppresses in the generative case and
maximum decrement percentage is obtained when S2 varies
from 0 to 0.2.

5. Conclusion

The current study figures out the Darcy-Forchheimer flow
of the Williamson fluid over a Riga plate with Cattaneo-
Christov double diffusion and double stratification. The
solutions are fetched numerically by a bvp4c solver in
MATLAB and analytically by HAM. The outcomes are
employed as follows:

(i) The fluid velocity drops when the suction/injection
parameter enriches

(ii) The larger values of the thermal radiation parameter
boost up the temperature

(iii) The high temperature is noticed in the heat genera-
tion case, and the low temperature is produced in
the heat absorption case

(iv) The generative chemical reaction case upturns the
fluid concentration while the destructive chemical
reaction case declines

(v) The high wall shear stress is produced when enlarg-
ing the modified Hartmann number
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