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Abstract: The rapid growth in energy consumption and environmental pollution have greatly stimu-
lated the exploration and utilization of shale gas. The injection of gases such as CO2, N2, and their
mixture is currently regarded as one of the most effective ways to enhance gas recovery from shale
reservoirs. In this study, molecular simulations were conducted on a kaolinite–kerogen IID compos-
ite shale matrix to explore the displacement characteristics of CH4 using different injection gases,
including CO2, N2, and their mixture. The results show that when the injection pressure was lower
than 10 MPa, increasing the injection pressure improved the displacement capacity of CH4 by CO2.
Correspondingly, an increase of formation temperature also increased the displacement efficiency of
CH4, but an increase of pore size slightly increased this displacement efficiency. Moreover, it was
found that when the proportion of CO2 and N2 was 1:1, the displacement efficiency of CH4 was the
highest, which proved that the simultaneous injection of CO2 and N2 had a synergistic effect on shale
gas production. The results of this paper will provide guidance and reference for the displacement
exploitation of shale gas by injection gases.

Keywords: composite shale model; displacement; molecular simulations; shale gas; injection gases

1. Introduction

The consumption of traditional energy such as oil and coal induces increasingly severe
environmental pollution and the greenhouse effect. Therefore, it is urgent to improve the
energy consumption structure and reduce the consumption of oil and coal. The environ-
mental pollution and greenhouse gas emission problems can be alleviated once traditional
energy is replaced by shale gas, which is a type of clean low-carbon energy [1,2]. The main
component of shale gas is methane (CH4), which is generally stored in a shale reservoir in
three states (i.e., adsorbed state, free state, and dissolved state) [3]. Among them, CH4 with
an adsorbed state plays a dominant role [4]. Therefore, transforming adsorbed-state CH4 to
a free state is the critical process in shale gas exploitation. Unfortunately, the low porosity
and permeability of shale reservoirs significantly inhibit the desorption and diffusion
processes of adsorbed CH4 molecules, increasing the difficulty of shale gas recovery.

Currently, hydraulic fracturing is the most commonly used method to improve the
productivity of shale gas recovery by dramatically enhancing the shale porosity and per-
meability [5]. However, this method faces the shortcomings of waste production and water
pollution [6,7]. By contrast, these disadvantages could be avoided by replacing water
with supercritical carbon dioxide (CO2) during the fracturing process. Apart from this,
injecting CO2 into shale reservoirs as a means of reducing greenhouse gas emissions is
regarded as one of the promising strategies for CO2 sequestration. Thus, the use of CO2 as
an alternative fluid to enhance shale gas recovery has attracted increasing attention and
has recently stimulated many research efforts [8–11]. Nitrogen has proved to be another
potential fracturing fluid for efficiently enhancing shale gas recovery, owing to its low
viscosity and price [4,12,13]. Meanwhile, experiments conducted by the authors of [14]
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revealed that CO2-N2 mixed gas injection exhibits improved shale gas recovery perfor-
mance compared to CO2 injection alone. Therefore, an understanding of the displacement
behaviors between CH4 and CO2, N2, and the mixture of CO2-N2, from a micro-scale
perspective, is immensely valuable in guiding the efficiency of shale gas recovery and CO2
sequestration.

Many efforts by different research groups have been devoted to the experimental
investigation of the effects of injection gases on shale gas recovery [15,16]. For instance,
nuclear magnetic resonance (NMR) was adopted by the authors of [17] to explore the effect
of CO2 pressure on the efficiency of shale gas recovery. Their results indicated that the
desorption efficiency of the adsorbed CH4 was improved by 27% and 26% when the CO2
was kept at ambient pressure and abandonment pressure, respectively. Moreover, the effects
of shale reservoir temperature, pressure, and particle size, CO2 flow rate, and pressure on
the efficiency of shale gas recovery were studied in [18]. They found that a high injection
pressure of CO2 had the benefit of enhancing the efficiency of shale gas recovery, whereas
the effects of CO2 flow rate and shale reservoir temperature could be ignored. Furthermore,
the effect of gas injection composition, including CO2, N2, and CO2-N2 mixed gas, on the
efficiency of shale gas recovery were investigated in [19–21]. In summary, the presence of
N2 has the benefit of prolonging the breakthrough time of CO2 and achieving the goal of
CO2 storage over the long term, and the ratio of CO2/N2 is an important parameter for
optimizing shale gas recovery and CO2 storage. Although many scholars [17,19] tried to
experimentally reveal the displacement mechanism between the injection gases and CH4, a
microscopic mechanism has not yet been reported due to the limitations of measurement
techniques.

As alternatives, molecular simulation methods, including density functional theory
(DFT), grand canonical Monte Carlo (GCMC), and molecular dynamics (MD), are effec-
tive approaches to explore the interactional characteristics between the gases and shale
reservoirs as well as the displacement behaviors between injection gases and CH4 [22].
For instance, the authors of [23] proved that the adsorption energy of CO2 was much
larger than that of CH4 using a DFT model. The authors of [24] indicated that the van
der Waals’ force plays a dominant role in the interactions between CH4 and the kerogen
surface. In [25], the authors explored the competitive adsorption behavior between CO2
and CH4 using a GCMC model. Their results indicated that the adsorption capacity of
CO2 was much higher than that of CH4 under various conditions. Similarly, the authors
of [26,27] investigated the effect of pore size on the adsorption behaviors of CH4 in kaoli-
nite and quartz, respectively, using the GCMC mothed. They found that the adsorption
performance of the shale matrix on CH4 was exponentially reduced with an increase in
pore size. The authors of [28] studied the diffusion characteristics of CH4 and CO2 in the
shale matrix based on MD. Their results showed that the diffusion coefficient of CH4 and
CO2 in nanoscale pores of the montmorillonite slit decreased with increasing pressure,
and the diffusion coefficient of CH4 was larger than that of CO2.

Moreover, the authors of [29] proved that the displacement performance of CH4 de-
creased gradually once CO2, N2, and H2O were successively injected in carbon nanotubes.
In [30], the authors investigated the displacement of shale gas by CO2 and the sequestration
of CO2 simultaneously in a shale matrix at different geological depths using the GCMC
method. They pointed out that pore size played a significant role in the displacement of
CH4 by CO2, and the optimum geological depth for the displacement of CH4 by CO2 was
about 1.0 km. Besides, the authors of [4] used the MD method to simulate the displacement
process of CH4 by CO2 and N2 in a composite model of quartz and methylnaphthalene.
They found that the displacement efficiency of a small pore (30 Å) was the highest and the
displacement efficiencies of CH4 by different gases were larger than 50% when the injection
pressure was greater than 30 MPa. Although extensive studies on the displacement char-
acteristics of CH4 by single-component gas (CO2, N2, and H2O) in various shale models
were conducted, limited studies have been performed to explore the mechanism of shale
gas displacement by mixed gas CO2-N2 from a microscopic perspective. The synergistic
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effect of the simultaneous injection of N2 and CO2 on the displacement efficiency of CH4
was observed experimentally [19], while the microscale mechanism of this phenomenon
has not been made clear yet, and few studies have tried to explore it from the molecular
level. Besides, the optimal N2/CO2 ratio at which the displacement efficiency reaches its
maximum has not been reported. However, this value was regarded as one of the most
important parameters to enhance shale gas recovery. On the other hand, thorough research
on the displacement process of CH4 in a realistic organic–inorganic composite shale model
under a complex environment, such as a humid environment, is still lacking.

2. Numerical Model and Methodology
2.1. Model Description

In this study, a composite shale model consisting of two inorganic layers (kaolinite)
and two organic layers (kerogen IID, which belongs to the over-mature stage of kerogen II),
as shown in Figure 1, was established for numerical simulations. The reason for choosing
the kaolinite and kerogen IID as the inorganic and organic layers, respectively, was that
these two materials are the typical components of actual shale. This composite shale model
establishment process can be described as follows:
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Figure 1. The composite shale model of kaolinite and kerogen IID.

(1) The inorganic kaolinite layered model box was first established as shown in Figure 1a, in
which the parameters of the kaolinite cell structure were obtained from the data in [31];

(2) A single kerogen IID molecule was built based on the data from [32] (Figure 1b),
and then the corresponding kerogen IID box with 11 kerogen IID molecules was
established according to the size of the layered inorganic mineral lattice;

(3) The kaolinite box in Figure 1a and two kerogen IID boxes were combined to form a
composite shale model (Figure 1c).

Density is one of the most important physical properties of organic materials. Figure 2
shows the density of the present kerogen IID box as a function of a relaxation time. It can be
seen that when the density of the kerogen IID box reached stability, its average value was
about 1.28 g/cm3, which is in good agreement with the value of 1.1 g/cm3–1.4 g/cm3 for
kerogen IID in real shale reservoirs [33], indicating the this kerogen IID model is reliable.
The adsorption process of CH4 in kerogen boxes at T = 338 K was also conducted, and the
calculated adsorption isotherm was compared with that in [34], as shown in Figure 3.
The compared result in Figure 3 further validates the present kerogen IID box model and
shows the reliability of the adsorption model used in the present paper.
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Figure 3. Adsorption isotherm of the kerogen box [34].

Once the composite shale matrix model (Figure 1c) was established, CH4 was pre-
adsorbed on this model at a certain temperature and pressure using the GCMC method,
as shown in Figure 4. The red region on the left side of the composite shale model is the
injection gas, which could be CO2, N2, or CO2-N2 mixed gas.
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2.2. Simulation Details

In this study, the GCMC method was adopted to simulate the adsorption process of
CH4 in the above composite model. In the GCMC simulations, the van der Waals inter-
action and electrostatic interaction between molecules were calculated by the Atom and
Ewald summation methods, respectively. The adsorption equilibrium and adsorption pro-
duction of CH4 were set as 5 × 106 and 1 × 107, respectively. We used the condensed-phase
optimized molecular potentials for atomistic simulation studies (COMPASS) force field,
which can effectively simulate molecular systems including organic polymers and inorganic
molecules, and the non-bond cutoff radius was set as 1.9 nm. After obtaining the pre-
adsorption configuration of CH4 in the composite shale model (Figure 4), the MD method
was employed to investigate the displacement characteristics of CH4 under different condi-
tions. The force field parameters and interaction parameters used in the MD simulations
were set as those in the above GCMC method. The canonical ensemble (NVT) and a
Nose–Hoover thermostat were used to control the temperature, and the total calculation
time was set as 1.0 ns with the time step of 1.0 fs.

To evaluate the displacement capacity efficiency of CH4 by the injection gas, the dis-
placement efficiency Rdis is defined as follows:

Rdis = (Nad − Ndis)/Nad (1)

where Nad
(
mmol·g−1) is the amount of pre-adsorbed CH4 in the composite model,

and Ndis (mmol·g−1) is the residual amount of CH4 in the composite shale after the dis-
placement process.

3. Results and Discussion

As mentioned in the introduction, there are many factors, including formation con-
ditions and gas species, that influence shale gas displacement efficiency. Thus, in the
following sections, different physical models with different pore size and water content
are presented. Then, the influence of different factors, such as the formation temperature,
pressure, pore size, gas composition, and water content, on the displacement characteristics
and displacement efficiency of CH4 is discussed.

3.1. The Influence of Pressure on the Displacement Characteristics

In order to examine the influence of gas pressure on the displacement characteristics
of CH4, the displacement processes of CH4 by CO2 at different pressures, including p = 6,
10, 15, 20 MPa, were investigated. Figure 5 plots the displacement capacity of CH4 as a
function of time under different pressures. In the figure, when the displacement process
reaches a steady-state, the displacement capacity increases with the increase in the injection
pressure. However, the growth rate of the displacement capacity gradually slows down
with the increase in pressure (Figure 5b), which indicates that properly increasing the
injection pressure is beneficial to the displacement of CH4.
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Figure 6 shows the displacement process with p = 20 MPa and T = 323 K at different
times. The figure indicates that as time goes by, the CO2 molecules on the left side gradually
enter the slit and are gradually absorbed in the pores and the surface of the kerogen matrix.
CO2 molecules occupy the adsorption sites of CH4, and the adsorbed CH4 molecules are
replaced from the shale reservoir. Then, the free-state CO2 molecules displace the desorbed
CH4 molecules from the nanoscale pores.
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Figure 6. The displacement process of CH4 by CO2 with p = 20 MPa and T = 323 K.

Figure 7 plots the displacement efficiency as a function of pressure. It can be seen
that as the injection pressure increases from 6 MPa to 10 MPa, the displacement efficiency
increases by 44.4%. However, when the injection pressure is larger than 10 MPa, the increas-
ing tendency of the displacement slows down. The displacement efficiency only increases
by 7.0%, as the pressure increases from 10 MPa to 20 MPa. That means a further increase in
the injection pressure is of little significance for enhancing shale gas recovery.
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3.2. The Influence of Temperature on the Displacement Characteristics

Figure 8 plots the displacement capacity of CH4 by CO2 at different temperatures
under p = 20 MPa, as a function of time. It can be seen that, as time goes by, the displacement
capacity of CH4 at higher temperatures climbs faster, and a higher temperature ultimately
leads to a greater displacement capacity. This is because the activity of gas molecules
increases with the increase in temperature. From Figure 9, it can be seen that with the same
pore size of d = 2 nm, when the displacement process achieves a steady-state, and as the
temperature of the reservoir increases from 298 K to 383 K, the displacement capacity of
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CH4 increases by 9.4%. Interestingly, when the injection temperature is low (T < 353 K),
the displacement capacity increases linearly as temperature increases; however, as the
injection temperature further increases, the increase of the displacement capacity is not
obvious. Besides, Figure 10 shows that as the temperature increases, the displacement
efficiency increases monotonously, indicating that increasing the injection or formation
temperature is beneficial to the exploitation of shale gas.
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3.3. The Influence of Pore Size on the Displacement Characteristics

Figure 11 plots the displacement capacity of CH4 by CO2 as a function of pore size.
It can be seen that at the early stage of the displacement process, the displacement capacity
in different pores increases sharply as time increases. In addition, as the pores size increases,
the time required to reach steady-state decreases. This is because the larger pore size is
conducive to the replacement of adsorbed CH4 from the reservoir and is also beneficial
to the diffusion of CH4 in nanoscale pores. When the pore size increases from 1 nm to
3 nm, the displacement capacity increases by 11.8%. Figure 12 presents the displacement
efficiency of CH4 as a function of the aperture. When the pore size increases from 1 nm
to 3 nm, the displacement efficiency only increases by 2.6%, which is smaller than the
increment of the displacement capacity. This can be attributed to the fact that the pre-
adsorbed CH4 in larger pores is relatively larger than that in smaller pores.
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3.4. The Influence of Gas Proportion on the Displacement Characteristics

Figure 13 shows the displacement capacity of CH4 by gas with different proportions
over time. It shows that at the early stage of the displacement process, the higher the
nitrogen content, the larger amount of CH4 that is displaced from the composite shale
reservoir. This is because compared with CO2, N2 is not easily adsorbed on the composite
shale reservoir (Figure 14), and the free-state N2 can displace CH4 from the shale pores
in the early stage of the process. Moreover, the free-state N2 can also reduce the partial
pressure of CH4 in the shale pores and promote the self-desorption process of CH4. From
Figure 15, it can be seen that when the displacement process reaches a steady-state, the dis-
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placement capacity of CH4 by N2 is the least. This is because the adsorption capacity of the
shale reservoir to nitrogen is slightly lower, and thus the amount of absorbed CH4 replaced
by pure N2 from the shale reservoir is less. Interestingly, the displacement capacity and
displacement efficiency (Figure 16) reach the maximum when the ratio of CO2 and N2 is
1:1, with displacement capacity and displacement efficiency up to 2.2 mmol·g−1 and 81.5%,
respectively. This is because the appropriate amount of CO2 can replace the absorbed CH4
from the shale reservoir, and free-state N2 has the benefit of displacing the desorbed CH4
from the shale pores. As the proportion of CO2 increases, more CO2 will be absorbed
on the shale reservoir, which makes it possible to block the shale pores and prevent the
desorption of CH4.
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3.5. The Influence of Water Content on the Displacement Characteristics

Figure 17 shows the displacement capacity of CH4 with different water contents over
time. It indicates that with the increase in water content, the displacement capacity de-
creases. When the displacement process reaches a steady-state, the displacement capacity
of CH4 decreases from 2.04 mmol·g−1 to 1.68 mmol·g−1 as the water content increases
from 0 wt.% to 1.6 wt.%. This can be explained as follows: (1) water molecules prevent
CO2 molecules from entering the shale matrix and replacing the absorbed CH4; (2) the wa-
ter content can reduce the connectivity of the shale matrix (Figure 18)-that is, with the
increase of water content, the free volume and surface area of shale gradually decrease;
and (3) the existence of water molecules reduces the amount of pre-adsorbed CH4 in the
shale reservoir (Figure 19). The reason for the low adsorption of CH4 with high water
content can be attributed to the fact that water molecules occupy the adsorption sites of
CH4. Besides, the displacement efficiency of CH4 decreases as the water content increases,
as presented in Figure 20, which means that the water content in the shale reservoir is not
conducive to shale exploitation.
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4. Conclusions

In this paper, the displacement characteristics of CH4 by CO2, N2, and their mixture
were investigated by molecular simulations based on a kaolinite–kerogen IID composite
shale model. The influence of some factors, including injection pressure, formation tem-
perature, pore size, water content, and gas proportion on the displacement characteristics
were examined, and the main results are as follows:

(1) When the injection pressure is smaller than 10 MPa, an effective way to improve the
displacement capacity of CH4 is to increase the injection pressure; the displacement
efficiency increased by 44.4% with a pressure increase from 6 MPa to 10 MPa. How-
ever, when p > 10 MPa, the growth of the displacement efficiency was not apparent
with the further increase of pressure, and the displacement efficiency only increased
by 7.0% as the pressure increased from 10 MPa to 20 MPa. Formation temperature
was one of the crucial factors affecting displacement efficiency, and as the formation
temperature increased, the displacement efficiency increased monotonically.

(2) When the process reached a steady-state, the displacement efficiency increased by
2.6% as the pore size increased from 1 nm to 3 nm. The water content decreased
the pre-adsorption capacity and the displacement capacity of CH4 by decreasing the
volume fraction of shale pores.

(3) Compared with N2, CO2 showed better displacement capacity on CH4. The displace-
ment ability of CO2-N2 mixed gas was greater than that of CO2 and N2 alone, and the
optimal gas ratio of CO2/N2 at which the displacement efficiency reached the maximum
of 81.5% was about 1:1.
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In the present study, only the displacement characteristics of CH4 in a shale reservoir
slit with an aperture smaller than 3 nm was investigated. However, the pores of a real shale
reservoir may be very different from the present model. Thus, it is necessary to investigate
the influence of pore morphology and injection gases on the transport properties of CH4 in
future research.
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