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Abstract: Fault detection and diagnosis can improve safety and reliability of gas turbines. Current
studies on gas turbine fault detection and diagnosis mainly focus on the case of abundant fault
samples. However, fault data are rare or even unavailable for gas turbines, especially newly-run gas
turbines. Aiming to realize fault detection with only normal data, this paper proposes the concept
of normal pattern group. A group of long-short term memory (LSTM) networks are first used for
characterizing the mapping relationships among measurable parameters of healthy three-shaft gas
turbines. Experiments show that the proposed method can detect all 13 common gas path faults of
three-shaft gas turbines sensitively while remaining low false alarm rate. Comparison experiment
with single normal pattern model verifies the necessaries and superiorities of using normal pattern
group. Meanwhile, comparison between LSTM network and other methods including support
vector regression, single-layer feedforward neural network, extreme learning machine and Elman
recurrent neural network verifies the superiorities of LSTM network in fault detection. Furthermore,
comparison experiment with four common one-class classifiers further verifies the superiorities of
the proposed method. This also indicates the superiorities of data-driven methods and gas turbine
principle fusion to some extent.

Keywords: fault detection and diagnosis; anomaly detection; three-shaft marine gas turbine; long
short-term memory (LSTM) network; deep learning; normal pattern group

1. Introduction

Currently, prognostics and health management (PHM) technique of gas turbine has
become a hot research topic for monitoring health condition as well as ensuring the safe and
reliable operation [1–23]. PHM converts conventional “fail and fix” maintenance strategy
to a more advanced conditional-based maintenance strategy. PHM can provide accurate
condition monitoring, detect faults sensitively and timely, and thus avoid serious faults
and significantly reduce maintenance costs.

With the boom of artificial intelligence and big data technique, data-driven methods-
based intelligent PHM of gas turbines is becoming increasingly popular among various
PHM methods. Many famous gas turbine companies are attempting to use artificial
intelligence and big data techniques in gas turbines. Rolls-Royce company has proposed
the concept of IntelligentEngine as the future development trend of gas turbine industry.
Pratt and Whitney company has provided EngineWise service to provide intelligent health
management and predicted maintenance for aeroengines. GE company has also established
Predix platform for intelligent management of gas turbine. Through Predix platform, the
health conditions of GE’s gas turbines are continuously monitored to detect the need for
real-time maintenance.

Data-driven fault detection and diagnosis methods extract knowledge from histor-
ical data and do not require accuracy nonlinear models [4,5]. Currently, data-driven
methods are also becoming increasingly popular with researchers. Many data-driven
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methods including Bayesian method [6,7], random forest [8], finite state machine [9],
rough set [10–12], support vector machine [13], extreme learning machine [14], artificial
neural network [15] etc., have been widely used in gas turbine fault detection and diag-
nosis. Mast et al. [16] proposed a Bayesian belief network-based fault diagnosis method
for turbofan engines. Losi et al. [17] used Bayesian hierarchical models for gas turbine
fault detection. Maragoudakis et al. [8] used random forest for fault identification of an
industrial gas turbine. Li et al. [9] proposed a finite state machine-based method for fault
diagnosis of a single-spool industrial gas turbine. Xu et al. [10] used fuzzy rough set
for vibration fault diagnosis of aircraft engines. Wong et al. [18] used extreme learning
machine for fault diagnosis of gas turbine generator systems. Fast et al. [19] used artificial
neural networks for modelling and diagnosis of single-spool gas turbine-based combined
heat and power plant. Orozco et al. [20] used a single-hidden layer feed-forward neural
network for diagnosis of an externally fired gas turbine. Liu et al. [21] proposed a method
for performance prediction of a heavy-duty gas turbine based on high dimensional model
representation and artificial neural network. Wang et al. [22] used support vector machine
and fuzzy c-means clustering for fault diagnosis of an industrial single-spool gas turbine.
Zhou et al. [23] used support vector machine for gas turbine fault diagnosis. Loboda
et al. [24] used multilayer perceptron and radial basis network for both industrial gas
turbines and aircraft gas turbines. The experimental results indicate that radial basis net-
work can obtain better performance. Loboda et al. [25] further proposed a probabilistic
neural network-based method for fault diagnosis of industrial gas turbines and aircraft
gas turbines and reported good detection performance. Yazdani and Montazeri-Gh [26]
combined hybrid dimensionality reduction and fuzzy logic for fault diagnosis of two-shaft
industrial SGT 600 gas turbine. Fentaye et al. [15] used nested artificial neural networks
for gas-path fault identification of a two-shaft gas turbine. Tahan et al. [27] proposed a
multiple networks artificial neural network model for an industrial 18.7-MW twin-shaft
gas turbine engine. Lu et al. [28] proposed restricted-Boltzmann-based extreme learning
machine for turbofan engine fault diagnosis.

Recently, deep learning [29] is enjoying a boom. Deep learning has achieved tremen-
dous success in computer vision [30], natural language processing [31], autonomous
cars [32] etc. Many researchers have begun to attempt deep learning in the field of indus-
trial fault diagnosis [33]. Fu et al. [34] used grouped convolutional denoising autoencoders
for aircraft engine fault detection and obtained good detection performance. Feng et al. [35]
used information entropy and deep belief networks for aircraft turbofan engine fault di-
agnosis. Liu et al. [36] used convolutional neural network for fault detection of industrial
gas turbines and obtained better performance than conventional artificial neural network
and extreme learning machine. Mulewicz et al. [37] compared deep convolutional neural
network with two conventional methods including random forest and extreme gradi-
ent boosting (XGBoost) and reported that deep convolutional neural network has better
detection performance than the two conventional data-driven methods.

In the industrial scene, fault data are usually quite few or even available, especially
for those gas turbines that have just been put into operation and only run for a short time.
All above methods can obtain good performance when there are abundant historical fault
data. However, in the case where fault data are unavailable, the above methods cannot
realize fault detection due to the absence of fault information. This is the problems that
this paper deals with.

Aiming to address the fault detection of three-shaft marine gas turbines in the case
where only normal data are available at the beginning stage of operation, this paper
proposed normal pattern group-based fault detection method for the first time. A group
of long short-term memory (LSTM) networks are used for fault detection for the first
time. The proposed method realizes accurate fault detection accuracy for fault data while
remaining low false alarm rate for normal data, and thus effectively solves the problem of
fault detection in three-shaft marine gas turbines in the case of no available historical fault
data. The main contributions of this paper are summarized as follows.
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(1) Firstly, the concept of normal pattern group is proposed for three-shaft marine gas
turbine fault diagnosis. Through normal pattern group, the intrinsic mapping rela-
tionships among measurable parameters of healthy three-shaft marine gas turbines
are characterized by a group of normal pattern models.

(2) Secondly, a group of long short-term memory (LSTM) networks are used in three-shaft
marine gas turbine diagnosis. The superiorities of LSTM network in gas turbine fault
detection are verified through comparison with other methods including support
vector regression (SVR), extreme learning machine (ELM), single-hidden layer feed-
forward neural network (SLFN) and Elman recurrent neural network (ERNN). To
the best of our knowledge, this is the first time that LSTM network has been used in
fault detection of three-shaft marine gas turbines and that the superiorities of LSTM
network has been verified.

(3) Thirdly, boxplot-based collaborative decision-making strategy for normal pattern
group is proposed. Through collaborative decision-making of normal pattern group,
accurate anomaly detection and low false alarm rate are realized. The normal pat-
tern group is compared with single normal pattern models and common one-class
classifiers and its superiorities are verified.

The rest of this paper is organized as follows. Section 2 elaborates the procedure
of LSTM network-based normal pattern group fault detection method. Section 3 carries
out detailed experiments to verify the superiorities of the proposed method. Section 4
concludes the paper and outlines the future research orientation.

2. Methods
2.1. Normal Pattern Group-Based Fault Detection

In industrial scene, the fault data of gas turbines, especially the gas turbines that
have just been put into operation and only run for a short period, are quite rare or even
unavailable. Current studies mainly focus on the case of abundant fault data. In the
case of no available fault data, these methods cannot detect faults due to the lack of fault
information. Thus, this paper will study the fault detection of three-shaft marine gas
turbines in the case where only normal data are available.

The gas turbine follows the basic physical laws, such as the conservation of mass and
energy etc. The gas turbine used Brayton cycle as the basic thermodynamic cycle. Thus,
there exist inherent mapping relationships among all measurable parameters when the gas
turbine operates normally. Thus, this paper establishes a series of normal pattern models
to characterize intrinsic mapping relationships, proposes the concept of normal pattern
group and detects anomaly through detecting the change of mapping relationships.

The normal pattern group is a group of normal pattern models. For a system with m
input measurements (x1, x2, . . . , xm) and n output measurements (y1, y2, . . . , yn). This paper
establishes n normal pattern models with each model using one output measurement as its
output and the rest n− 1 output measurements together with m inputs as its inputs. The
architecture of normal pattern group is illustrated in Figure 1. Mathematically, the normal
pattern group can be expressed as Equation (1).

y1 = f1(x1, x2, . . . , xm, y2, y3, . . . , yn)
y2 = f2(x1, x2, . . . , xm, y1, y3, . . . , yn)

. . .
yn = fn(x1, x2, . . . , xm, y1, y2, . . . , yn−1)

(1)
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Figure 1. Architecture of normal pattern group.

In Equation (1), Fi(.)(i = 1, 2, . . . , n) are nonlinear functions that need to be identified
using gas turbine normal data. Fi(.)(i = 1, 2, . . . , n) almost remains unchanged when
three-shaft marine gas turbines are healthy. Fi(.)(i = 1, 2, . . . , n) will change once faults
occur. Thus, accurate fault detection can be realized through normal pattern group defined
in Equation (1).

2.2. Long Short-Term Memory Network

Normal pattern group method requires the identification of a group of normal pattern
models, namely Fi(.)(i = 1, 2, . . . , n) in Equation (1), using normal historical data of gas
turbines. The gas turbine a nonlinear dynamic system with many dynamic behaviors,
such as rotor inertia, heat inertia and volume dynamics etc. These dynamic behaviors
usually manifest as a delay of time. Artificial neural network (ANN) has strong ability
to represent nonlinearity, and thus is used to identify Fi(.)(i = 1, 2, . . . , n) in Equation (1).
Among various ANN methods, long short-term memory (LSTM) network [38] is one of
the most effective methods to deal with dynamic data. LSTM network can successfully
address the long-term dependency problem well and effectively deal with dynamic infor-
mation through introducing forget gate, input gate and output gate. LSTM network has
been successfully used in various fields, such as time series forecast [39–41], remaining
useful life prediction of industrial machines [42], machine translation [43], named entity
recognition [44] etc. LSTM has also been widely used in identification of various dynamic
systems. Literature [45–47] used LSTM to identify various dynamic systems and reported
that LSTM network can characterize the dynamic systems well and obtain much better
performances than conventional methods. Therefore, this paper uses LSTM network for
identifying the nonlinear mapping relationships Fi(.)(i = 1, 2, . . . , n) in Equation (1).

The structure of LSTM is shown in Figure 2, which includes three gates, namely forget
gate, input gate and output gate [39]. The principle of LSTM is elaborated as follows.

(1) Forget gate ft represents the ratio of historical information to be remained.

ft = σ
(

W f (xt, ht−1) + δ f

)
(2)

(2) Input gate it represents the ratio of current information to be inputted.

it = σ(Wi(xt, ht−1) + δi) (3)
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(3) Cell state Ct represents the current hidden state, which is obtained by the weighted
sum of current candidate value C̃t and historical cell state Ct−1 with forget gate ft and
input gate it being their weights respectively.

C̃t = tanh(WC(xt, ht−1) + δC) (4)

Ct = ft ◦ Ct−1 + it ◦ C̃t (5)

(4) Output gate ot is the ratio of information to be the output of current LSTM unit.
Through the output gate, the current cell state Ct is converted to the current LSTM
output.

ot = σ(Wo(xt, ht−1) + δo) (6)

ht = ot ◦ tanh(Ct) (7)

Figure 2. Structure of LSTM network [39].

In Equations (2)–(7), W f , Wi, WC, Wo are weight matrix, δ f , δi, δC, δo are the bias
term. The weight matrix and bias term of LSTM network are learned automatically from
training data via the backpropagation through time (BPTT) strategy. The operation ◦ is the
element-wise product (also known as Hadamard product), xt is the current input data and
ht−1 is the LSTM unit output at the previous moment. The function σ(.) and tanh(.) are
nonlinear activation functions defined as follows.

σ(x) =
1

1 + e−x (8)

tanh(x) =
ex − e−x

ex + e−x (9)

Through LSTM network, the dynamic behaviors of three-shaft gas turbines can be
effectively characterized and the nonlinear mapping relationships Fi(.)(i = 1, 2, . . . , n) in
Equation (1) can be identified precisely.

2.3. Collaborative Decision for Fault Detection

After LSTM network training, normal pattern group is established. Then this section
will apply boxplot to normal pattern group and design a collaborative decision strategy for
fault detection.

Boxplot is a method for graphically depicting groups of numerical data through their
quartiles. Its principle is shown in Figure 3, where the lower quartile Q1 is usually the
25th percentile and the upper quartile Q3 is usually the 75th percentile. Interquartile range
(IQR) is the distance between the upper and lower quartiles and is computed by Equation
(10). For a residual vector, boxplot gives the upper threshold umax and the lower threshold
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umin by Equations (11) and (12) respectively. The data beyond the interval [umin, umax] (the
yellow solid circle in Figure 3) are regarded as outliers in boxplot.

IQR = Q3 −Q1 (10)

umin = Q1 − 1.5IQR (11)

umax = Q3 + 1.5IQR (12)

Figure 3. Principle of boxplot.

Normal pattern group includes n normal pattern models shown in Equation (1).
Corresponding n residual vectors can also be obtained through the fitted values minus
the corresponding real values. Each residual vector has an upper threshold and a lower
threshold determined by boxplot. Let the number of samples in training set be N. Given a
confidence interval CI, such as 95%, it is assumed that there are |CI ∗ N| samples that have
m residuals beyond the boxplot threshold, where |·| is integer-valued function. Then a new
instance will be normal with a confidence interval CI, if it has no more than m residual
values beyond the boxplot threshold. Specifically, the fault detection process of a new
sample is illustrated in Figure 4.

Figure 4. Collaborative decision-making strategy for fault detection.

In Figure 4, for a new instance, n fitted values are first computed by n trained LSTM
networks, namely normal pattern group, and then n residual values are computed by n
fitted values minus corresponding n actual values. The n residual values are compared
with the corresponding n boxplot threshold to get the threshold binary group composed of
n binary values (0 or 1). An example of threshold binary group is 0, 1, 0, 0, 0, . . . , 0︸ ︷︷ ︸

nnumbers

. If the

number of 1 in the threshold binary group exceed m, then it is detected as a fault instance,
otherwise it is detected as a normal instance.
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2.4. Application in Three-Shaft Marine Gas Turbine Fault Detection

This section applies the proposed LSTM-based normal pattern group to fault detection
of three-shaft marine gas turbines. Three-shaft marine gas turbine has two compressors,
one combustion chamber (CC) and three turbines. Two compressors are low-pressure
compressor (LPC) and high-pressure compressor (HPC). Three turbines are high-pressure
turbine (HPT), low-pressure turbine (LPT) and power turbine (PT). Its typical configuration
is shown in Figure 5.

Figure 5. Typical configuration of a three-shaft marine gas turbine.

For the studied three-shaft marine gas turbines, there are 10 measurable parameters
shown in Table 1 [48].

nH = F1

(
t1, g f , nL, P, plc, phc, plt, tlt, tpt

)
nL = F2

(
t1, g f , nH , P, plc, phc, plt, tlt, tpt

)
P = F3

(
t1, g f , nH , nL, plc, phc, plt, tlt, tpt

)
plc = F4

(
t1, g f , nH , nL, P, phc, plt, tlt, tpt

)
phc = F5

(
t1, g f , nH , nL, P, plc, plt, tlt, tpt

)
plt = F6

(
t1, g f , nH , nL, P, plc, phc, tlt, tpt

)
tlt = F7

(
t1, g f , nH , nL, P, plc, phc, plt, tpt

)
tpt = F8

(
t1, g f , nH , nL, P, plc, phc, plt, tpt

)

(13)

Table 1. Measurable parameters.

Description Symbol

Ambient temperature t1
Fuel flow rate g f

Rotational speed of high-pressure spool nH
Rotational speed of low-pressure spool nL

Power of gas turbines P
Outlet pressure of LPC plc
Outlet pressure of HPC phc
Outlet pressure of LPT plt

Outlet temperature of LPT tlt
Outlet temperature of PT tpt

The ambient temperature t1 and fuel flow rate g f directly affect the operational state
of gas turbines. Thus, the two parameters are regarded as the input measurements of three-
shaft marine gas turbines. The change of the other eight measurable parameters listed in
Table 1 are caused by the change of t1 and g f . Thus, the eight measurable parameters are
regarded as the output measurements of three-shaft marine gas turbines. According to
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Equation (1), we can establish the normal pattern group of three-shaft marine gas turbines
in Equation (13). In Equation (13), there are eight normal pattern models, namely n equals
8. The detailed procedure of normal pattern group-based gas turbine fault detection is
illustrated in Figure 6, which includes the following three steps.

Step 1: data preprocessing. This step divides the normal data into three parts. The
first 70% is training set, the following 15% is the validation set and the rest 15% is the test
set.

Step 2: training and validation. This step trains eight LSTM networks using training
set to identify eight nonlinear mapping relationships in Equation (13). Hyperparameters
of eight LSTM networks are tuned through validation set. After eight LSTM networks
are trained, detection thresholds are computed through collaborative decision strategy in
Section 2.3.

Step 3: test and anomaly detection. A new sample is inputted to the trained LSTM-
based normal pattern group, eight residual values are obtained. Then its health condition
is determined through collaborative decision strategy in Section 2.3.

Figure 6. Technological process of this paper.
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3. Experiments
3.1. Data Description

Nonlinear component model is a widely used method for gas path fault simula-
tion [28], gas path fault diagnosis [23,49,50], automatic control [51] and characteristics
analysis [52,53] of gas turbines. Currently, many researchers have developed mature and
standard modelling method for gas turbines [54,55] and used the established nonlinear
component model for gas path fault simulation, fault detection and fault diagnosis and
achieved good performances. Thus, this paper uses the nonlinear component model of a
three-shaft marine gas turbine developed in literature [54] to for fault data simulation. Gas
path fault is one of the most frequent faults and can cause serious damages [1]. Common
gas path faults include fouling, erosion and foreign object damaging and can cause the
drop of flow capacity and isentropic efficiency. Many literatures [1,28,56] have developed
standard and widely-accepted ways to simulate gas path faults of gas turbines. According
to literature [56], this paper simulated 13 common gas path faults including the fouling of
LPC, the foreign object damaging (FOD) of LPC, the fouling of HPC, the FOD of HPC, the
fouling of HPT, the erosion of HPT, the FOD of HPT, the fouling of LPT, the erosion of LPT,
the FOD of LPT, the fouling of PT, the erosion of PT and the FOD of PT.

In the simulation, the input parameters of the simulation model are ambient tempera-
ture and fuel flow rate. The input parameters for normal data have 20,000 samples shown
in Figure 7a,b which covers a wide range of operating conditions. The input parameters
for fault data have 1800 samples shown in Figure 7c,d. The input parameters of fault data
are inputted to the component model five times to simulate fault data of 5 severities. Thus,
the fault data of each fault category have 9000 samples with each fault severity containing
1800 samples. All the simulated normal data are shown in Figure 8. For the simulated
fault data, due to the page length, this paper only visualizes one category of fault data,
namely LPC fouling fault in Figure 9. LPC fouling fault include five severity levels, namely
fault severity 1, fault severity 2, fault severity 3, fault severity 4 and fault severity 5. Fault
severity 5 denotes the most serious fault level. Due to the page length, only fault severity 1
and fault severity 5 are shown in Figure 9. Figure 9a shows the LPC fouling fault with fault
severity 1 and Figure 9b shows the LPC fouling fault with fault severity 5.

In the following experiments, this paper uses the first 70% of normal data as the
training set to train algorithms, the following 15% of normal data as the validation set
for parameter tuning and the rest 15% of normal data for performance evaluation of
normal data. All the fault data of 13 categories are used for evaluating the fault detection
performance of fault data. Details of the generated simulation data for fault detection are
illustrated in Table 2.

Table 2. Dataset description.

Normal Data LPC Fault HPC Fault

Train Validation Test Fouling FOD Fouling FOD

Number of
Samples 14,000 3500 3500 9000 9000 9000 9000

HPT Fault LPT Fault PT Fault

Fouling Erosion FOD Fouling Erosion FOD Fouling Erosion FOD

Number of
Samples 9000 9000 9000 9000 9000 9000 9000 9000 9000
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Figure 7. Input parameters of normal data and fault data: (a) Ambient temperature of normal data; (b) Fuel flow rate of
normal data; (c) Ambient temperature of fault data; (d) Fuel flow rate of fault data.

Figure 8. Normal data in the experiments.
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Figure 9. LPC fouling fault data in the experiments: (a) LPC fouling fault severity 1; (b) LPC fouling fault severity 5.

To evaluate the fault detection performance, the detection accuracy of normal data
accnormal and the detection accuracy of fault data accabnormal are defined as follows.

accnormal =
1
n1

n1

∑
t=1

It, accabnormal =
1
n2

n2

∑
t=1

Jt, (14)

where n1 and n2 are the number of normal data in test set and fault data respectively, It
is the number of actual normal data that are detected as normal data, Jt is the number of
actual fault data that are detected as fault data.

3.2. Experiment of LSTM Network-Based Normal Pattern Group

This section performed experiment of normal pattern group to verify its effectiveness.
First, eight LSTM networks are trained using training data to identify eight normal pattern
models in Equation (13). LSTM networks are implemented by Keras library of Python
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programming language. The identification of eight normal pattern models is a typical
regression task. Mean squared error is the most common loss function for regressor tasks in
neural networks, and thus mean squared error is used as the loss function of LSTM network.
During the training process, the validation set is used to tune the hyperparameters of LSTM
networks. The fitted results are shown in Figures 10 and 11. It is observed that the fitted
values are quite close to the actual values. This shows that LSTM network can characterize
the normal pattern of gas turbines well.

Figure 10. Actual data versus estimated data in training set.

Figure 11. Actual data versus estimated data in validation set.
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After network training and validation, eight residual vectors of normal pattern group
are computed through the fitted values minus corresponding actual values. Boxplot is used
to determine the upper threshold and the lower threshold of the eight residual vectors. The
normalized threshold of each boxplot is shown in Figure 12 and corresponding detection
threshold is listed in Table 3.

Figure 12. Boxplot of residuals in training set.

Table 3. Detection threshold of normal pattern group.

nH nL P phc plt plc tpt tlt

Upper limit −3.9774 −3.6015 −23.8765 −1850.8100 −325.4210 −1443.6000 −0.2329 −0.0944
Lower limit 1.5426 1.7531 30.1565 2964.3100 507.2070 920.9380 0.1400 0.1559

In the trained normal pattern group, each training instance has eight residual values.
According to the boxplot threshold of training set, we can count the number of samples that
has no residual values beyond the corresponding boxplot threshold. Similarly, we can count
the number of samples that has z(z = 1, 2, . . . , 8) residual values beyond the corresponding
boxplot threshold. Furthermore, the percentage of these samples is computed through
being divided by the number of all samples in training set, which is shown in Figure 13.

Figure 13. Percentage of different threshold overshoot numbers in training set.
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It is observed from Figure 13 that the percentage of threshold overshot number 0 and
threshold overshot number 1 are the largest. The threshold overshot number of as many
as 94.99% training samples is no more than 1. After that, although the threshold overshot
number increases, the percentage does not increase much and the ability to detect fault
samples can decrease significantly. Therefore, we set the parameter m in Figure 4 to be 1,
which can ensure about 95% training samples to be classified correctly. For a new instance,
it is first inputted to the trained normal pattern group to obtain eight residual values. If
more than one of the eight residual values exceed corresponding boxplot threshold, this
instance is detected as a fault instance, otherwise it is detected as a normal instance.

After establishing LSTM-based normal pattern group and determining the fault de-
tection strategy, test set of normal data and 13 categories of fault data are used for fault
detection. First, the test set of normal data are used to evaluate the fault detection per-
formance of normal data. The fitting results and residuals of test data of normal data are
shown in Figure 14. To evaluate the fitting performance better, mean absolute error (MAE),
mean absolute percentage error (MAPE) and root mean square error (RMSE) are used. Their
definitions are given in Equations (15)–(17). MAE describes the mean fitting errors and
RMSE is sensitive to extreme fitting errors and MAPE describes the mean percentage error.
For all three metrics, the smaller the better. These three describe the fitting performance
from different perspectives. MAE, MAPE and RMSE of training set, validation set and test
set are shown in Table 4.

RMSE =

√
1
n

n

∑
i=1

(y− ŷ)2 (15)

MAE =

√
1
n

n

∑
i=1
|y− ŷ| (16)

MAPE =

√
1
n

n

∑
i=1

(|y− ŷ|/|y|) × 100% (17)

Figure 14. Actual data versus estimated data in test set.
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Table 4. RMSE, MAE and MAPE of normal pattern group.

nH nL P phc plt plc tpt tlt

RMSE
train 1.6394 1.5979 12.5409 1149.7546 183.9000 516.1266 0.0844 0.0669

validation 1.5571 1.4210 10.9332 751.4320 161.6139 387.0732 0.0752 0.0490
test 1.6005 1.6448 12.2254 1053.9267 163.5448 374.5660 0.0962 0.0790

MAE
train 1.4006 1.1706 9.2172 972.4260 147.8990 449.2510 0.0698 0.0488

validation 1.3595 1.1526 8.3614 626.3500 133.0760 349.0990 0.0676 0.0384
test 1.3902 1.4262 9.8911 823.7550 135.3260 287.7390 0.0844 0.0667

MAPE
train 0.0149% 0.0158% 0.0371% 0.0493% 0.0414% 0.0992% 0.0090% 0.0048%

validation 0.0144% 0.0156% 0.0329% 0.0313% 0.0372% 0.0765% 0.0087% 0.0038%
test 0.0148% 0.0195% 0.0428% 0.0440% 0.0392% 0.0654% 0.0110% 0.0067%

From Figure 14 and Table 4, it is observed that the fitted values are close to the actual
values in test set. RMSE, MAE and MAPE are all very small, which means that LSTM
network can fit the normal data of three-shaft marine gas turbine well. Next, collaborative
fault detection strategy is used for fault detection. Fault detection accuracy of LSTM-based
normal pattern group in normal data and fault data is summarized in Table 5.

Table 5. Fault detection accuracy of the proposed normal pattern group method.

Normal Data LPC Fault HPC Fault

Train ValidationTest Fouling FOD Fouling FOD

Proposed
Method 0.9499 0.9867 0.9383 1.0000 1.0000 1.0000 1.0000

HPT Fault LPT Fault PT Fault

Fouling Erosion FOD Fouling Erosion FOD Fouling Erosion FOD

Proposed
Method 1.0000 1.0000 0.9936 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

The results in Table 5 show that the proposed method can detect all 13 categories
of faults sensitively and remain low false alarm rate for normal data. Thus, through the
proposed LSTM network-based normal pattern group and designed collaborative decision-
making strategy, faults can be sensitively detected and the robustness to normal data is
maintained simultaneously.

3.3. Comparison with Single Normal Pattern Methods

The proposed normal pattern group is a combination of eight normal pattern models
in Equation (13). To verify the necessaries and superiorities of normal pattern group, this
section compared it with eight single normal pattern models in Equation (13). Compar-
ison results are shown in Table 6, nH , nL, P, phc, plt, plc, tpt and tlt denote the normal
pattern model that uses nH , nL, P, phc, plt, plc, tpt and tlt as the output of LSTM network
respectively. The bold values denote the best detection accuracy in Table 6.

From Table 6, it is observed that none of the eight normal pattern models can detect
all 13 faults sensitively. The eight normal pattern models obtain the accuracy of less than
0.8 for some categories of faults. For example, nH normal pattern model, nL normal pattern
model and plc normal pattern model both obtain very bad accuracy (accuracy less than
0.6) for HPT erosion fault. P normal pattern model and plt normal pattern model both
obtain accuracy less than 0.6 for HPT FOD fault. The proposed normal pattern group
method effectively improves the detection performance of fault data while remaining
low false alarm rate for normal data through the collaborative decision of normal pattern
group. Thus, the proposed normal pattern group significantly improves the fault detection
performance compared with the eight normal pattern methods.
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Table 6. Fault detection accuracy comparison with single normal pattern method.

Method
Normal Data LPC Fault HPC Fault

Train Validation Test Fouling FOD Fouling FOD

nH 0.9630 0.9990 0.9253 0.9967 0.9991 0.9998 0.9997
nL 0.9730 0.9857 0.9897 0.9997 0.7469 0.9977 0.6737
P 0.9692 0.9840 0.9950 0.9993 0.9996 1.0000 0.9999

phc 0.9605 0.9997 0.9230 0.9999 1.0000 1.0000 1.0000
plt 0.9876 0.9970 0.9977 0.9940 0.9874 1.0000 0.9926
plc 0.9821 1.0000 0.9800 0.7523 0.8147 0.9857 0.8328
tpt 0.9648 0.9997 0.9953 0.8624 0.3632 0.8513 0.4309
tlt 0.9654 0.9897 0.9550 0.9674 0.7670 0.9994 0.7251

Proposed
Method 0.9499 0.9867 0.9383 1.0000 1.0000 1.0000 1.0000

Method
HPT Fault LPT Fault PT Fault

Fouling Erosion FOD Fouling Erosion FOD Fouling Erosion FOD

nH 0.9998 0.5959 0.8703 0.9996 0.9994 0.8328 0.9423 0.5896 0.9999
nL 0.9977 0.0828 0.9941 0.9976 0.7324 0.9992 0.9998 0.9998 1.0000
P 1.0000 0.9996 0.5136 0.9997 0.7533 0.6366 0.4061 0.9997 1.0000

phc 1.0000 1.0000 0.9841 1.0000 0.7742 0.9997 0.9978 0.9958 0.9966
plt 1.0000 0.9787 0.5734 0.9974 0.1662 0.6247 1.0000 1.0000 0.8572
plc 0.9857 0.3821 0.8039 0.4059 0.7179 0.9138 0.9624 0.9999 0.9973
tpt 0.8513 0.9967 0.6548 0.9968 0.8373 0.4809 0.8447 1.0000 0.9999
tlt 0.9994 0.9990 0.8954 0.9652 0.7858 0.9904 0.9993 1.0000 0.9690

Proposed
Method 1.0000 1.0000 0.9936 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3.4. Comparison between LSTM Network and Other Methods

To verify the superiorities of LSTM network, this section compares LSTM network with
some widely used regressors. The compared methods include support vector regression
(SVR) [57], single-layer feedforward neural network (SFLN) [58], extreme learning machine
(ELM) [59] and Elman recurrent neural network (ERNN) [60]. All of these methods
are widely used in pattern recognition, regression, time series forecast, industrial fault
diagnosis, etc. [61–63].

SVR uses kernel method to map the original data to a high dimensional space, so
that an approximately linear regression can be used for regression in this space. Radial
basis function (RBF) kernel is the most common kernel function. SLFN, ELM and ERNN
are three kinds of neural networks. SLFN is a static neural network with three layers,
namely input layer, hidden layer and output layer. SLFN is usually trained through
backpropagation strategy. Its structure is shown in Figure 15. ELM has the same structure
as SLFN. ELM random generates weights and bias between input layer and hidden layer
and determines the weights of output layer by computing Moore–Penrose generalized
inverse matrix instead of iteratively learning through error backpropagation. ELM can
be trained faster than SLFN. ERNN introduces a one-step time delay to characterize the
dynamic behaviors and its structure is shown in Figure 16. ERNN is also trained through
error backpropagation.

In this paper, these methods are used to identify the normal pattern group in Equation
(13). They are trained using data from training set, and their hyperparameters are tuned
through validation set. Their fault detection performances are shown in Table 7.
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Figure 15. Structure of SLFN [63].

Figure 16. Structure of ERNN [63].

Table 7. Fault detection accuracy comparison with other methods.

Method
Normal Data LPC Fault HPC Fault

Train Validation Test Fouling FOD Fouling FOD

ELM 0.9295 0.9853 0.8787 1.0000 1.0000 1.0000 1.0000
ERNN 0.9631 0.9963 0.9213 0.9989 1.0000 1.0000 1.0000
SLFN 0.9336 0.9943 0.9000 1.0000 1.0000 1.0000 1.0000
SVR 0.9292 1.0000 0.7850 0.6741 0.9806 0.7998 0.8739

Proposed
Method 0.9499 0.9867 0.9383 1.0000 1.0000 1.0000 1.0000

Method
HPT Fault LPT Fault PT Fault

Fouling Erosion FOD Fouling Erosion FOD Fouling Erosion FOD

ELM 1.0000 1.0000 1.0000 1.0000 0.9946 1.0000 1.0000 1.0000 1.0000
ERNN 0.9869 0.9987 0.9999 1.0000 1.0000 1.0000 1.0000 0.9966 1.0000
SLFN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SVR 0.6688 0.7628 0.8176 0.7968 1.0000 0.9032 0.9441 0.9067 1.0000

Proposed
Method 1.0000 1.0000 0.9936 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

From Table 7, it is observed that the proposed LSTM network-based fault detection
method significantly outperforms other methods. For test set of normal data, LSTM
improves the accuracy by 0.0596 when compared to ELM, improves the accuracy by 0.1533
when compared to SVR, improves the accuracy by 0.0383 when compared to SLFN and
improves the accuracy by 0.0170 when compared to ERNN. For the fault data, LSTM can
ensure the fault detection accuracy of each fault class to be at least 0.9936. By contrast,
ELM, SLFN and ERNN obtain almost as high accuracy as LSTM, but SVR obtains the
accuracy of less than 0.9 for some categories of faults including LPT fouling fault, HPT
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fouling fault, HPT erosion fault, LPC fouling fault and HPC fouling fault. Thus, LSTM
can ensure the fault detection accuracy of normal data and fault data to be more than 0.9
and have more reliable fault detection performance. It is also observed that ELM, ERNN
and SLFN outperforms the SVR method in the test set of normal data and some types of
faults. This shows that neural network-based methods including ELM, ERNN and SLFN
has better fault detection performance. Meanwhile, ERNN outperforms SLFN and ELM.
This is because that ERNN considers the time-delayed relationship among gas turbine
measurements to some extent. Compared with ERNN, LSTM considers time-delayed
relationship better through introducing input gate, forget gate and output gate, and can
characterize time-delayed relationship with much longer time lags. Thus, the proposed
LSTM-based method obtains significantly better fault detection performances than ERNN
and other methods in Table 7.

3.5. Comparison with One-Class Classifiers

Currently, one-class classifiers in machine learning field have also been widely used
for industrial anomaly detection in the case of only requires normal data. These methods
have been widely used in industrial fault detection [64,65], spam detection [66], etc. Thus,
this paper compared the proposed normal pattern group method with these common
one-classifiers to further verify its supercities. The compared methods include one-class
support vector machine (OCSVM) [67,68], local outlier factor (LOF) [69], isolation forest [70],
principal component analysis (PCA) [71].

OCSVM uses the kernel function to map the original normal data to a high-dimensional
space, where OCSVM tries to find a hyperplane that enables the normal data can be as far
from the origin as possible. Let the distance between the hyperplane and the origin be ρ,
then the samples whose distance from the origin is smaller than ρ is detected as abnormal
samples. Common kernel functions include RBF kernel, linear kernel, sigmoid kernel etc.,
and RBF kernel is the most widely used one. LOF detects anomaly through comparing the
density of the given sample and the sample density in its neighborhood. If its density is
obviously smaller than the density in its neighborhood, then this sample is detected as an
abnormal sample. Isolation forest isolates fault samples through constructing trees and
abnormal samples are usually isolated first. PCA detects anomaly through the compression
and reconstruction of data. PCA is trained using normal data, and it can ensure that the
reconstruction errors of normal samples are small and that the reconstruction errors of fault
samples are large. Square prediction error (SPE) and T2 statistics [71] are two common
ways for determining thresholds in PCA-based fault detection method.

In this paper, OCSVM, LOF and isolation forest were implemented by scikit-learn
library [72,73] of Python programming language. PCA-based fault detection method was
coded through Numpy library [74] of Python programming language. This paper uses three
kernel functions including radial basis function (RBF) kernel, linear kernel and sigmoid
kernel for OCSVM method. For PCA-based fault detection method, square prediction
error (SPE) and T2 statistics [71] are both used in the experiment. The parameters of these
methods were selected by the validation set. Corresponding comparison results are shown
in Table 8.
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Table 8. Fault detection accuracy comparison with one-class classifiers.

Method
Normal Data LPC Fault HPC Fault

Train Validation Test Fouling FOD Fouling FOD

Isolation Forest 0.9310 0.9993 0.7167 0.7914 0.9482 0.8731 0.9948
LOF 0.9916 0.9997 0.8277 0.6670 0.5676 0.7564 0.6839

PCA(SPE) 0.9893 0.9743 0.9738 0.5632 0.8501 0.7119 0.9637
PCA(T2) 0.9714 0.8052 0.8262 0.0700 0.3461 0.0778 0.5513

OCSVM(RBF) 0.9892 0.9993 0.7810 0.7318 0.8498 0.8608 0.8864
OCSVM (linear) 0.9501 1.0000 0.7873 0.1131 0.1066 0.0874 0.0838

OCSVM (Sigmoid) 0.9497 1.0000 0.7877 0.1249 0.1200 0.0944 0.1359
Proposed Method 0.9499 0.9867 0.9383 1.0000 1.0000 1.0000 1.0000

Method
HPT Fault LPT Fault PT Fault

Fouling Erosion FOD Fouling Erosion FOD Fouling Erosion FOD

Isolation Forest 0.8918 0.9750 0.9763 0.9616 0.9999 0.9998 0.9560 0.8981 1.0000
LOF 0.8053 0.9650 0.9451 0.9301 0.9240 0.9842 0.4769 0.8046 1.0000

PCA(SPE) 0.7458 0.8801 0.9033 0.8807 0.9993 0.9856 0.8502 0.7102 1.0000
PCA(T2) 0.1031 0.1519 0.2891 0.1276 0.1090 0.6497 0.1150 0.1871 1.0000

OCSVM (RBF) 0.8459 0.9927 0.9692 0.9648 1.0000 0.9843 0.8591 0.8587 1.0000
OCSVM (linear) 0.1247 0.2469 0.1457 0.1102 0.2203 0.1074 0.2004 0.1978 0.0486

OCSVM (Sigmoid) 0.1103 0.1923 0.1007 0.0900 0.3264 0.5196 0.1716 0.2766 0.9996
proposed method 1.0000 1.0000 0.9936 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

From Table 8, it is observed that the four one-class classifiers are not sensitive to some
categories of faults. Isolation Forest, PCA, LOF and OCSVM all have bad performance
(accuracy less than 0.8) for some fault categories. Meanwhile, isolation Forest, LOF, OCSVM
and PCA with T2 statistics obtains the accuracy of only about 0.8 for test set of normal
data. Among these one-class classifiers, only PCA with SPE statistics obtains good accuracy
for test set of normal data. The proposed method can ensure the detection accuracy of
each fault class to be at least 0.9936 while remaining the accuracy of more than 0.9 for
normal data. The proposed method incorporates the gas turbine prior knowledge, and
thus is sensitive to all faults and remains low false alarm rate for normal data. Thus, the
proposed method significantly outperforms common one-class classifiers in fault detection
performance of three-shaft marine gas turbines. This can also indicate that incorporating
gas turbine prior knowledge can improve the gas turbine fault detection performance to
some extent.

4. Conclusions and Future Work

Fault detection of three-shaft marine gas turbines has great significance in increasing
operational reliability and reducing maintenance costs. Current researches mainly focus on
the situation where abundant fault data are available. However, fault data are quite few or
even unavailable, especially for newly-run gas turbines. Aiming at the case where only
normal data are available, this paper proposes long short-term memory (LSTM) network-
based normal pattern group for fault detection of three-shaft gas turbines. Through
experiments in a three-shaft marine gas turbine, the following conclusions can be drawn.

Firstly, this paper characterizes the healthy state of three-shaft marine gas turbines
using normal pattern group composed of a group of normal pattern models. A group
of long short-term memory (LSTM) networks are used to identify these normal pattern
models and detect anomalies. Experimental results show that the proposed method can
detect all 13 common gas path faults of three-shaft gas turbines sensitively while remaining
low false alarm rate simultaneously.

Secondly, the proposed normal pattern group method is compared with eight single
normal pattern models to verify its superiorities. Experimental results show that the
proposed method significantly outperforms the eight normal pattern models in terms of
fault detection performance.
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Thirdly, the proposed normal pattern group method is compared with some common
one-class classifiers including one-class support vector machine, principal component anal-
ysis, isolation forest and local outlier factor to further verify its superiorities. Experimental
results show that the proposed method significantly outperforms all one-class classifiers
to some extent. This can also indicate that introducing appropriate prior knowledge can
improve the fault detection performance of gas turbines compared with purely data-driven
one-class classifiers to some extent.

In the future, the proposed normal pattern group method can be applied in other
types of gas turbines after analyzing the mapping relationships among corresponding
measurement parameters. Besides, more data-driven methods will also be explored in
fault detection of gas turbines. Additionally, the authors hope that LSTM network-based
normal pattern group can be applied to fault detection of other industrial systems except
gas turbines, such as diesel engines, steam turbines, nuclear power plants, wind turbines,
chillers, pumps, photovoltaic arrays etc.
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