Identification of Significant Genes and Pathways Related to Lung Cancer via Statistical Methods

Wu, Yuhang (2018) Identification of Significant Genes and Pathways Related to Lung Cancer via Statistical Methods. Advances in Bioscience and Biotechnology, 09 (09). pp. 397-408. ISSN 2156-8456

[thumbnail of ABB_2018082915445954.pdf] Text
ABB_2018082915445954.pdf - Published Version

Download (774kB)

Abstract

Cancer genomic research is a relatively new method. It has shown great potential but faces certain challenges. Researchers often have to deal with tens of thousands of genes with a relatively small sample size of patient cases—a dilemma referred to as the “Curse of Dimensionality” [1]—and it makes it hard to learn the data well because of relatively sparse data in high dimensional space. To deal with the dilemma, this study uses p-values of individual genes for pathway enrichment to find statistically significant pathways. The aim of this study is to find significant genes and biological pathways that are related to lung cancer by statistical method and pathway enrichment analysis. Several significant genes, such as WNT2B, VAV2, and significant pathways, such as Metabolism of xenobiotics by cytochrome P450-Homo sapiens (human) and Fatty acid degradation-Homo sapiens (human), are found to be both statistically significant and biological studies supported. Significant genes-including TESK2, C5orf43, and ZSCAN21—and significant pathways such as Pentose and glucoronate interconversions-Homo sapiens (human), are found to be new cancer-related genes and pathways that worth laboratory studies. The idea and method used in this research can be applied to find more significant genes and pathways that worth study experimentally.

Item Type: Article
Subjects: Science Repository > Biological Science
Depositing User: Managing Editor
Date Deposited: 03 Mar 2023 05:41
Last Modified: 25 Jul 2024 07:12
URI: http://research.manuscritpub.com/id/eprint/1046

Actions (login required)

View Item
View Item