EEG-Based Auditory Attention Detection and Its Possible Future Applications for Passive BCI

Belo, Joan and Clerc, Maureen and Schön, Daniele (2021) EEG-Based Auditory Attention Detection and Its Possible Future Applications for Passive BCI. Frontiers in Computer Science, 3. ISSN 2624-9898

[thumbnail of pubmed-zip/versions/1/package-entries/fcomp-03-661178/fcomp-03-661178.pdf] Text
pubmed-zip/versions/1/package-entries/fcomp-03-661178/fcomp-03-661178.pdf - Published Version

Download (899kB)

Abstract

The ability to discriminate and attend one specific sound source in a complex auditory environment is a fundamental skill for efficient communication. Indeed, it allows us to follow a family conversation or discuss with a friend in a bar. This ability is challenged in hearing-impaired individuals and more precisely in those with a cochlear implant (CI). Indeed, due to the limited spectral resolution of the implant, auditory perception remains quite poor in a noisy environment or in presence of simultaneous auditory sources. Recent methodological advances allow now to detect, on the basis of neural signals, which auditory stream within a set of multiple concurrent streams an individual is attending to. This approach, called EEG-based auditory attention detection (AAD), is based on fundamental research findings demonstrating that, in a multi speech scenario, cortical tracking of the envelope of the attended speech is enhanced compared to the unattended speech. Following these findings, other studies showed that it is possible to use EEG/MEG (Electroencephalography/Magnetoencephalography) to explore auditory attention during speech listening in a Cocktail-party-like scenario. Overall, these findings make it possible to conceive next-generation hearing aids combining customary technology and AAD. Importantly, AAD has also a great potential in the context of passive BCI, in the educational context as well as in the context of interactive music performances. In this mini review, we firstly present the different approaches of AAD and the main limitations of the global concept. We then expose its potential applications in the world of non-clinical passive BCI.

Item Type: Article
Subjects: Science Repository > Computer Science
Depositing User: Managing Editor
Date Deposited: 24 Feb 2023 04:46
Last Modified: 22 Feb 2024 03:51
URI: http://research.manuscritpub.com/id/eprint/365

Actions (login required)

View Item
View Item