Temperature-Dependent Activity of Motor Proteins: Energetics and Their Implications for Collective Behavior

Yadav, Saumya and Kunwar, Ambarish (2021) Temperature-Dependent Activity of Motor Proteins: Energetics and Their Implications for Collective Behavior. Frontiers in Cell and Developmental Biology, 9. ISSN 2296-634X

[thumbnail of pubmed-zip/versions/1/package-entries/fcell-09-610899/fcell-09-610899.pdf] Text
pubmed-zip/versions/1/package-entries/fcell-09-610899/fcell-09-610899.pdf - Published Version

Download (798kB)

Abstract

Molecular motor proteins are an extremely important component of the cellular transport system that harness chemical energy derived from ATP hydrolysis to carry out directed mechanical motion inside the cells. Transport properties of these motors such as processivity, velocity, and their load dependence have been well established through single-molecule experiments. Temperature dependent biophysical properties of molecular motors are now being probed using single-molecule experiments. Additionally, the temperature dependent biochemical properties of motors (ATPase activity) are probed to understand the underlying mechanisms and their possible implications on the enzymatic activity of motor proteins. These experiments in turn have revealed their activation energies and how they compare with the thermal energy available from the surrounding medium. In this review, we summarize such temperature dependent biophysical and biochemical properties of linear and rotary motor proteins and their implications for collective function during intracellular transport and cellular movement, respectively.

Item Type: Article
Subjects: Science Repository > Biological Science
Depositing User: Managing Editor
Date Deposited: 26 Nov 2022 04:14
Last Modified: 04 Sep 2023 06:58
URI: http://research.manuscritpub.com/id/eprint/240

Actions (login required)

View Item
View Item