Optogenetics in Alzheimer’s Disease: Focus on Astrocytes

Mitroshina, Elena and Kalinina, Elizaveta and Vedunova, Maria (2023) Optogenetics in Alzheimer’s Disease: Focus on Astrocytes. Antioxidants, 12 (10). p. 1856. ISSN 2076-3921

[thumbnail of antioxidants-12-01856.pdf] Text
antioxidants-12-01856.pdf - Published Version

Download (1MB)

Abstract

Alzheimer’s disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte–neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review’s latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.

Item Type: Article
Subjects: Science Repository > Agricultural and Food Science
Depositing User: Managing Editor
Date Deposited: 16 Dec 2023 13:05
Last Modified: 16 Dec 2023 13:05
URI: http://research.manuscritpub.com/id/eprint/3832

Actions (login required)

View Item
View Item