Unlocking ensemble ecosystem modelling for large and complex networks

Vollert, Sarah A. and Drovandi, Christopher and Adams, Matthew P. and Anderies, John Martin (2024) Unlocking ensemble ecosystem modelling for large and complex networks. PLOS Computational Biology, 20 (3). e1011976. ISSN 1553-7358

[thumbnail of journal.pcbi.1011976.pdf] Text
journal.pcbi.1011976.pdf - Published Version

Download (3MB)

Abstract

The potential effects of conservation actions on threatened species can be predicted using ensemble ecosystem models by forecasting populations with and without intervention. These model ensembles commonly assume stable coexistence of species in the absence of available data. However, existing ensemble-generation methods become computationally inefficient as the size of the ecosystem network increases, preventing larger networks from being studied. We present a novel sequential Monte Carlo sampling approach for ensemble generation that is orders of magnitude faster than existing approaches. We demonstrate that the methods produce equivalent parameter inferences, model predictions, and tightly constrained parameter combinations using a novel sensitivity analysis method. For one case study, we demonstrate a speed-up from 108 days to 6 hours, while maintaining equivalent ensembles. Additionally, we demonstrate how to identify the parameter combinations that strongly drive feasibility and stability, drawing ecological insight from the ensembles. Now, for the first time, larger and more realistic networks can be practically simulated and analysed.

Item Type: Article
Subjects: Science Repository > Biological Science
Depositing User: Managing Editor
Date Deposited: 09 Apr 2024 11:14
Last Modified: 09 Apr 2024 11:14
URI: http://research.manuscritpub.com/id/eprint/4062

Actions (login required)

View Item
View Item