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Abstract 

 
We introduce the proportional hazard generalized power Weibull (PHGPW) model in which hazard rate 

function can assume increasing, decreasing, unimodal or (upside bathtub) and constant. Some of its 

mathematical properties are studied including the power series for the quantile function. Monte Carlo 

simulation was performed to determine the finite sample behaviour of the maximum likelihood estimates of 

the parameters. The flexibility of the PHGPW distribution compared with some other existing distributions is 

proved empirically by means of two sets of real data related to remission times of bladder cancer patients and 

strike duration of manufacturing company. A new regression model was defined based on the PHGPW 

distribution. The performance of the regression model is proved empirically using real data set. 
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1 Introduction  
 

Of late, there has been many discoveries of new distributions by researchers. The need to develop these new 

distributions comes as a result of theoretical or practical applications to lifetime data analysis or both. The 

flexibility of some distributions in modeling some applications and data in practical terms is greatly improved 

by the extension of these distributions. Several moves have been made towards the generalization of some well-

known and existing distributions and their successful applications to problems in survival data analysis, 

insurance etc. 

 

In modeling monotonic hazard rates, it is realistic to use exponential, Weibull, lognormal, the generalized 

gamma etc. However, for non-monotonic hazard rates which usually exhibits different forms of shapes such as 

bathtub shape or upside bathtub, the above-mentioned distributions are not realistic to model this.  

 

In recent times, there has many extensions of existing distributions by researchers. The aim is to improve the 

flexibility of these distributions in modeling data with different forms of failure rates. Lai [1] studied the 

generalized Weibull distribution which used the Weibull as a baseline distribution. To improve the flexibility of 

the Weibull distribution, Sarhan and Zaindin [2] proposed and studied the modified Weibull distribution and 

realized that it can model increasing, decreasing and constant hazard rate functions over the Weibull 

distribution. Gusmao et al. [3] also studied the generalized inverse Weibull (GIW) distribution and indicated that 

it was more flexible than the inverse Weibull distribution and could model data with decreasing, increasing and 

unimodal hazard rate shapes. Nikulin and Haghighi [4] added an additional shape parameter to the Weibull 

distribution and named it the generalized power Weibull (GPW) distribution. Oguntunde et al. [5] in their bid to 

improve the flexibility of the Weibull distribution, studied a-four parameter distribution known as exponentiated 

generalized Weibull (EGW) distribution. The EGW distribution proved suitable for modeling real life events 

with inverted bathtub shapes. 

 

The generalized power Weibull distribution has also seen some extension in literature.  Notable among them 

include: Selim and Badr [6] proposed the Kumaraswamy generalized power Weibull distribution, Pu et al. [7] 

also proposed and studied generalized class of exponentiated modified Weibull distribution with application, 

Selim [8] proposed the generalized power generalized Weibull distribution and Broderick et al. [9] proposed the 

exponentiated generalized power series family of distributions and studied their theory, properties and 

applications.  

 

Also, the proportional hazard models have attracted the attention of researchers. Martinez-Florez et al. [10] 

studied the properties and inference for the proportional hazard model, Aboukhamseen et al. [11] also proposed 

and studied the proportional hazard inverse Weibull distribution and Moreno-Arenas et al. [12] presented a 

paper on proportional Birnbaum-Saunders distribution. 

 

In this paper, we proposed a new four-parameter generalization of the generalized power Weibull (GPW) 

distribution called the proportional hazard generalized power Weibull (PHGPW) distribution. Considering an 

arbitrary baseline cumulative distribution function (CDF), the CDF of the GPW distribution is defined as:  

 

   1 exp 1 1 , 0, 0, 0 and 0,                1gpw

x
G x x



  


    
               

 

 

and the Corresponding Probability Density Function (PDF) defined as: 
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The paper is organized as follow: introduction is found in section 1. The model description is presented in 

section 2 while some properties of the new distribution are discussed in section 3. Section 4 describes five 
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methods of parameter estimation. In section 5, log-PHGPW location-scale regression model is presented while 

in section 6, a simulation study is performed to compare the performance of these methods of estimation for the 

new distribution. We demonstrate the application of this new distribution by means of two real data sets in 

section 7. The application of the LPHGPW regression is presented in section 8 while section 9 provides some 

concluding remarks. 
 

2 Proportional Hazard Generalized Power Weibull Distribution 
 

Suppose X  is a random variable that follows the generalized power Weibull distribution with parameters 

, , 0    . Then the CDF and PDF related to X  are respectively expressed in equation  1  and  2 . 

  

Therefore, a random variable X  is said to possess the PHGPW distribution if its CDF is expressed as:   
 

 
1 1

1                     

x

G x e







                  (3) 

 

where 0  is a positive integer.   
 

Its corresponding PDF which is given as      
1

1g x f x F x





     can be obtained as: 
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 (4) 

 

for , , , 0      and 0x  .  The hazard rate function is expressed as  
 

 1

g x
h x

G x



. Hence, 
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                                       (a)                                                                             (b) 

 

Fig. 1. Density and hazard function of the PHGPW distribution 
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Figs. 1(a) and (b) shows the behaviour of the density and hazard rate functions of the PHGPW distribution 

respectively for some parameter values. Clearly it can be seen from Fig. 1(a) that the PDF can be uni-modal, 

approximately normal, positively and negatively skewed. Fig. 1(b) indicates that the hazard rate function of the 

PHGPW is very flexible. It can have the following shapes; increasing, decreasing, unimodal or (upside bathtub) 

and constant. 

 

Special cases of the PHGPW distribution are shown in Table 1. The new distribution is quite flexible as it 

contains several well-known lifetime distributions as special models depending the values of the parameters. 

 

Table 1. Special sub-models of the PHGPW distribution 

 

Distribution Parameter Author 

        

Proportional hazard Nadarajah-Haghighi (PHNH)   1      

Nadarajah-Haghighi (NH) 1  1      Nadaraja and Haghighi [13] 

PH exponential    1  1     

Exponential  1  1  1    Gupta and Wu (2010) 

PH Weibull     1     

Weibull 1    1    Weibull (1951) 

Generalized power Weibull (GPW) 1        Nikulin and Haghighi [4] 

PH Rayleigh   2  1     

Rayleigh 1  2  1    Rayleigh (1880) 

 

3 Properties of the PHGPW Distribution 
 
In this section, some mathematical properties of the new distribution are presented. These include the quantiles, 

moments, moment generating function, conditional moment, stochastic ordering and order statistics. 

 

3.1 Quantile function 
 

The quantile function which is also known as the inverse CDF of a random variable is very useful when 

generating random numbers from a given probability distribution. It can also be used to describe some 

properties of a distribution such as the median, kurtosis and skewness. 

 

The quantile function  xQ u  of the PHGPW is given by 

 

 

  (6) 

 

 

3.2 Moments 
 

The moments of a random variable are important in making statistical inference. They are used to study 

essential characteristics of a distribution such as the measures of central tendency, measures of dispersion and 

measures of shapes. The 
thr  non-central moment of the PHGPW random variable is derived here. 

 

Proposition. If   PHGPW ; , , ,X x      then, the 
thr  non-central moment of X  can be written as:  

 

      
1

1

1 = 1 log 1 1 ,   0,1 . xQ u u u






 

    
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 
 

 '

0

1
 = , , r =1,2, ...  

i
r

r

r ir i
i

r

r i
e 





 
  









    
  

   
  (7) 

where 
1( , ) z

x

a x z e dz


     is the upper incomplete gamma function. 

 

Proof. By definition, the 
thr  non-central moment of a continuous random variable X  with an interval (0, )   

is defined as  

 

   '

0

 =  = .r r

r E X x f x dx


  

 

Thus, substituting the expanded form of the density function into this definition results  
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The proof is completed. 

 

3.3 Moment generating function  
 

The moment generating function (MGF) of the PHGPW distribution is given by the following proposition. 

 

Proposition.  If  ; , , ,X PHGPW x     , then the MGF is given by 

  

 
 

 

 

0 0

1
, . 

!

i r r
r

X ir i
r i

t r i
M t e

r

 





  





 


 

    
   

   
  (8) 

 

Proof. By definition, the moment generating function of the PHGPW function with a random variable X is  

 

given by      
0

tx tx

xM t E e e f x dx



   . Substituting the expanded form of the PDF of the PHGPW into 

the definition above, yields  
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This completes the proof of the MGF. 
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3.4 Conditional moment 

 

The conditional moment,  nE X X x  of the PHGPW distribution can be expressed as  

 

 
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S x
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Substituting this into the definition, gives 
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where 
1( , ) z

x

a x z e dz


     is the upper incomplete gamma function. An application of the conditional 

moments can be seen in the mean residual life and the mean deviation about the mean and median. 

 

3.5 Stochastic ordering 
 

Stochastic ordering is the commonest way to show ordering mechanism in lifetime distributions. Suppose a 

random  1 1PHGPW , , ,X      and  2 2PHGPW , , ,X     , then 1X  is said to be 

stochastically smaller than 2X  in the  

 

i. Stochastic order  1 2stX X  if the associated CDFs satisfy: 
1 2

F FX X  for all x . 

ii. Hazard rate order  1 2hrX X  if the associated hazard rate functions satisfy: 
1 2

h hX X for all x . 

iii. Likelihood ratio order  1 2lrX X  if the ratio of the associated PDFs defined as 
 

 
1

2

X

X

f x

f x
decreases in x . 

 

When 1X  and 2X  have a common finite left end-point support, the following implications are true 

1 2 1 2 1 2lr hr stX X X X X X     . 

 

Suppose that the densities of 1X  and 2X  are  
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 respectively. Then, the ratio of the two densities can be expressed as  
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Taking the first derivative of the ratio of the two densities yields 
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3.6 Order statistics 
 

Order statistics are important implement used in non-parametric statistics and inference. They play a vital role in 

areas such as quality control testing and reliability to determine the failure of future items based on the times of 

few early failures. Suppose 1 2 3, , ,..., nX X X X  are independent and identically distributed random sample of 

size n  taken from the PHGPW distribution with CDF  G x  and PD  f x . Let 

1: 2: 3: :...n n n n nX X X X     denote the order statistics obtained from the sample. The PDF of the 
thk  

order statistic for the PHGPW distribution is given by 
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where   ; 1 , , ,f x i     is the PDF of the PHGPW distribution with parameters  1 , ,i    and  . 
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4 Methods of Estimation of Model Parameters 
 

In this section, five methods of estimation for estimating the parameters , ,    and   of the PHGPW 

distribution are presented. These include: maximum likelihood estimation, ordinary and weighted least-squares, 

Cramér-von Mises and maximum product spacing. 

 

4.1 Method of maximum likelihood estimation 

 
The method of maximum likelihood is the most widely and frequently used method for model parameter 

estimation. It has many desirable characteristics such as asymptotic efficiency, consistency, and invariant 

property. Let 
1 2, ,..., nX X X  represent a random sample of size n , then the log-likelihood function can be 

expressed as 
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      
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Taking the first derivatives of the log-likelihood function with respect to the various parameters will yield; 
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The maximum likelihood estimates can be obtained as the simultaneous solutions of the equations  
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0
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 , , ,
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   







. The solutions 

of these four nonlinear equations must be obtained using a numerical method. The Newton-Raphson algorithm 

is one of the standard techniques used in solving these equations. 
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4.2 Method of ordinary and weighted least-squares  

 
Swain et al. [14] discovered the estimators of the ordinary least squares and weighted least squares to estimate 

the parameters of the beta distribution. Suppose 1: 2: 3: :...n n n n nX X X X     is the order statistics of a 

random sample of size n  from the PDF of the PHGPW distribution, then the least squares estimators (LSE) of 

the unknown parameters , ,    and   of the PHGPW distribution can be obtained by minimizing the 

equation 
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   (17) 

 

with respect to the parameters , ,    and  . 

 

The weighted least square estimators (WLSE) of the parameters, , ,    and  can also be obtained by 

minimizing the following function 
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with respect to the unknown parameters.  

 

4.3 Method of Cramér-von Mises  

 
MacDonald [15] defines the Cramér-von Mises (CVM) method as the least minimum distance estimation 

method which is considered to have the smallest bias as compared to the other minimum distance estimators. 

 

 The CVM parameters estimates of the PHGPW distribution are obtained by minimizing equation  19 with 

respect to the various unknown parameters as: 
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4.4 Method of maximum product spacing 

 

Suppose 1 2, ,..., nX X X  are random samples drawn from the PHGPW distribution with CDF  F x  and 

     1 2
,...,

n
X X X   denotes the order statistics of the sample. Then, spacing iD  is defined as  
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where      0 1
0 and  1

n
F x F x


  . The maximum product spacing (MPS) estimates can be obtained by 

maximizing the logarithm of the geometric mean spacing 
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with respect to the parameters , ,    and  . Therefore, for the estimates of the PHGPW distribution, we 

maximize equation  20 , 
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5 Log PHGPW Location-Scale Regression Model 
 
The log-PHGPW regression model is presented in this section. It can be obtained by using the transformation 

 logY X . Suppose a random variable X  follows the PHGPW distribution, then the random variable 

 logY X  follows the log-proportional hazard generalized power Weibull (LPHGPW) distribution.  

 

From the transformation  logY X  and supposing e


    and 1


 , the PDF of the LPHGPW is 

defined as  
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where   is the location parameter, , 0    are both shape parameters and 0   is the scale 

parameter. 

 

The corresponding survival function  yS y  can be expressed as 
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 (22) 

 

Fig. 2 shows the density function of the LPHGPW regression model. It exhibits various forms of shapes such as 

left skewed, right skewed and symmetric for some values of the parameters.  
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Fig. 2. Density function of the LPHGPW regression model 

 

From the density function expressed in equation  21 , the log PHGPW location-scale regression model can be 

expressed with the following regression structure 

 

, 1,...,                                          i iy z i n  Tx  ,  (23) 

 

where   T

ix   is the location parameter that depends on a set of covariates,  0 1, ,...,
T

w    

represents the regression parameters, X  defines the number of covariates,  1 2, ,...,i i ikx x x


ix also defines 

the covariates and iz  represents the random error term following the PDF of the LPHGPW. 

 

The regression parameters of the model are estimated using the maximum likelihood estimation method. The 

log-likelihood function of the LPHGPW regression model is expressed as  
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where 

T

i i
i

y x
z




  and  n  is the number of observations. The parameters estimate of the LPHGPW are 

estimated by maximizing the log-likelihood function given in equation  24 . The adequacy of the LPHGPW 

regression model is measured using the Cox-Snell residuals [16]. The Cox-Snell residuals of the LPHGPW 

regression model is defined as 

  

log , , , , 1,2,..., ,i ir S y i n   
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 
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 is expressed in equation  22 . If 

the LPHGPW regression model fits the given data set well, its Cox-Snell residuals are expected to follow the 

standard exponential distribution. 
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6 Simulation Study 
 
To examine the accuracy of the methods of parameter estimation, a Monte Carlos simulation is performed in 

this section. The quantile function of the PHGPW distribution is used to generate a random sample of 

observations with size 30,60,90,120,150,180n  and 210  with two set of parameter values:

0.1, 0.3, 0.7     , 0.2   and 0.5, 1, 0.5     , 0.4   and the number of replications 

at 1000N   and during each replication, the average bias (AB), root mean square error (RMSE) and average 

estimates (AV) are computed.  

 

The results indicated in Table 2 and Table 3 showed that the AV becomes closer to the true parameter value as 

the size of the sample increases while the RMSE and AB decreases as the sample size increases as expected. 

The maximum likelihood method is considered for estimating the parameters of the PHGPW distribution as it 

provides consistent estimation for the parameters. However, the parameter   fluctuates as the sample size 

increases as shown in Table 2 and Table 3. 

 

7 Univariate Applications 
 
This section presents univariate application to demonstrate the flexibility of the PHGPW model by means of two 

data sets. The performance of the PHGPW model is compared with some of its sub-models and other related 

models. The fit of PHGPW is compared with following distributions: 

 

Generalized power generalized Weibull (GPGW) distribution with PDF as  
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Power inverted Nadarajah-Haghighi (PINH) distribution [17] with PDF given as 
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Exponentiated Chen (EC) distribution proposed by [18] with its PDF as   
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Exponentiated exponential Weibull (EEW) distribution [19] with PDF defined as  
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Nadaraja-Haghighi (NH) distribution [13] with its PDF as  
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Table 2. Simulation results for α=0.1, β=0.3, ɣ=0.7 and λ=0.2 

 

  AB RMSE AV 

 n MLE OLS WLS CVM MPS MLE OLS WLS CVM MPS MLE OLS WLS CVM MPS 

α=0.1 30 0.0710 0.1465 0.1198 0.1239 0.0643 0.0982 0.2424 0.1960 0.2084 0.0849 0.0991 0.1975 0.1735 0.1694 0.0885 

60 0.6350 0.0994 0.0823 0.0904 0.0587 0.0799 0.1468 0.1178 0.1340 0.0704 0.0960 0.1672 0.1534 0.1534 0.0791 

90 0.0609 0.0847 0.0671 0.0797 0.0588 0.0755 0.1147 0.0924 0.1075 0.0702 0.0990 0.1630 0.1444 0.1564 0.0759 

120 0.0593 0.0768 0.0632 0.0723 0.0583 0.0701 0.1034 0.0847 0.0984 0.0675 0.0987 0.1595 0.1426 0.1511 0.0777 

150 0.0562 0.0669 0.0560 0.0656 0.0574 0.0672 0.0886 0.0744 0.0876 0.0656 0.0980 0.1512 0.1385 0.1477 0.0755 

180 0.0563 0.0675 0.0550 0.0627 0.0546 0.0667 0.0880 0.0711 0.0814 0.0628 0.1016 0.1508 0.1370 0.1456 0.0769 

210 0.0528 0.0622 0.0570 0.0641 0.0568 0.0622 0.0803 0.0641 0.0833 0.0641 0.0984 0.1495 0.1341 0.1481 0.0752 

β=0.3 30 0.4287 0.2766 0.2534 0.3257 0.5389 0.5174 0.3645 0.3467 0.4128 0.5963 0.6545 0.4719 0.4421 0.5259 0.7944 

60 0.3596 0.2173 0.1893 0.2518 0.4782 0.4656 0.3024 0.2759 0.3410 0.5542 0.6003 0.4466 0.4165 0.4782 0.7407 

90 0.3134 0.1733 0.1432 0.1936 0.4551 0.4309 0.2574 0.2239 0.2742 0.5387 0.5686 0.4227 0.3877 0.4441 0.7275 

120 0.2704 0.1464 0.1370 0.1676 0.3989 0.3907 0.2242 0.2179 0.2514 0.4957 0.5332 0.4034 0.3886 0.4200 0.6733 

150 0.2485 0.1270 0.1088 0.1329 0.3784 0.3714 0.1940 0.1782 0.2000 0.4824 0.5189 0.3889 0.3638 0.3940 0.6592 

180 0.2091 0.1008 0.0959 0.1211 0.3447 0.3288 0.1510 0.1544 0.1815 0.4508 0.4793 0.3604 0.3526 0.3817 0.6249 

210 0.1910 0.1036 0.0898 0.1098 0.3259 0.3116 0.1649 0.1479 0.1672 0.4389 0.4605 0.3687 0.3514 0.3764 0.6065 

ɣ=0.7 30 0.6103 0.8191 0.7562 0.8340 0.5748 0.7790 1.1682 1.1077 1.1618 0.7047 0.7180 1.0324 1.0339 1.0192 0.5551 

60 0.4746 0.5745 0.4655 0.6136 0.4869 0.5988 0.8957 0.7198 0.9273 0.5665 0.6457 0.8361 0.7939 0.8575 0.5134 

90 0.3703 0.4181 0.3403 0.4353 0.4247 0.4528 0.6792 0.5364 0.6917 0.4741 0.5802 0.7240 0.7229 0.7173 0.4583 

120 0.3236 0.3389 0.2912 0.3740 0.3807 0.3920 0.5460 0.4223 0.5892 0.4206 0.5710 0.6806 0.6759 0.7022 0.4695 

150 0.2856 0.2942 0.2454 0.3073 0.3458 0.3507 0.4636 0.3567 0.4916 0.3893 0.5622 0.6654 0.6848 0.6757 0.4607 

180 0.2571 0.2717 0.2236 0.2955 0.3291 0.3162 0.4354 0.3108 0.4694 0.3737 0.5786 0.6849 0.6821 0.6803 0.4745 

210 0.2357 0.2485 0.1971 0.2613 0.3098 0.2919 0.3884 0.2623 0.4008 0.3576 0.5940 0.6604 0.6665 0.6566 0.4870 

λ=0.2 30 0.4572 0.6872 0.6651 0.6639 0.4146 0.5542 0.7292 0.7143 0.7145 0.5212 0.5045 0.8502 0.8208 0.8212 0.4618 

60 0.4684 0.6565 0.6553 0.6464 0.3959 0.5620 0.7098 0.7077 0.7029 0.4956 0.5036 0.8150 0.8051 0.8057 0.3965 

90 0.4625 0.6582 0.6357 0.6698 0.3600 0.5553 0.7105 0.6944 0.7176 0.4585 0.4874 0.8197 0.7783 0.8326 0.3295 

120 0.4612 0.6439 0.6210 0.6349 0.3757 0.5552 0.7013 0.6835 0.6945 0.4747 0.4889 0.8009 0.7510 0.7896 0.3696 

150 0.4629 0.6498 0.6382 0.6386 0.3688 0.5558 0.7046 0.6957 0.6972 0.4651 0.4918 0.8024 0.7799 0.7933 0.3338 

180 0.4736 0.6546 0.6270 0.6419 0.3631 0.5665 0.7069 0.6880 0.6994 0.4627 0.5126 0.8058 0.7647 0.7962 0.3376 

210 0.4670 0.6444 0.6131 0.6420 0.3734 0.5602 0.7022 0.6781 0.6986 0.4719 0.5044 0.7966 0.7425 0.7934 0.3403 
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Table 3. Simulation results for 0.5  , 1  , 0.5   and 0.4   

 

  AB RMSE AV 

 n MLE OLS WLS CVM MPS MLE OLS WLS CVM MPS MLE OLS WLS CVM MPS 

0.5   30 0.4697 0.6580 0.6368 0.5978 0.3862 0.6196 0.8384 0.8134 0.7743 0.4981 0.6289 0.8639 0.8581 0.7838 0.5047 

60 0.4535 0.5935 0.5698 0.5521 0.3926 0.5917 0.7657 0.7375 0.7163 0.5045 0.6583 0.8657 0.8620 0.8098 0.5416 

90 0.4668 0.5966 0.5686 0.5529 0.3939 0.6119 0.7702 0.7301 0.7197 0.5115 0.6112 0.9147 0.8936 0.8546 0.5880 

120 0.4535 0.5722 0.5503 0.5536 0.3872 0.5902 0.7398 0.7013 0.7187 0.4902 0.6107 0.9043 0.8763 0.8583 0.6009 

150 0.4357 0.5491 0.5132 0.5467 0.3596 0.5628 0.7035 0.6629 0.6971 0.4635 0.6086 0.8690 0.8521 0.8589 0.5751 

180 0.4318 0.5436 0.4816 0.5072 0.3584 0.5495 0.6978 0.6114 0.652 0.4506 0.5225 0.8811 0.8222 0.8313 0.5881 

210 0.4175 0.5344 0.4942 0.5433 0.3566 0.5331 0.6856 0.6337 0.6933 0.4521 0.5123 0.8579 0.8271 0.8770 0.5733 

1   30 0.0886 0.1767 0.1569 0.1527 0.0547 0.1841 0.2935 0.2710 0.2682 0.1388 0.9114 0.8232 0.8430 0.8472 0.9452 

60 0.0633 0.1020 0.0910 0.0897 0.0334 0.1409 0.2041 0.1746 0.1906 0.1023 0.9367 0.8979 0.9089 0.9102 0.9665 

90 0.0423 0.0689 0.0600 0.0630 0.0218 0.1007 0.1503 0.1237 0.1456 0.0731 0.9577 0.9310 0.9399 0.9369 0.9781 

120 0.0373 0.0634 0.0493 0.0520 0.0199 0.0866 0.1329 0.1039 0.1203 0.0647 0.9626 0.9365 0.9506 0.9479 0.9800 

150 0.0335 0.0491 0.0418 0.0457 0.0164 0.0746 0.1048 0.0868 0.1053 0.0523 0.9664 0.9508 0.9581 0.9542 0.9835 

180 0.0357 0.0462 0.0437 0.0395 0.0179 0.0753 0.0971 0.0857 0.0914 0.0518 0.9642 0.9537 0.9562 0.9604 0.9820 

210 0.0323 0.0472 0.0389 0.0395 0.0164 0.0684 0.0990 0.0785 0.0879 0.0488 0.9676 0.9527 0.9611 0.9604 0.9835 

0.5   30 0.3101 0.6178 0.5324 0.5803 0.3093 0.5416 1.0399 0.9424 0.9817 0.5146 0.7293 0.9521 0.8811 0.9434 0.7624 

60 0.2005 0.3233 0.2506 0.3067 0.1923 0.3391 0.6170 0.4646 0.5823 0.3069 0.6268 0.6897 0.6285 0.6921 0.6450 

90 0.1389 0.2117 0.1610 0.2133 0.1313 0.2111 0.3956 0.2757 0.4063 0.1917 0.5528 0.5707 0.5397 0.5911 0.5751 

120 0.1141 0.1775 0.1351 0.1726 0.1085 0.1594 0.2941 0.2014 0.2926 0.152 0.5325 0.5469 0.5189 0.5529 0.5552 

150 0.1018 0.1420 0.1142 0.1497 0.0960 0.1339 0.2178 0.1547 0.2497 0.1256 0.5268 0.5220 0.5065 0.5330 0.5487 

180 0.0967 0.1307 0.1066 0.1270 0.0914 0.1331 0.1928 0.1419 0.1903 0.1184 0.5231 0.5119 0.5107 0.5208 0.5429 

210 0.092 0.1309 0.1038 0.1227 0.0898 0.1182 0.1946 0.1407 0.1828 0.1132 0.5192 0.5149 0.5027 0.5062 0.5397 

0.4   30 0.4001 0.4230 0.4285 0.4311 0.3829 0.4463 0.4688 0.4721 0.4747 0.4323 0.6035 0.7088 0.7002 0.7105 0.5916 

60 0.3921 0.4369 0.4364 0.4356 0.3701 0.4389 0.4779 0.4787 0.4766 0.4196 0.5914 0.7070 0.7078 0.6994 0.5473 

90 0.3727 0.4267 0.4327 0.4219 0.3381 0.4222 0.4706 0.4752 0.4665 0.3899 0.5779 0.7007 0.7031 0.6916 0.5246 

120 0.3642 0.4335 0.4263 0.4194 0.3354 0.4187 0.4755 0.4696 0.4629 0.388 0.5844 0.7118 0.6888 0.6782 0.5205 

150 0.3533 0.4111 0.3981 0.4092 0.3083 0.4098 0.4577 0.4511 0.4556 0.3668 0.5760 0.6693 0.6651 0.6676 0.4938 

180 0.3581 0.4164 0.4022 0.4073 0.3119 0.414 0.4641 0.454 0.4565 0.3688 0.5941 0.6873 0.6708 0.6671 0.5091 

210 0.3407 0.4044 0.3897 0.4095 0.2947 0.3979 0.454 0.4418 0.4589 0.3504 0.5722 0.6628 0.6498 0.6756 0.4812 
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The exponentiated power generalized Weibull (EPGW) distribution [20] with PDF as 
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The inverse Weibull (IW) distribution proposed by Khan et al. [21] with its PDF as 
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The exponentiated Nadaraja-Haghighi (ENH) distribution [22] with PDF as  
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  (32) 

 

The generalized Rayleigh distribution (GRD) proposed by Raqab and Madi [23] with PDF defined as 
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Exponentiated generalized inverse Weibull (EGIW) distribution [24] with PDF as  
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The maximum likelihood estimates of the unknown parameters of these models are estimated by maximizing the 

log-likelihood function. The performance of the PHGPW model is then compared with the other distributions 

using the Akaike information criterion (AIC), corrected Akaike information criterion (AICc) and Bayesian 

information criterion (BIC).  Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Cramér-von Mises 

(CVM) test of goodness-of-fit were also performed. The distribution with the smallest of these measures is 

considered the best model. 

 

7.1 First application 
 

The first data set represents remission time in months of a random sample of 128 bladder cancer patients as cited 

in Shanker et al. [25]. Table 4 indicates the maximum likelihood estimates of the distributions with their 

corresponding standard errors in parentheses for data set I.  

 

Table 5 also indicates the model selection criteria and goodness-of-fit measures for the bladder cancer patient’s 

data set. It can be seen that the PHGPW distribution has the least statistic in terms of all the measures. This is an 

indication that the PHGPW distribution provides a better fit to the bladder cancer patient’s data set as compared 

to the other competing distributions. This is demonstrated by the P-P plots shown in Fig. 3. It can be seen that 

PHGPW distribution provides the better description for this data set. These figures support the results in             

Table 5. 
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Table 4. Parameter estimates and standard errors for data set I 

 

Model Parameter Estimates 




 


 


 


 

PHGPW 61.8739 

(0.0413) 

1.4589 

(0.1809) 

0.0303 

(0.0131) 

10.8552 

(4.7499) 

GPGW 2.6178 

(0.9511) 

0.3939 

(0.1520) 

838.1000 

(0.0003) 

0.0071 

(0.0079) 

EEW 2.8584 

(1.2773) 

65.8642 

(0.0518) 

7.1592 

(0.7293) 

0.6531 

(0.1322) 

EPGW 11.8210 

(8.4057) 

179.0400 

(0.0201) 

0.0899 

(0.0072) 

0.1479 

(0.1126) 

EGIW 22.4921 

(4.0733) 

0.6334 

(0.2998) 

0.3651 

(0.0501) 

260.3165 

(0.2214) 

GPW 1.5773 

(0.2409) 

0.4181 

(0.1056) 

3.4564 

(0.8652) 

 

GW 2.8584 

(1.2773) 

0.6531 

(0.1322) 

0.3093 

(0.1726) 

 

PINH 0.2058 

(0.01071) 

506.4900 

(0.0000) 

2.1864 

(0.0871) 

 

EC 8.3643 

(3.7543) 

0.2209 

(0.0273) 

0.7280 

(0.2016) 

 

IW -3.7186 

(1.9819) 

0.0131 

(0.0219) 

2.0699 

(0.5399) 

 

ENH 0.3193 

(0.0170) 

5.0312 

(0.9073) 

100.0000 

(0.0219) 

 

W 0.0946 

(0.0191) 

1.0515 

(0.0675) 

  

NH 0.9243 

(0.1499) 

0.1234 

(0.0345) 

  

GRD 0.3404 

(0.0474) 

0.7726 

(0.0881) 
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Table 5. Model selection criteria and Goodness-of-fit statistics of data set I 

 

Model -2LogL AIC AICc BIC KS AD CVM 

PHGPW 814.0991 822.0991 822.4243 833.5072 00343. 

(0.9982) 

0.1252 

(0.9997) 

0.0173 

(0.9989)
* 

GPGW 822.9828 830.9828 831.3080 842.3909 0.0724 

(0.5129) 

1.0098 

(0.3520) 

0.1798 

(0.3614) 

EEW 816.4617 824.4617 824.7869 835.8699 0.0455 

(0.9539) 

0.3096 

(0.9306) 

0.0458 

(0.9021) 

EPGW 834.8782 843.8782 843.2034 854.2864 0.0819 

(0.3560) 

1.6334 

(0.1477) 

0.24807 

(0.1909) 

EGIW 822.3527 830.3527 830.6779 841.7608 0.0758 

(0.4539) 

1.0826 

(0.3166) 

0.1873 

(0.2938) 

GPW 815.6632 822.6632 822.8567 833.2193 0.0392 

(0.9893) 

0.2494 

(0.9707) 

0.0359 

(0.9532) 

GW 816.4617 822.4617 822.6553 831.0178 0.0455 

(0.9539) 

0.3096 

(0.9306) 

0.0458 

(0.9021) 

PINH 826.119 832.119 832.3126 840.6751 0.1040 

(0.1253) 

2.1729 

(0.0741) 

0.3908 

(0.0763) 

EC 816.8311 822.8311 823.0246 831.3872 0.04655 

(0.9451) 

0.3417 

(0.9037) 

0.0511 

(0.8704) 

IW 817.3415 823.3415 823.5351 831.8976 0.1416 

(0.0118) 

6.3228 

(0.0001) 

1.0209 

(0.0021) 

ENH 816.3044 822.3044 822.4979 830.8605 0.0447 

(0.9601) 

0.3024 

(0.9363) 

0.0449 

(0.9072) 

W 823.7849 827.7849 827.8809 833.489 0.9999 

(0.0000) 

1.0478 

(0.3330) 

0.16631 

(0.3438) 

NH 824.1473 828.1473 828.2433 833.8514 0.0948 

(0.2005) 

1.4535 

(0.1880) 

0.22381 

(0.2258) 

GRD 855.5003 859.5003 859.5963 865.2043 0.1593 

(0.0030) 

5.0772 

(0.0026) 

1.0011 

(0.0024) 
*: Means the model that fits the data well 
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Fig. 3. P-P Plots for the fitted distributions for data set I 
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7.2 Second application 
 

The second data set taken from Kennan [26] are made up of 62 observations of strike durations in days for a US 

manufacturing companies. The parameters estimate of the second data with their corresponding standard errors 

in parentheses is shown in Table 6. 

 

Table 6. Parameter estimates and standard errors for data set II 

 

Model Parameters 




 


 


 


 

PHGPW 0.0487  

(0.0237)  

 

85.8170  

 0.0000  

 

0.0097  

(0.0012)   

0.9601  

 0.0671   

GPGW 100.0000  

 0.0000   

0.0083  

 0.0011   

38.3970  

 0.0000   

0.0489  

 0.0234  

EEW 1.5259  

 1.2412  

68.2269  

 0.0183   

2.0211  

 0.8412  

0.7334  

 0.3215   

EPGW 0.0733  

 0.0811   

4.7299  

 3.5932   

3.5719  

 4.4808   

64.9133  

 0.0594   

EGIW 6.4548  

 1.7858   

0.3746  

 0.2785   

0.4914  

 0.1264   

289.2910  

 0.0233   

GPW 1.0118  

 0.2557   

0.7512  

 0.5075   

26.3635  

 26.9754   

 

GW 1.5259  

 1.2412  

0.7334  

 0.3215   

0.0383  

 0.0372   

 

PINH 0.2955  

 0.0242   

380.4700  

 0.0000   

1.4141 

 0.0730   

 

EC 5.1253  

 3.9972   

0.1915  

 0.0407   

0.3786  

 0.2556   

 

IW 7.0468  

 5.3174   

0.0183  

 0.0262   

1.2876  

 0.3395   

 

ENH 0.7358  

 0.3348  

1.0417  

 0.3292  

0.0410  

 0.0428   

 

W 0.0322  

 0.0129  

0.9247  

 0.0916   

  

NH 0.7720  

 0.2062  

0.0364  

 0.0179  

  

GRD 0.3234  

 0.0463   

0.0104  

 0.0013   
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The model selection criteria and test statistics of the good-of-fit measures are displayed in Table 7. The results 

indicates that PHGPW provides a better fit for the data though GPW, GW, EEW, PINH, ENH and EC 

distributions also compete well in describing this data. This is evident in the P-P plots indicated in Fig. 4. It can 

be seen that PHGPW distribution best describes the data set. These figures support the results in Table 7.  

 

Table 7. Goodness-of-fit statistics fit data set II 

 

Model 2  AIC AICc BIC KS AD CVM 

PHGPW 584.1434

 

592.1434

 

592.8452

 
600.6520  0.0716  

(0.9084)  
0.3286  

(0.9149)  
0.0368  

 0.9500
* 

GPGW 584.2139
 

592.2139
 

593.8157
 

601.6225
 

0.1148  

 0.3875  

1.5191 

 0.1720  
0.2135   

 0.2340  

EEW 588.5051
 

596.5051
 

597.2068
 

605.0136
 

0.0933  

 0.6527  

0.6799  

 0.5752  

0.0918  

 0.6282  

EPGW 594.0775
 

602.0775
 

602.7793
 

610.5861
 

0.1213  

 0.3214  
1.0797  

 0.3177  

0.1809  

 0.3081  

EGIW 592.1597
 

600.1597
 

600.8615
 

608.6683
 

0.1256  

 0.2820  

1.1983  

 0.2680  

0.2023  

 0.2634  

GPW 588.6566
 

594.6566
 

595.0704
 

601.0380
 

0.0969  

 0.6047  

0.7360  

 0.5289  

0.0698

 0.7547  

GW 588.6566
 

594.6566
 

594.9189
 

600.8865
 

0.0357  

 0.9552  
0.1697  

 0.0563  

3.2531

 0.0205  

PINH 593.1895
 

599.1895
 

599.6033
 

605.5709
 

0.1187  

 0.3467  
1.0653  

 0.3245  

0.1738  

 0.3252  

EC 588.5383
 

594.5383
 

594.9521
 

600.9197
 

0.0721  

 0.9037  

0.3479  

 0.8979  

0.0390  

 0.9395  

IW 598.7235
 

604.7235
 

605.1373
 

611.1049
 

0.1429  

 0.1589  

1.9569  

 0.0972  

0.3118  

 0.1251  

ENH 588.6415
 

594.6415
 

595.0553
 

601.0229
 

0.0792  

 0.8317  

0.4916  

 0.7548  

0.0599  

 0.8161  

W 588.8054
 

592.8054
 

593.0088
 

597.0596
 

0.0702  

 0.9199  

0.3504  

 0.8957  

0.0398  

 0.9356  

NH 588.6588
 

592.6588
 

592.8622
 

596.9131
 

0.8302  

 162.2 10 

 

75.8710  

 0.0000  
13.8380  

 162.2 10   

GRD 593.5089
 

597.5089
 

597.7123
 

601.7632
 

0.1309  

 0.2384  

1.0229  

 0.3452  

0.1932  

 0.2815  

*: Means the model that fits the data well. 
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Fig. 4. P-P Plots for the fitted distributions for data set II 

 

8  Applications of the Log-Proportional Hazard Generalized Power 

Weibull Regression Model 
 
In this section, two real data set are used to demonstrate the application and the usefulness of the LPHGPW 

regression model. The maximum likelihood estimation technique is used to obtain the parameter estimates for 

the LPHGPW regression model. The parameter estimates and their standard errors are obtained together with 

the AIC, AICc and BIC to compare the LPHGPW regression model with some other regression models such the 

log Weibull (LW), log generalized power Weibull (LGPW) and log proportional hazard Weibull (LPHW). 

 

8.1 First data set 
 

The first data set used to illustrate the application of the LPHGPW regression model consist of medical expenses 

data which contains weekly average medical expenses including cost of drugs for 33 randomly sampled families 

from 600 families made up of 2700 individuals  

 

(https://vincentarelbundock.github.io/Rdatasets/datasets.html). The following regression model is fitted to the 

given data set 

 

0 1 1 , 1,2,...,33,i i iy x z i       

 

where  logi iy x  follows the LPHGPW distribution. iY  (the response variable) is the average weekly 

medical expenses per a member of a family and ix  is the number of members in a family. 

 

For this data set, the LW, LGPW, LPHW and the LPHGPW distributions are adjusted for and their performance 

compared. The maximum likelihood estimates of the parameters of these regression models are shown in Table 

8. From the LPHGPW regression model, the family size is significant at 0
01  and negatively affects the family 

weekly cost of medication. 

 

 

 

 

https://vincentarelbundock.github.io/Rdatasets/datasets.html
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Table 8. Estimated parameters of the regression models 

 

Model Parameter Estimate Std Error P-Value 

LPHGPW   1.3616  4.2323  0.7477  
  0.1676  0.1583  0.2895  

  0.8461  0.5958  0.1556  

0  10.4317  3.8959  0.0007  

1  1.2188  0.3509  0.0005  

LGPW   1.1635  0.1292  162.2 10   

  1000000.0000  134.3928 10  
162.2 10   

0  0.3670  71.0845 10  
162.2 10   

1  0.9671  74.0421 10  
162.2 10   

LPHW   1.0000  0.1741  99.2160 10  

  1000000.0000  74.0 10  
162.2 10   

0  0.1669  0.0007  162.2 10   

1  0.9669  76.4883 10  
162.2 10   

LW   2.1893  0.2761  152.2020 10  

0  12.9633  0.9670  162.2 10   

1  1.0303  0.2397  51.7220 10  

 

The LPHGPW regression model’s adequacy for this data set was assessed using the Cox-Snell residuals and the 

results indicated that the LPHGPW follows the standard exponential distribution. This is supported by KS, AD 

and CVM values displayed in Table 9. 

 

Table 9. Model Selection Criteria and Goodness-of-fit statistics of the regression models 

 

Model 2  AIC AICc BIC KS AD CVM 

LPHGP

W 
143.6446
 

153.6446
 

155.8668
 

161.1272
 

0.0601  

 0.9998   
0.0965  

 1.0000   

0.0133  

 0.9999
*
  

LGPW 976.1896
 

984.1896
 

985.6181
 

990.1756
 

0.7106
156.6610 10

  

19.1940  

 51.8180 10   

4.2138  

 162.2 10 

 

LPHW 977.8237
 

985.8237
 

987.2523
 

991.8097
 

0.6321
127.044 10

  

15.1360

 51.8180 10  

3.3260

 162.2 10 

 

LW 150.9120
 

156.9120
 

157.7396
 

161.4015
 

0.1227  

 0.7034   

0.7109

 0.5486   

0.1014  

 0.5808   

*: Means the model that fits the data well 

 

According to the model selection criteria, the values of the AIC, AICc and BIC of the LPHGPW regression 

model for the first data set are smaller as compared to the values of the LW, LGPW and LPHW regression 

models as indicated in Table 9. Therefore, it can be concluded that the regression model with LPHGPW error 

distribution provides a better fit for this data set than the regression models of the LW, LGPW and LPHW 

distributions. The KS, AD and CVM along with their P-values in parentheses, test of goodness-of-fit are also 

performed and the results indicated in Table 9. The LPHGPW regression model has the smallest test statistic 

values for the KS, AD and CVM which is an indication that the LPHGPW regression model fit this data set 

better than the rest of regression models. This also confirm the results of the model selection criteria displayed 

in Table 9.  
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8.2 Second data set  
 

Another data set used to demonstrate the application of the LPHGPW regression model consist of a group of 

200 women of at least 21 years of age, of Pima Indian heritage and living closer to Phoenix, Arizona, were 

tested for diabetes according to the World Health Organization procedure [27]. The regression model fitted to 

this data set is given as  

 

0 1 1 2 2 , 1,2,...,200,i i i iy x x z i         

 

where iy (response variable) represents plasma glucose concentration in an oral tolerance test, 1x (body mass 

index in kilograms) and 2x (age in years). The maximum likelihood estimates of the parameters of the LW, 

LGPW, LPHW and LPHGPW regression models are shown in Table 10.  

 

Table 10. Estimated parameters of regression models 

 

Model Parameter Estimate Std Error P-Value 

LPHGPW   2.8702  1.6471 0.0814  
  0.1207  0.0414  0.0036  

  12.2531 1.8674  115.3220 10  

0  49.7967  11.4994  51.4890 10  

1  0.7328  0.3353  0.0288  

2  0.9086  0.1939  62.8000 10  

LGPW   1.1634  25.2484 10  
162.20 10   

  1000000.0000  123.8308 10  
162.20 10   

0  0.3671  84.4046 10  
162.20 10   

1  0.9699  61.4231 10  
162.20 10   

2  0.1649  61.4143 10  
162.20 10   

LPHW   0.9999  27.0705 10  
162.20 10   

  1000000.0000  126.1702 10  
162.20 10   

0  0.3669  87.0699 10  
162.20 10   

1  0.9657  62.2843 10  
162.20 10   

2  0.1597  62.2701 10  
162.20 10   

LW   30.7412  1.5313  162.20 10   

0  71.3054  13.3780  89.8190 10  

1  1.1932  0.3676  31.1710 10  

2  0.9074  0.1945  63.1000 10  

 

The Cox-Snell residuals were used to assess the adequacy of the LPHGPW regression model which showed that 

it followed the standard exponential distribution. This is supported by the results of the goodness-of-fit statistics 

indicated in Table 11. 

 

The model selection criteria (AIC, AICc and BIC) and the goodness-of-fit statistics (KS, AD and CVM) test 

values with P-values in parentheses of the LPHGPW regression model are the least as compared to the LW, 

LGPW and LPHW regression models as displayed in Table 11. Therefore, the LPHGPW regression model 

provides a better fit for the test of diabetes data than the rest of the regression models (LW, LGPW and LPHW). 
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Table 11. Goodness-of-fit statistics of regression models 

 

Model 2  AIC AICc BIC Ks AD CVM 

LPHGPW 1911.0360  1923.0360  1923.4710  1942.8260  0.0685  

(0.3045)   
0.7239

 0.5390   
0.1444  

 
*

0.4073   

LGPW 5916.3080  5926.3080  5926.6170  5942.7990  0.7106
 162.2 10 

  
116.3100

 63.0 10   

25.5360
 162.2 10    

LPHW 5926.2040  5936.2040  5936.5140  5952.6960  0.6321
 162.2 10 

 
91.7290  

 63.0 10  
20.1570  

 162.2 10   

LW 1965.7210  1973.7210  1973.9260  1986.9140  0.1514  

 0.0002   

5.7249  

 0.0013   

1.0188

 0.0022   

*: Means the model that fits the data well 

 

9 Conclusions  
 

In this paper we introduce the proportional hard generalized power Weibull (PHGPW) model to extend the 

generalized power Weibull distribution. It has additional parameter and its hazard rate function can assume 

increasing, decreasing, unimodal or bathtub (upside bathtub) and constant shapes. The proposed distribution 

contains special models. We have discussed some mathematical properties of the model, estimate its parameters 

using the maximum likelihood and demonstrate its flexibility with application of two data sets. The new 

distribution provides a good adjustment in the two applications and it is also quite competitive with other 

models. The model can be used to effectively provide better fit as compare to the other lifetime distributions. 

 

The LPHGPW regression model was derived. This was supported with real data demonstration which showed 

that the LPHGPW regression model proves to have a better fit than the LW, LGPW and LPHW regression 

models. The results of this demonstration indicates that the proposed new distribution is flexible.  

 

10 Motivation  
 

The ability of the distribution to model hazard rate function with increasing, decreasing, unimodal or (upside 

bathtub) and constant. 
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