Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2

Castiglione, Gianni M. and Zhou, Lingli and Xu, Zhenhua and Neiman, Zachary and Hung, Chien-Fu and Duh, Elia J. and Hejnol, Andreas (2021) Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2. PLOS Biology, 19 (12). e3001510. ISSN 1545-7885

[thumbnail of journal.pbio.3001510.pdf] Text
journal.pbio.3001510.pdf - Published Version

Download (2MB)

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse—one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.

Item Type: Article
Subjects: Science Repository > Biological Science
Depositing User: Managing Editor
Date Deposited: 30 Jan 2023 05:05
Last Modified: 01 Jan 2024 12:36
URI: http://research.manuscritpub.com/id/eprint/1169

Actions (login required)

View Item
View Item