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The purpose of the present paper is to study the applications of Ricci curvature inequalities of warped product semi-invariant
product submanifolds in terms of some differential equations. More precisely, by analyzing Bochner’s formula on these
inequalities, we demonstrate that, under certain conditions, the base of these submanifolds is isometric to Euclidean space. We
also look at the effects of certain differential equations on warped product semi-invariant product submanifolds and show that
the base is isometric to a special type of warped product under some geometric conditions.

1. Introduction

Bishop and O’Neill [1] evaluated the geometry of manifolds
having negative curvature and noticed that Riemannian
product manifolds do have nonnegative curvature. As a
result, they came up with the recommendation of warped
product manifolds, which are described as follows.

Consider two Riemannian manifolds ðL1, g1Þ and ðL2,
g2Þ with corresponding Riemannian metrics g1 and g2 and
ψ : L1 ⟶ R be a positive differentiable function. If x and y
are projection maps such that x : L1 × L2 ⟶ L1 and y : L1
× L2 ⟶ L2, which are defined as xðm, nÞ =m and yðm, nÞ
= n∀ðm, nÞ ∈ L1 × L2, then, �L = L1 × L2 is called warped
product manifold if the Riemannian structure on L satisfies

g �E, �F
� �

= g1 x∗�E, x∗�F
� �

+ ψ ∘ xð Þ2g2 y∗�E, y∗�F
� �

, ð1Þ

for all �E, �F ∈ T�L: The function ψ represents the warping
function of Ln1T × L2: The Riemannian product manifold is a
special case of warped product manifold in which the warp-
ing function ψ = 1. The study of Bishop and O’Neill [1]
revealed that these types of manifolds have a wide range of
applications in physics and theory of relativity. It is well

known that the warping function is the solution of some par-
tial differential equations; for example, the Einstein field
equation can be solved by the approach of warped product
[2]. The warped product is also applicable in the study of
space time near black holes [3].

On the other hand, the analysis of differential equation
on Riemannian manifolds yields some important geometric
and isometric intrinsic properties. It is well known that cate-
gorization of differential equation has a major influence on
the global analysis of Riemannian manifolds. Tanno [4]
explored various aspects of differential equations on
Riemannian manifolds in 1978. The approach of differential
equations was used by the authors [5, 6] to describe the
Euclidean sphere. These calculations demonstrated that a
nonconstant function λ on a complete Riemannian manifold
ðUn, gÞ satisfies the differential equation as follows:

∇2λ + kg = 0, ð2Þ

if and only if ðUn, gÞ is congruent to Euclidean space Rn,
where k is constant.

Furthermore, under some geometric conditions, Garcia-
Rio et al. [6] proved that the Riemannian manifold is isomet-
ric to the warped product U × f R, where U is a complete
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Riemannian manifold, R is the Euclidean line, and f is the
warping function. Moreover, warping function f is the solu-
tion of the following differential equation:

d2 f
dt2

+ μ1 f = 0, ð3Þ

if and only if there exists a nonconstant function ϕ : Un

⟶ Rwith an eigenvalue λ1 < 0,which satisfies the following
differential equation:

Δϕ + μ1ϕ = 0: ð4Þ

The categorization of differential equations on
Riemannian manifolds turns into an attractive research
subject that has been explored by various researchers, for
example, [7–11].

Al-Dayel et al. [7] recently investigated the effect of the
differential equation (3) on the Riemannian manifold
ðLn, gÞ using the concircular vector field, showing that the
Riemannian manifold ðLn, gÞ is isometric to the Euclidean
manifold Rn. By using the gradient conformal vector field,
Chen et al. [12] discovered that the Riemannian manifold
ðLn, gÞ is isometric to the Euclidean space Rn. However, it
has been shown in [13] that the complete totally real subma-
nifold in CPn (complex projective space) with bounded Ricci
curvature satisfying (4) is isometric to a special form of
hyperbolic space.

Latterly, Ali et al. [8] characterized warped product
submanifolds in Sasakian space form by the approach of
differential equation. The purpose of this paper is to study
the impact of differential equation on warped product
semi-invariant product submanifolds in the framework of
generalized Sasakian space form.

2. Preliminaries

A ð2k + 1Þ-dimensional C∞-manifold �L is said to have an
almost contact structure if there exists on �L a tensor field ϕ
of the type ð1, 1Þ, a vector field χ, and a 1-form η satisfying

ϕ2 = −I + η ⊗ χ,
ϕχ = 0,

η ∘ ϕ = 0,
η χð Þ = 1:

ð5Þ

On an almost contact metric manifold �L, there is always a
Riemannian metric g that meets the following requirements:

η Eð Þ = g E, χð Þ,
g ϕE, ϕFð Þ = g E, Fð Þ − η Eð Þη Fð Þ,

ð6Þ

for all E, F ∈ T�L:

An almost contact metric manifold is said to be nearly
Sasakian manifold, if

�∇Eϕ
� �

F + �∇Fϕ
� �

E = −2g E, Fð Þχ + η Fð ÞE + η Eð ÞF, ð7Þ

for all E, F ∈ T�L:
In [14], Alegre et al. gave the concept of generalized

Sasakian space form as that an almost contact metric mani-
fold ð�L, f , χ, η, gÞ whose curvature tensor �R satisfies

�R E, F,G,Wð Þ = ϕ1 g F,Gð Þg E,Wð Þ − g E,Gð Þg F,Wð Þ½ �
− ϕ2 g ϕE,Gð Þg ϕF,Wð Þ − g ϕE,Wð Þg ϕF,Gð Þ½
+ 2g ϕE, Fð Þg ϕG,Wð Þ� − ϕ3 η Gð Þ η Fð Þg E,Wð Þf½
− η Eð Þg G,Wð Þg + η Wð Þ η Eð Þg F,Gð Þ − η Fð Þg E,Gð Þf g�,

ð8Þ

for any vector fields E, F,G,W and certain differentiable
functions ϕ1, ϕ2, ϕ3 on �L: A generalized Sasakian space form
with functions ϕ1, ϕ2, ϕ3 is denoted by �Lðϕ1, ϕ2, ϕ3Þ. If ϕ1 =
ðc + 3Þ/4, ϕ2 = ϕ3 = ðc − 1Þ/4, then �Mðϕ1, ϕ2, ϕ3Þ is a Sasakian
space form �MðcÞ [14]. If ϕ=ðc − 3Þ/4,ϕ2 = ϕ3 = ðc + 1Þ/4, then
�Mðϕ1, ϕ2, ϕ3Þ is a Kenmotsu space form �MðcÞ [14], and if
ϕ1 = ϕ2 = ϕ3 = c/4, then �Mðϕ1, ϕ2, ϕ3Þ is a cosymplectic space
form �MðcÞ [14].

A submanifold L of an almost contact metric manifold �L
is called semi-invariant submanifolds (contact CR-submani-
folds) if there exist two orthogonal complementary distribu-
tions D and D⊥ satisfying the following conditions:

(i) TL =D ⊕D⊥ ⊕ hξi, where hξi is the distribution
spanned by the structure vector field ξ

(ii) D is invariant distribution, i.e., ϕD ⊂ TL

(iii) D⊥ is anti-invariant, i.e., ϕD⊥ ⊆ T⊥L

Recently, we [15] studied warped product semi-invariant
product submanifolds of the type Ln = Ln1T × f L

n2
⊥ isometri-

cally immersed in the generalized Sasakian space form
admitting a nearly Sasakian structure, where Ln1T is an invari-
ant submanifold of dimension n1 and L

n2
⊥ is a totally real sub-

manifold of dimension n2. More precisely, the computed
Ricci curvature inequalities for these submanifolds are as
follows:

Theorem 1. Let Ln = Ln1T × f L
n2
⊥ be a warped product semi-

invariant submanifold isometrically immersed in a general-
ized Sasakian space form �Lmðϕ1, ϕ2, ϕ3Þ with nearly Sasakian
structure. Then, for each orthogonal unit vector field ξ ∈ TxM
orthogonal to χ, either tangent to Nn1

T or Nn2
⊥ , the Ricci curva-

ture satisfies the following inequalities:

(i) If ξ ∈ TLn1T , then
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Ric ξð Þ ≤ 1
4
n2 Hk k2 − n2Δ ln f + n2 ∇ln fk k2 + 3ϕ2

2
+ n + n1n2 − 1ð Þϕ1 − n2 + 1ð Þϕ3

ð9Þ

(ii) If ξ ∈ TLn2⊥ , then

Ric ξð Þ ≤ 1
4
n2 Hk k2 − n2Δ ln f + n2 ∇ln fk k2

+ n + n1n2 − 1ð Þϕ1 − n2 + 1ð Þϕ3
ð10Þ

The equality cases can be seen in [15].
Let f be a real-valued differential function on a Riemannian

manifold Ln, then the Bochner formula [16] is stated as

1
2
Δ ∇fj j2 = RL ∇f ,∇fð Þ + H fð Þj j2 + g ∇Δf ,∇fð Þ, ð11Þ

where RL denotes Ricci tensor and Hð f Þ is the Hessian of the
function f .

3. Main Results

In this section, we obtain some characterization by the appli-
cation of Bochner’s formula.

Theorem 2. Let Ln = Ln1T × f L
n2
⊥ be a n-dimensional warped

product semi-invariant product submanifold in a generalized
Sasakian space form �LmðcÞ, where Ln1T is a n -dimensional
invariant submanifold and Ln2⊥ is an anti-invariant submani-
fold. Such that Ricci curvature RLðξÞ ≥ b, b > 0: If ξ ∈ TLn1T
and satisfying the following equality:

λ1 + n2ð Þb = λ1
n2
n

+ n2

4
Hk k2 − n + n1n2 − 1ð Þϕ1 −

3ϕ2
2

+ n2 + 1ð Þϕ3
� �

,

ð12Þ

then, the base submanifold Ln1T is isometric to Rn1 (Euclid-
ean space).

Proof. Since ξ ∈ TNn1
T , by equation (9)

RL ξð Þ + n2Δlnf ≤
1
4 n

2 Hk k2 + n2 ∇lnfk k2 + n + n1n2 − 1ð Þϕ1
+ 3ϕ2

2 − n2 + 1ð Þϕ3:
ð13Þ

By the assumption that RLðξÞ ≥ b, we have

b + n2Δlnf ≤
1
4 n

2 Hk k2 + n2 ∇lnfk k2 + n + n1n2 − 1ð Þϕ1
+ 3ϕ2

2 − n2 + 1ð Þϕ3:
ð14Þ

Since the Ricci curvature RLðξÞ is bounded below by b ≥ 0,
then by virtue of theorem of Myers [17], the base manifold Ln1T
is compact. On integrating (9) and using Green’s theorem, we
have

Vol Ln1T
� �

b ≤
n2

4

ð
Ln1T × qf g

Hk k2dV + n2

ð
Ln1T × qf g

∇lnfk k2dV

+
ð
Ln1T × qf g

n + n1n2 − 1ð Þϕ1 +
3ϕ2
2 − n2 + 1ð Þϕ3

� �
dV ,

ð15Þ

or

ð
Ln1T × qf g

∇lnfk k2dV ≥
b
n2

Vol Ln1T
� �

−
n2

4n2

ð
Ln1T × qf g

Hk k2dV −
1
n2

�
ð
Ln1T × qf g

n + n1n2 − 1ð Þϕ1 +
3ϕ2
2 − n2 + 1ð Þϕ3

� �
dV:

ð16Þ

SupposeHðln f Þ denotes the Hessian of the warping func-
tion ln f , then we have

H lnfð Þ − nIj j2 = H lnfð Þj j2 + n2 Ij j2 − 2ng I,H lnfð Þð Þ, ð17Þ

after some calculations, the above formula turns to

H lnfð Þ − tIj j2 = 2tΔ lnfð Þ + t2 n1ð Þ + H lnfð Þj j2: ð18Þ

Putting t = λ1/n1 and integrating the last equation with
respect to dV (volume element), we get

ð
Ln1T × qf g

H lnfð Þ − λ1
n1

I
����

����
2
dV =

ð
Ln1T × qf g

H lnfð Þj j2dV +
ð
Ln1T × qf g

λ21
n1

dV ,

ð19Þ

using (11), with the fact Δlnf = λ1lnf , we have
ð
Ln1T × qf g

H lnfð Þj j2dV = −λ1
ð
Ln1T × qf g

∇lnfj j2dV −
ð
Ln1T × qf g

RL ∇lnf ,∇lnfð Þ:

ð20Þ

Merging (19) and (20), we derive

ð
Ln1T × qf g

H lnfð Þ − λ1
n1

I
����

����
2
dV =

ð
Ln1T × qf g

λ21
n1

dV − λ1

ð
Ln1T × qf g

∇lnfj j2dV

−
ð
Ln1T × qf g

RL ∇f ,∇fð ÞdV:

ð21Þ

By the assumption RLð∇f ,∇f Þ ≥ b, the above equation
yields
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ð
Ln1T × qf g

H lnfð Þ − λ1
n1

I
����

����
2
dV ≤

ð
Ln1T × qf g

λ21
n1

dV − bVol Ln1T
� �

− λ1

ð
Ln1T × qf g

∇lnfj j2dV :

ð22Þ

Using (16), the last inequality leads to

ð
Ln1T × qf g

H lnfð Þ − λ1
n1

I
����

����
2
dV ≤

ð
Ln1T × qf g

λ21
n1

dV −
ð
Ln1T × qf g

λ1b
n2

+ b
� �

dV −
λ1
n2

�
ð
Ln1T × qf g

n + n1n2 − 1ð Þϕ1 +
3ϕ2
2 − n2 + 1ð Þϕ3

� �
dV

−
λ1n

2

4n2

ð
Ln1T × qf g

Hk k2dV :

ð23Þ

If (12) holds, then the above inequality produces

H lnfð Þ − λ1
n1

I
����

����
2
= 0: ð24Þ

Therefore, we have Hðlnf ÞðX, XÞ = λ1/n1: Hence, by the
application of the result of Tashiro [18], the fibre Ln1T is isomet-
ric to Rn1 (Euclidean space).

If we consider the unit vector field ξ ∈ TLn2⊥ , then we have
the following results which can be proved by adopting similar
steps in Theorem 2. ☐

Theorem 3. Let Ln = Ln1T × f L
n2
⊥ be a n -dimensional warped

product semi-invariant product submanifold in a generalized
Sasakian space form �LmðcÞ, where Ln1T is a n -dimensional
invariant submanifold and Ln2⊥ is an anti-invariant submani-
fold. Such that Ricci curvature RLðξÞ ≥ b, b > 0: If ξ ∈ TLn1T
and satisfying the following equality:

λ1 + n2ð Þb = λ1
n2
n

+ n2

4
Hk k2 − n + n1n2 − 1ð Þϕ1 + n2 + 1ð Þϕ3

� �
,

ð25Þ

then, the base submanifold Ln1T is isometric to Rn1 (Euclid-
ean space).

Now, we have the next result which is based on the study
of Garcia-Rio et al. [6].

Theorem 4. Let Ln = Ln1T × f L
n2
⊥ be a warped product semi-

invariant product submanifold in a generalized Sasakian
space form admitting the nearly Sasakian structure �LmðcÞ.
Such that Ricci curvature RLðξÞ > b, b > 0. If ξ ∈ TNn1

T and sat-
isfying the following relation:

n2 Hk k2 + 4 n1n2ð Þ
λ1

H lnfð Þj j2

= 4n1n2
λ1

b − n + n1n2 − 1ð Þϕ1 −
3ϕ2
2

+ n2 + 1ð Þϕ3
� �

,

ð26Þ

for λ1 < 0, then Ln1T is isometric to warped product of the type
R × θU with the warping function θ, which satisfies the differ-
ential equation dθ2/dt2 + λ1θ = 0:

Proof. For the warping function lnf , defining the following
equation on Ln1T :

blnf I +H lnfð Þj j2 = b2 lnfð Þ2 Ij j2 + H lnfð Þj j2 + 2b lnfð Þg I,H lnfð Þð Þ:
ð27Þ

But we know that jIj2 = trðII∗Þ = n1 and gðHðlnf Þ, I∗Þ
= trðI∗Hðlnf ÞÞ = trðHðlnf ÞÞ ; using these facts, the above
equation leads to

blnf I +H lnfð Þj j2 = H lnfð Þj j2 + n1b
2 lnfð Þ2 − 2blnfΔlnf :

ð28Þ

Let lnf is an eigenfunction corresponding to the eigen-
value λ1 satisfying Δlnf = λ1lnf , we have

blnf I +H lnfð Þj j2 = H lnfð Þj j2 + n1b
2 − 2bλ1

� �
lnfð Þ2: ð29Þ

Further, using Δlnf = λ1lnf , it is easy to see that

∇
lnfð Þ2
2 = lnf λ1lnf − ∇lnfj j2, ð30Þ

which on integrating provides

ð
Ln1T × qf g

lnfð Þ2dV = 1
λ1

ð
Ln1T × qf g

∇lnfj j2: ð31Þ

Thus, we have

ð
Ln1T × qf g

H lnfð Þ + blnf Ij j2dV =
ð
Ln1T × qf g

H lnfð Þj j2dV

+ n1b
2

λ1
− 2b

 !

�
ð
Ln1T × qf g

∇lnfj j2dV :

ð32Þ
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Choosing b = λ1/n1 in (32), we have

ð
Ln1T × qf g

H lnfð Þ + λ1
n1

lnf I
����

����
2
dV =

ð
Ln1T × qf g

H lnfð Þj j2dV −
λ1
n1

�
ð
Ln1T × qf g

∇lnfj j2dV :

ð33Þ

Further, integrating (9) and applying Green’s lemma, we
find

ð
Ln1T × qf g

RL ξð ÞdV ≤
n2

4

ð
Ln1T × qf g

Hk k2dV + n2

ð
Ln1T × qf g

∇lnfk k2dV

+
ð
Ln1T × qf g

n + n1n2 − 1ð Þϕ1 +
3ϕ2
2 − n2 + 1ð Þϕ3

� �
dV :

ð34Þ

From the above two expressions, we have

1
n2

ð
Ln1T × qf g

RL ξð ÞdV ≤
n2

4n2

ð
Ln1T × qf g

Hk k2dV + n1
λ1

ð
Ln1T × qf g

H lnfð Þj j2dV

−
n1
λ1

ð
Ln1T × qf g

H lnfð Þ + λ1
n1

lnf I
����

����
2
dV +

ð
Ln1T × qf g

� n + n1n2 − 1ð Þϕ1 +
3ϕ2
2 − n2 + 1ð Þϕ3

� �
dV :

ð35Þ

On using the assumption that RLðξÞ ≥ b, for b > 0,

ð
Ln1T × qf g

H lnfð Þ + λ1
n1

lnf I
����

����
2
dV ≤

n2λ1
4n1n2

ð
Ln1T × qf g

Hk k2dV +
ð
Ln1T × qf g

H lnfð Þj j2dV

−
λ1
n1n2

ð
Ln1T × qf g

bdV + λ1
n1

ð
Ln1T × qf g

� n + n1n2 − 1ð Þϕ1 +
3ϕ2
2 − n2 + 1ð Þϕ3

� �
dV ,

ð36Þ

equivalently,

ð
Ln1T × qf g

H lnfð Þ + λ1
n1

lnf I
����

����
2
dV ≤

ð
Ln1T × qf g

� λ1
n1

n2

4n2
Hk k2 + n + n1n2 − 1ð Þϕ1 +

3ϕ2
2 − n2 + 1ð Þϕ3

� �� �	

+ b
n2

+ H lnfð Þj j2


dV :

ð37Þ

By assumption (26), we have

H lnfð Þ + λ1
n1

lnf I
����

����
2
≤ 0, ð38Þ

which is not possible; therefore,

H lnfð Þ + λ1
n1

lnf I = 0: ð39Þ

By taking trace of the above equation, we get

Δlnf + λ1lnf = 0: ð40Þ

Now, applying the result proved in [6], together with the
fact that Lt = Ln1T × f L

n2
⊥ is nontrivial, we deduced that Ln1T is

isometric to a warped product of the form R × θU , where U
is complete Riemannian manifold. Moreover, the warping
function θ is the solution of the differential equation dθ2/d
t2 + λ1θ = 0: Hence, the proof is completed. ☐

Similarly, we can prove the following theorems by taking
the unit vector field ξ tangent to Ln2⊥ .

Theorem 5. Let Ln = Ln1T × f L
n2
⊥ be a warped product semi-

invariant product submanifold in a generalized Sasakian
space form admitting the nearly Sasakian structure �LmðcÞ.
Such that Ricci curvature RLðξÞ > b, b > 0. If ξ ∈ TNn2

⊥ and sat-
isfying the following relation:

n2 Hk k2 + 4 n1n2ð Þ
λ1

H lnfð Þj j2 = 4n1n2
λ1

� b − n + n1n2 − 1ð Þϕ1 + n2 + 1ð Þϕ3ð Þ,
ð41Þ

for λ1 < 0, then, Ln1T is isometric to warped product of the type
ℝ × θU with the warping function θ, which satisfies the differ-
ential equation dθ2/dt2 + λ1θ = 0:

4. Conclusions

This paper studies the geometric behavior of ordinary differ-
ential equations on the warped product semi-invariant prod-
uct submanifolds. More precisely, we obtain characterizing
theorems for warped product semi-invariant product subma-
nifolds of generalized Sasakian space forms via differential
and integral theory on Riemannian manifolds. Therefore,
the present article provides a wonderful correlation of the
theory of differential equations with the warped product
submanifolds.
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